首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kinetoplast DNA (kDNA) is a novel form of mitochondrial DNA consisting of thousands of interlocked minicircles and 20–30 maxicircles. The minicircles replicate free of the kDNA network but nicks and gaps in the newly synthesized strands remain at the time of reattachment to the kDNA network. We show here that the steady-state population of replicated, network-associated minicircles only becomes repaired to the point of having nicks with a 3′OH and 5′deoxyribonucleoside monophosphate during S phase. These nicks represent the origin/terminus of the strand and occur within the replication origins (oriA and oriB) located 180° apart on the minicircle. Minicircles containing a new L strand have a single nick within either oriA or oriB but not in both origins in the same molecule. The discontinuously synthesized H strand contains single nicks within both oriA and oriB in the same molecule implying that discontinuities between the H-strand Okazaki fragments become repaired except for the fragments initiated within the two origins. Nicks in L and H strands at the origins persist throughout S phase and only become ligated as a prelude to network division. The failure to ligate these nicks until just prior to network division is not due to inappropriate termini for ligation.  相似文献   

2.
Kinetoplast DNA is a network containing thousands of interlocked minicircles. The minicircles replicate as free molecules after release from the network, and their progeny are then reattached (Englund, P. T., (1979) J. Biol. Chem. 254, 4895-4900). In Trypanosoma equiperdum, some of the newly replicated minicircles which have recatenated to the network contain a single gap. This gap is about 10 nucleotides in size and it is in the newly synthesized strand. Based on several criteria (S1 nuclease digestion, denaturing polyacrylamide gel analysis and DNA sequencing), the gap residues at a unique site on the molecule. This site overlaps the sequence GGGGTTGGTGTAA, which is the only common sequence found in all minicircles, from several different species, which have been examined.  相似文献   

3.
Kinetoplast DNA, the mitochondrial DNA in trypanosomes, is a giant network containing topologically interlocked minicircles. Replication occurs on free minicircles that have been detached from the network. In this paper, we report studies on the synthesis and processing of the minicircle L and H strands. Analysis of free minicircles from Trypanosoma equiperdum by two-dimensional agarose gel electrophoresis indicated that elongating L strands are present on theta structures. Hybridization studies indicated that L-strand elongation is continuous and unidirectional, starting near nucleotide 805 and proceeding around the entire minicircle. The theta structures segregate into monomeric progeny minicircles, and those with a newly synthesized L strand have a 8-nucleotide gap between nucleotides 805 and 814 (J. M. Ntambi, T. A. Shapiro, K. A. Ryan, and P. T. Englund, J. Biol. Chem. 261:11890-11895, 1986). These molecules are reattached to the network, where repair of the gap takes place. Of the molecules labeled during a 10-min pulse with [3H]thymidine, gap filling occurred on half within about 15 min and on virtually all by 60 min; however, there was no detectable covalent closure of the newly synthesized L strand by 60 min.  相似文献   

4.
In Trypanosoma equiperdum, some newly replicated kinetoplast DNA minicircles contain a single gap at a unique location in their newly synthesized strand (Ntambi, J. M., and Englund, P. T. (1985) J. Biol. Chem. 260, 5574-5579). We now report that ribonucleotides are associated with this gap, with one or two covalently attached to the 5' terminus of the newly synthesized strand. There appear to be two possible RNA/DNA junctions at adjacent positions in the sequence. The ribonucleotides may be remnants of a replication primer, and their presence strongly implies that the gap is at the site of a replication origin.  相似文献   

5.
We have previously described an isolated kinetoplast system from Crithidia fasciculata capable of ATP-dependent replication of kinetoplast DNA minicircles (L. Birkenmeyer and D.S. Ray, J. Biol. Chem. 261: 2362-2368, 1986). We present here the identification of two new minicircle species observed in short pulse-labeling experiments in this system. The earliest labeled minicircle species (component A) contains both nascent H and L strands and is heterogeneous in sedimentation and electrophoretic migration. Component A has characteristics consistent with a Cairns-type structure in which the L strand is the leading strand and the H strand is the lagging strand. The other new species (component B) has a nascent 2.5-kilobase linear L strand with a single discontinuity that mapped to either of two alternative origins located 180 degrees apart on the minicircle map. Component B could be repaired to a covalently closed form by Escherichia coli polymerase I and T4 ligase but not by T4 polymerase and T4 ligase. Even though component B has a single gap in one strand, it had an electrophoretic mobility on an agarose gel (minus ethidium bromide) similar to that of a supercoiled circle with three supertwists. Treatment of component B with topoisomerase II converted it to a form that comigrated with a nicked open circular form (replicative form II). These results indicate that component B is a knotted topoisomer of a kinetoplast DNA minicircle with a single gap in the L strand.  相似文献   

6.
The structure of replicating kinetoplast DNA networks   总被引:8,自引:2,他引:6       下载免费PDF全文
《The Journal of cell biology》1993,123(5):1069-1079
Kinetoplast DNA (kDNA), the mitochondrial DNA of Crithidia fasciculata and related trypanosomatids, is a network containing approximately 5,000 covalently closed minicircles which are topologically interlocked. kDNA synthesis involves release of covalently closed minicircles from the network, and, after replication of the free minicircles, reattachment of the nicked or gapped progeny minicircles to the network periphery. We have investigated this process by electron microscopy of networks at different stages of replication. The distribution of nicked and closed minicircles is easily detectable either by autoradiography of networks radiolabeled at endogenous nicks by nick translation or by twisting the covalently closed minicircles with intercalating dye. The location of newly synthesized minicircles within the network is determined by autoradiography of network is determined by autoradiography of networks labeled in vivo with a pulse of [3H]thymidine. These studies have clarified structural changes in the network during replication, the timing of repair of nicked minicircles after replication, and the mechanism of division of the network.  相似文献   

7.
Kinetoplast DNA, the mitochondrial DNA of trypanosomatid protozoa, is a network containing several thousand topologically interlocked DNA minicircles. Kinetoplast DNA synthesis involves release of minicircles from the network, replication of the free minicircles, and reattachment of the progeny back onto the network. One enzyme involved in this process is structure-specific endonuclease-I. This enzyme, originally purified from Crithidia fasciculata, has been proposed to remove minicircle replication primers (Engel, M. L., and Ray, D. S. (1998) Nucleic Acids Res. 26, 4773-4778). We have studied the structure-specific endonuclease-I homolog from Trypanosoma brucei, showing it to be localized in the antipodal sites flanking the kinetoplast DNA disk, as previously shown in C. fasciculata. RNA interference of structure-specific endonuclease-I caused persistence of a single ribonucleotide at the 5' end of both the leading strand and at least the first Okazaki fragment in network minicircles, demonstrating that this enzyme in fact functions in primer removal. Probably because of the persistence of primers, RNA interference also impeded the reattachment of newly replicated free minicircles to the network and caused a delay in kinetoplast DNA segregation. These effects ultimately led to shrinkage and loss of the kinetoplast DNA network and cessation of growth of the cell.  相似文献   

8.
The mitochondrial DNA of trypanosomes, kinetoplast DNA, is a network containing thousands of topologically interlocked minicircles. Minicircles are replicated as free molecules after being detached from the network. The minicircle L strand appears to be synthesized continuously and the H strand discontinuously. This paper describes properties of Trypanosoma equiperdum minicircle H strand fragments which could be Okazaki fragments. These fragments constitute a family of molecules of discrete sizes (ranging from about 70 to 1000 nucleotides) which map to specific locations. Three of the most prominent fragments, a 73-mer, 83-mer, and 138-mer, map at contiguous or overlapping sites. Based on their position relative to the initiation site for L strand synthesis, the 73-mer may be the first Okazaki fragment to be synthesized and either the 83-mer or the 138-mer may be the second. The 5' end of the 73-mer lies within a sequence, GGGCGT, found at a similar location in minicircles of all trypanosomatid species. During the maturation of free minicircles and after their reattachment to the networks there appears to be continued extension and ligation of the H strand fragments. However, the ligation of the 73-mer, 83-mer, and 138-mer to the rest of the H strand is delayed; their eventual ligation results in covalent closure of the minicircles.  相似文献   

9.
The mitochondrial genome of Trypanosoma brucei, called kinetoplast DNA, is a network of topologically interlocked DNA rings including several thousand minicircles and a few dozen maxicircles. Kinetoplast DNA synthesis involves release of minicircles from the network, replication of the free minicircles and reattachment of the progeny. Here we report a new function of the mitochondrial topoisomerase II (TbTOP2mt). Although traditionally thought to reattach minicircle progeny to the network, here we show that it also mends holes in the network created by minicircle release. Network holes are not observed in wild‐type cells, implying that this mending reaction is normally efficient. However, RNAi of TbTOP2mt causes holes to persist and enlarge, leading to network fragmentation. Remarkably, these network fragments remain associated within the mitochondrion, and many appear to be appropriately packed at the local level, even as the overall kinetoplast organization is dramatically altered. The deficiency in mending holes is temporally the earliest observable defect in the complex TbTOP2mt RNAi phenotype.  相似文献   

10.
Etoposide, a nonintercalating antitumor drug, is a potent inhibitor of topoisomerase II activity. When Trypanosoma equiperdum is treated with etoposide, cleavable complexes are stabilized between topoisomerase II and kinetoplast DNA minicircles, a component of trypanosome mitochondrial DNA (T. A. Shapiro, V. A. Klein, and P. T. Englund, J. Biol. Chem. 264:4173-4178, 1989). Etoposide also promotes the time-dependent accumulation of small minicircle catenanes. These catenanes are radiolabeled in vivo with [3H]thymidine. Dimers are most abundant, but novel structures containing up to five noncovalently closed minicircles are detectable. Analysis by two-dimensional gel electrophoresis and electron microscopy indicates that dimers joined by up to six interlocks are late replication intermediates that accumulate when topoisomerase II activity is blocked. The requirement for topoisomerase II is particularly interesting because minicircles do not share the features postulated to make this enzyme essential in other systems: for minicircles, the replication fork is unidirectional, access to the DNA is not blocked by nucleosomes, and daughter circles are extensively nicked and (or) gapped.  相似文献   

11.
Kinetoplast DNA, the mitochondrial DNA of Crithidia fasciculata, is organized into a network containing 5,000 topologically interlocked minicircles. This network, situated within the mitochondrial matrix, is condensed into a disk-shaped structure located near the basal body of the flagellum. Fluorescence in situ hybridization revealed that before their replication, minicircles are released vectorially from the network face nearest the flagellum. Replication initiates in the zone between the flagellar face of the disk and the mitochondrial membrane (we term this region the kinetoflagellar zone [KFZ]). The replicating minicircles then move to two antipodal sites that flank the disk-shaped network. In later stages of replication, the number of free minicircles increases, accumulating transiently in the KFZ. The final replication events, including primer removal, repair of many of the gaps, and reattachment of the progeny minicircles to the network periphery, are thought to take place within the antipodal sites.  相似文献   

12.
We recently showed that abasic sites, uracil mismatches, nicks, and gaps can trap DNA topoisomerase I (top1) when these lesions are introduced in the vicinity of a top1 cleavage site (Pourquier, P., Ueng, L.-M., Kohlhagen, G., Mazumder, A., Gupta, M., Kohn, K. W., and Pommier, Y. (1997) J. Biol. Chem. 272, 7792-7796; Pourquier, P., Pilon, A. A., Kohlhagen, G., Mazumder, A., Sharma, A., and Pommier, Y. (1997) J. Biol. Chem. 26441-26447). In this study, we investigated the effects on top1 of an abundant base damage generated by various oxidative stresses: 7,8-dihydro-8-oxoguanine (8-oxoG). Using purified eukaryotic top1 and oligonucleotides containing the 8-oxoG modification, we found a 3-7-fold increase in top1-mediated DNA cleavage when 8-oxoG was present at the +1 or +2 position relative to the cleavage site. Another oxidative lesion, 5-hydroxycytosine, also enhanced top1 cleavage by 2-fold when incorporated at the +1 position of the scissile strand. 8-oxoG at the +1 position enhanced noncovalent top1 DNA binding and had no detectable effect on DNA religation or on the incision step. top1 trapping by 8-oxoG was markedly enhanced when asparagine adjacent to the catalytic tyrosine was mutated to histidine, suggesting a direct interaction between this residue and the DNA major groove immediately downstream from the top1 cleavage site. Altogether, these results demonstrate that oxidative base lesions can increase top1 binding to DNA and induce top1 cleavage complexes.  相似文献   

13.
Kinetoplast DNA, the mitochondrial DNA of trypanosomes, is a topologically complex structure composed of interlocked minicircles and maxicircles. We previously reported that etoposide, a potent inhibitor of topoisomerase II, promotes the cleavage of about 20% of network minicircle DNA (T. A. Shapiro, V. A. Klein, and P. T. Englund, J. Biol. Chem. 264:4173-4178, 1989). We now find that virtually all maxicircles are released from kinetoplast DNA networks after trypanosomes are treated with etoposide. As expected for a topoisomerase II cleavage product, the linearized maxicircles have protein bound to both 5' ends. After etoposide treatment, the residual minicircle catenanes have a sedimentation coefficient which is only 70% that of controls, and by electron microscopy the networks are less compact. Double-size networks, the characteristic dumbbell-shape forms that normally arise in the final stages of network replication, are replaced by aberrant unit-size forms.  相似文献   

14.
The glycosyl phosphatidylinositol (GPI) anchors that attach certain proteins to membranes are preassembled by sequential addition of glycan components to phosphatidylinositol (PI) before being transferred to nascent polypeptide. A cell-free system consisting of trypanosome membranes has been reported to catalyze GPI biosynthesis (Masterson, W. J., Doering, T. L., Hart, G. W., and Englund, P. T. (1989) Cell 56, 793-800; Menon, A. K., Schwarz, R. T., Mayor, S., and Cross, G. A. M. (1990) J. Biol. Chem. 265, 9033-9042). We now describe conditions for studying the initial steps of GPI biosynthesis in extracts of murine lymphoma cells. Two chloroform-soluble products, tentatively identified as [6-3H]GlcNAc-PI and [6-3H]GlcN-PI were generated during incubations of EL4 cell lysates with UDP-[6-3H]GlcNAc. The involvement of PI in the reaction was established by the sensitivity of the products to hydrolysis by PI-specific phospholipase C and the finding that the addition of exogenous PI to the incubation stimulated the reaction. The minor, more polar product was sensitive to nitrous acid cleavage and was converted to the major product, as judged by TLC, after treatment with acetic anhydride. The glycolipids generated in lymphoma extracts appeared to be the same as the products produced in parallel incubations with trypanosome membranes. Analysis of available lymphoma mutants deficient in Thy-1 surface expression revealed that extracts of the class A, C, and H mutants are completely defective in synthesizing GlcNAc-PI and GlcN-PI.  相似文献   

15.
DNA sequences from the adenovirus 2 genome   总被引:7,自引:0,他引:7  
The sequence of 5,839 nucleotides from the adenovirus 2 genome has been determined and includes the regions between coordinates 32-44% and 66-71%. These regions contain the coding sequences for the 52,55K polypeptide, polypeptide IIIa, penton base, and the N terminus of the 100K polypeptide. Several additional unidentified open reading frames are present, including examples which overlap identified reading frames on the complementary strand and on the same strand. In conjunction with previously published sequences and those described in the accompanying papers (Akusj?rvi, G., Alestr?m, P., Pettersson, M., Lager, M., J?urnvall, H., and Pettersson, U. (1984) J. Biol. Chem. 259, 13976-13979; Alestr?m, P., Akusj?rvi, G., Lager, M., Yeh-kai, L., and Pettersson, U. (1984) J. Biol. Chem. 259, 13980-13985) a complete sequence of 35,937 nucleotide pairs can now be reconstructed for the adenovirus 2 genome.  相似文献   

16.
Trypanosomes have an unusual mitochondrial genome, called kinetoplast DNA, that is a giant network containing thousands of interlocked minicircles. During kinetoplast DNA synthesis, minicircles are released from the network for replication as theta-structures, and then the free minicircle progeny reattach to the network. We report that a mitochondrial protein, which we term p38, functions in kinetoplast DNA replication. RNA interference (RNAi) of p38 resulted in loss of kinetoplast DNA and accumulation of a novel free minicircle species named fraction S. Fraction S minicircles are so underwound that on isolation they become highly negatively supertwisted and develop a region of Z-DNA. p38 binds to minicircle sequences within the replication origin. We conclude that cells with RNAi-induced loss of p38 cannot initiate minicircle replication, although they can extensively unwind free minicircles.  相似文献   

17.
The rotational dynamics of kinetoplast DNA replication   总被引:3,自引:0,他引:3  
Kinetoplast DNA (kDNA), from trypanosomatid mitochondria, is a network containing several thousand catenated minicircles that is condensed into a disk-shaped structure in vivo. kDNA synthesis involves release of individual minicircles from the network, replication of the free minicircles and reattachment of progeny at two sites on the network periphery approximately 180 degrees apart. In Crithidia fasciculata, rotation of the kDNA disk relative to the antipodal attachment sites results in distribution of progeny minicircles in a ring around the network periphery. In contrast, Trypanosoma brucei progeny minicircles accumulate on opposite ends of the kDNA disk, a pattern that did not suggest kinetoplast motion. Thus, there seemed to be two distinct replication mechanisms. Based on fluorescence microscopy of the kDNA network undergoing replication, we now report that the T. brucei kinetoplast does move relative to the antipodal sites. Whereas the C. fasciculata kinetoplast rotates, that from T. brucei oscillates. Kinetoplast motion of either type must facilitate orderly replication of this incredibly complex structure.  相似文献   

18.
M Ferguson  A F Torri  D C Ward  P T Englund 《Cell》1992,70(4):621-629
Kinetoplast DNA is a network of interlocked minicircles and maxicircles. In situ hybridization, using probes detected by digital fluorescence microscopy, has clarified the in vivo structure and replication mechanism of the network. The probe recognizes only nicked minicircles. Hybridization reveals prereplication kinetoplasts (with closed minicircles), donut-shaped replicating kinetoplasts (with nicked minicircles on the periphery and closed minicircles in the center), and postreplication kinetoplasts (with nicked minicircles). Replicating kinetoplasts are associated with two peripheral structures containing free minicircle replication intermediates and DNA polymerase. Replication may involve release of closed minicircles from the center of the kinetoplast and their migration to the peripheral structures, replication of the free minicircles therein, and then peripheral reattachment of the progeny minicircles to the kinetoplast.  相似文献   

19.
Changes in network topology during the replication of kinetoplast DNA.   总被引:2,自引:1,他引:1  
J Chen  P T Englund    N R Cozzarelli 《The EMBO journal》1995,14(24):6339-6347
Kinetoplast DNA of Crithidia fasciculata is a network containing several thousand topologically interlocked DNA minicircles. In the prereplicative Form I network, each of the 5000 minicircles is intact and linked to an average of three neighbors (i.e. the minicircle valence is 3). Replication involves the release of minicircles from the interior of the network, the synthesis of nicked or gapped progeny minicircles and the attachment of the progeny to the network periphery. The ultimate result is a Form II network of 10,000 nicked or gapped minicircles. Our measurements of minicircle valence and density, and the network's surface area, revealed striking changes in network topology during replication. During the S phase, the peripheral newly replicated minicircles have a density twice that of minicircles in Form I networks, which suggests that the valence might be as high as 6. Most of the holes in the central region that occur from the removal of intact minicircles are repaired so that the central density and valence remain the same, as in prereplicative networks. When minicircle replication is complete at the end of the S phase, the isolated network has the surface area of a prereplicative network, despite having twice the number of minicircles. During the G2 phase, the Form II network undergoes a remodeling in which the area doubles and the valence is reduced to 3. Finally, the interruptions in the minicircles are repaired and the double-sized network splits in two.  相似文献   

20.
The kinetoplast DNA of trypanosomes is comprised of thousands of DNA minicircles and 20-50 maxicircles catenated into a single network. Replication intermediates of minicircle DNA from the trypanosomatid species Crithidia fasciculata contain site-specific discontinuities in both heavy (H) and light (L) strands. These discontinuities map to two small regions situated 180 degrees apart on the minicircle; each region has two sites at which a discontinuity can occur, one on each strand. We have determined the position of these discontinuities on the minicircle DNA sequence and have characterized their structure. H-strand discontinuities occur within a 4-5-nucleotide sequence and consist of single nicks, only one of which appears to be a DNA-DNA junction. Characterization of the remaining H-strand nicks indicates a structure other than a typical DNA-DNA or DNA-RNA junction. Discontinuities on the L-strand can be either a nick or a short gap which overlaps a 12-nucleotide sequence universally conserved among minicircles from various trypanosome species. Up to 6 nucleotides are hydrolyzed from the 5' terminus facing the gap upon treatment with alkali, suggesting the presence of an RNA primer. Based on the structures of minicircle replication intermediates, we present a model for replication of minicircle DNA in which the site-specific discontinuities closely coincide with the origins of replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号