首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Catalase is a characteristic enzyme of peroxisomes. To study the molecular mechanisms of the biogenesis of peroxisomes and catalase in a less complex system than rat liver cells, we expressed recombinant rat catalase in Escherichia coli, which has no peroxisomes. The concentration of recombinant catalase produced in E. coli transformed with the expression vector carrying the complete coding region of rat catalase cDNA was about 0.1% of the total soluble protein. The recombinant catalase was purified by DEAE-cellulose column chromatography followed by acidic ethanol precipitations. The properties of rat liver catalase and those of the recombinant were similar with respect to molecular mass, catalytic properties, profiles of absorption spectra, and iron contents. The NH2-terminal amino acid sequence of the purified recombinant catalase, as determined by Edman degradation, was in complete agreement with the amino acid sequence predicted from the nucleotide sequence of rat catalase cDNA, except that the first initiator methionine was not detected. The COOH-terminal amino acid sequence was determined by carboxypeptidase A digestion and the sequence, -Ala-Asn-Leu-OH, matched the predicted COOH-terminal amino acid sequence of rat catalase. Recombinant rat catalase gave almost the same multiple protein bands on native polyacrylamide gel isoelectric focusing as observed with authentic rat liver catalase.  相似文献   

2.
Aspects of the synthesis and degradation of the multiple forms of catalase in mouse liver have been investigated. The kinetics of return of catalase after aminotriazole inhibition indicated a product-precursor relationship between the granular and supernatant pools of the enzyme, and electrophoretic resolution of the individual heteromorphs of catalase during this treatment served to substantiate this relationship and indicated, in addition, that aminotriazole-inhibited catalase may be partially reactivated in the cytosol. Changes in the activity of mouse liver and kidney catalases after the administration of chlorophenoxyisobutyric acid ethyl ester (CPIB) were also monitored. After an initial decline in activity, a rapid increase to an elevated steady state occurred, with an approximately threefold increase in the liver and twofold increase in the kidney. Subcellular fractionation of the livers of CPIB-treated mice showed a massive initial increase in the supernatant pool of catalase, accompanied by a steady decrease in the activity of the peroxisomal pools. Activity increased in the peroxisomal pools at later stages of treatment, but even after a new CPIB-induced steady state was achieved, the supernatant pool of catalase remained grossly elevated. Electrophoresis of the individual heteromorphs of catalase in the supernatant after CPIB treatment showed a predominance of the most cathodal migrating forms, and turnover studies demonstrated that catalase in CPIB-treated animals exhibited a substantially lowered rate of degradation by comparison with normal animals. These results have been discussed in relation to the intracellular sequestration and turnover characteristics of catalase.  相似文献   

3.
Our earlier electron microscopic observations revealed that prolonged exposure of glutaraldehyde-fixed rat liver sections to buffer solutions induced focal membrane disruptions of peroxisomes with catalase diffusion as shown cytochemically. Recently, it was suggested that 15-lipoxygenase (15-LOX) might be involved in natural degradation of membrane-bound organelles in reticulocytes by integrating into and permeabilizing the organelle membranes, leading to the release of matrix proteins. We have now investigated the localization of 15-LOX and its role in degradation of peroxisomal membranes in rat liver. Aldehyde-fixed liver slices were incubated in a medium that conserved the 15-LOX activity, consisting of 50 mM HEPES-KOH buffer (pH 7.4), 5 mM mercaptoethanol, 1 mM MgCl(2), 15 mM NaN(3), and 0.2 M sucrose, in presence or absence of 0.5-0.05 mM propyl gallate or esculetin, two inhibitors of 15-LOX. The exposure of aldehyde-fixed liver sections to this medium induced focal disruptions of peroxisome membranes and catalase diffusion around some but not all peroxisomes. This was significantly reduced by both 15-LOX inhibitors, propyl gallate and esculetin, with the latter being more effective. Double immunofluorescent staining for 15-LOX and catalase revealed that 15-LOX was co-localized with catalase in some but not all peroxisomes in rat hepatocytes. By postembedding immunoelectron microscopy, gold labeling was localized on membranes of some peroxisomes. These observations suggest that 15-LOX is involved in degradation of peroxisomal membranes and might have a physiological role in programmed degradation and turnover of peroxisomes in hepatocytes. (J Histochem Cytochem 49:613-621, 2001)  相似文献   

4.
A study was made of the influence of whole-body X-irradiation (8 Gy) on the turnover of an individual protein, alkaline proteinase, initiating inactivation of a catalase protein in rat liver. It was shown that the extent to which metabolism of this enzyme in the exposed animals is impaired depends upon its localization. The authors discuss the possibility of a correlation between the decrease in the catalase protein degradation and the level of proteinase activity in hepatocytes of irradiated rat liver.  相似文献   

5.
Changes in the activity of so-called oxidative stress defensive enzymes, superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and heme oxygenase, as well as changes in lipid peroxidation and reduced glutathione levels, were measured in guinea pig and rat liver after acute cobalt loading. Cobalt chloride administration produced a much higher degree of lipid peroxidation in guinea pig than in rat liver compared with the control animals. The intrahepatic reduced glutathione content in control guinea pig was higher than that in rat, but was equally decreased in both species after cobalt administration. The enzymatic scavengers of free radicals, superoxide dismutase, catalase and glutathione peroxidase, were significantly decreased in rat liver after acute cobalt loading, and as a compensatory reaction, the heme oxygenase activity was increased (seven-fold). In guinea pig liver, only superoxide dismutase activity was depleted in response to cobalt-induced oxidative stress, while catalase and glutathione peroxidase were highly activated and the heme oxygenase activity was dramatically increased (13-fold). It is assumed that enhanced heme oxygenase activity may have important antioxidant significance by increasing the liver oxidative-stress defense capacity.  相似文献   

6.
The contents of Cu, Zn-superoxide dismutase and catalase isolated and purified from the rat liver at the terminal stages of alloxan diabetes were decreased by 40% and 15%, respectively, as compared to the control. It can be concluded that the decrease in superoxide dismutase and catalase activity in experimental alloxan diabetes is mainly connected with the decline in the content of these proteins at the terminal stages of the disease, this, probably, being the result of DNA degradation and RNA transport disturbances under the effect of oxygen active forms.  相似文献   

7.
We have compared the intracellular localization of catalase and another peroxisomal marker enzyme, alpha-hydroxy acid oxidase (HAOX), in the livers of guinea pig and rat using immunoelectron microscopy and subcellular fractionation combined with immunoblotting and enzyme activity determination. Antibodies against both enzymes were raised in rabbits and their specificities established by immunoblotting. By immunoelectron microscopy, gold particles representing antigenic sites for catalase were found in guinea pig hepatocytes not only in peroxisomes but also in the cytoplasm and the nuclear matrix. In rat liver, however, catalase was localized exclusively in peroxisomes with no cytoplasmic labeling. Moreover, in both species HAOX was found only in peroxisomes. Subcellular fractionation revealed that purified peroxisomes from both species contained comparable levels of each, catalase and HAOX activities. The total catalase activity, however, was substantially higher in guinea pig and most of this excess catalase was in the cytosolic fraction with some activity also in nuclei. In rat liver, 30 to 40% of both enzymes and in guinea pig liver 30% of HAOX were recovered in the supernatant fraction implying that the fragility of peroxisomes in both species is quite comparable. These observations establish the occurrence of extraperoxisomal catalase in guinea pig liver. The catalase in the cytoplasm and nucleus of liver parenchymal cells is most probably involved in scavenging of H2O2, protecting the cell against toxic and mutagenic effects of this noxious agent.  相似文献   

8.
A rat liver protein with both phosphoenolpyruvate carboxykinase ferroactivator activity and catalase activity has been purified to near-homogeneity. The protein has a native molecular weight of 240,000 and is composed of four identical subunits containing ferriprotoporphyrin IX prosthetic groups. The visible spectrum has absorbance maxima at 403, 500, 530, and 620 nm; it is not reduced by dithionite. The spectrum, physical properties, and specific activity are almost identical with those of catalases from other sources, and the protein has been tentatively identified as rat liver catalase. The protein exhibited partial reactivity in double immunodiffusion plates to antiserum prepared against rat liver ferroactivator isolated by a previous method (Bentle, L. A., and Lardy, H. A. (1977) J. Biol. Chem. 252, 1431-1440) raising the possibility that the original ferroactivator and rat liver catalase are structurally related. Inactivation of catalase by 3-amino-1,2,4-triazole was accompanied by loss of ferroactivator activity as well. The apparent specific activity of ferroactivator, as well. The apparent specific activity of ferroactivator, whether heme-containing or not, can be increased between 2- and 100-fold by the inclusion of bovine serum albumin, HCO3-, or a combination of the two in the incubation.  相似文献   

9.
A proteinase with a pH optimum of 7.6 and Mr of 43 kD has been isolated from rat liver peroxisomes. The peroxisomes were shown to possess an intrinsic mechanism responsible for the degradation of proteins, e.g., catalase. Some physico-chemical properties and turnover parameters of neutral proteinase from peroxisomes (i.e., synthesis rate, lifetime, degradation of the newly synthesized enzyme) were studied. In terms of enzymatic and immunologic properties, the enzyme under study is similar to mitochondrial and cytosolic proteinases responsible for the initial inactivation of catalase in subcellular structures.  相似文献   

10.
1. The administration of CoCl(2) to rats caused a decrease in hepatic catalase activity as well as a decrease in the amount of catalase protein as measured by immunological assay. The mitochondrial enzyme decreased progressively over 2 days, whereas the cytosol enzyme decreased over 12h and then remained essentially unchanged for 2 days after a single injection of cobalt. 2. Incorporation of [(14)C]glycine into catalase haem was dramatically decreased by a single injection of cobalt, but that into catalase protein remained essentially unaltered. 3. Incorporation of [(3)H]leucine into liver protein increased in rats in a steady state receiving a daily injection of cobalt, which was in contrast with a marked inhibition observed in 5-amino[(3)H]laevulinate incorporation. 4. The initial rate of [(3)H]leucine incorporation into mitochondrial and cytosol catalase did not alter or was slightly depressed in the cobalt-treated animals, whereas the incorporation of 5-amino[(3)H]laevulinate into mitochondrial and cytosol catalase was conspicuously decreased, indicating that haem synthesis was limiting catalase formation. 5. The degradation rate of catalase protein, as measured by a double-labelling method, was not changed by the cobalt treatment.  相似文献   

11.
12.
The biosynthesis, transport and degradation of catalase have been studied in the guinea pig liver parenchymal cell using 2-allyl-2-isopropylacetamide (AIA) as an inhibitor of de novo formation of catalase. Total catalase activity was assayed biochemically; cytoplasmic catalase was measured microspectrophotometrically after quantitative diaminobenzidine staining of the liver. By morphometry, number and size of peroxisomes in catalase stained sections were determined. From our data we conclude that (1) the final step in the catalase formation takes place inside peroxisomes, (2) catalase is transported from the peroxisomes into the cytoplasm, (3) in the cytoplasm catalase is degraded. These conclusions in part confirm the topological model on the intracellular catalase biosynthesis pathway of Lazarow and de Duve (1973) except for the presence of cytoplasmic catalase which is released from the peroxisomes as proposed earlier by Jones and Masters (1975).  相似文献   

13.
Urate oxidase and catalase were purified from rat liver peroxisomes, and respective antibodies were prepared from rabbits by the administration of these enzymes. Although urate oxidase generally precipitates in immunoprecipitation-possible pH ranges (pH 4.5--9.5), the enzyme remained soluble in 50 mM glycine buffer (pH 9.5) containing 50% glycerol up to concentration of 0.3 mg/ml. Anti-urate oxidase reacted with purified urate oxidase as well as with the crude preparation. After [3H]leucine was injected to rats, urate oxidase and catalase were purified from rat liver at certain intervals, and further precipitated by respective antibodies. The half-life of the catalase was 39 h and that of urate oxidase, 20 h. When the sonicated light mitochondrial fraction was incubated at 37 degrees C and at pH 7.0 or 5.6, inactivation of catalase did not seem to differ between these pH values, and approximately 80% of the catalase activity remained even after 8 h. Urate oxidase was inactivated very rapidly at pH 5.6; only 30% of its activity survived incubation for 6 h. This inactivation was found to occur by some proteolytic process. From these findings, the turnover rate of urate oxidase was found to be different from that of catalase, and this distinction seemed to be due to different sensitivity to some degradative enzymes.  相似文献   

14.
Rat liver catalase mRNA was translated in a rabbit reticulocyte lysates and wheat germ cell-free system in the presence or absence of hemin and/or a translational inhibitor prepared from reticulocytes, liver cells, and wheat germs. Failure to add hemin to the lysates, or the addition of a hemin-regulated translational inhibitor (HRI) to the hemin-supplemented lysates caused a repressed translation. A preparation of inhibitor from rat liver showed activity similar to that of HRI for this translating system. The translation repression by rat liver inhibitor was reversed by eIF-2 (initiation factor) or GTP, but ATP enhanced the repression. The translation of catalase mRNA in the wheat germ system was not affected by the addition of hemin. An inhibitor prepared from wheat germ extracts, as well as the rat liver inhibitor, markedly decreased the rate of translation. eIF-2, GTP, and ATP behaved in the manner described above. Catalase synthesis in a cell-free system derived from rat liver (using endogenous mRNA) was not influenced by either hemin or the inhibitor. The possibilities are discussed that the synthesis of catalase in liver cells is controlled by a translational inhibitor at the level of chain initiation, and that the formation of the inhibitor from its inactive proinhibitor is regulated by the amount of heme.  相似文献   

15.
The capacity of the homogenates from human liver, rat parenchymal cells, rat non-parenchymal cells and total rat liver for the breakdown of human and rat high density lipoprotein (HDL) and human low density lipoprotein (LDL) was determined. Human HDL was catabolized by human liver, in contrast to human LDL, the protein degradation of which was low or absent. Human and rat HDL were catabolized by both the rat parenchymal and non-parenchymal cell homogenates with, on protein base, a 10-times higher activity in the non-parenchymal liver cells. This implies that more than 50% of the total liver capacity for HDL protein degradation is localized in these cell types. Human LDL degradation in the rat could only be detected in the non-parenchymal cell homogenates. These findings are discussed in view of the function of HDL and LDL as carriers for cholesterol.  相似文献   

16.
Urate oxidase and catalase were purified from rat liver peroxisomes, and respective antibodies were prepared from rabbits by the administration of these enzymes. Although urate oxidase generally precipitates in immunoprecipitation-possible pH ranges (pH 4.5–9.5), the enzyme remained soluble in 50 mM glycine buffer (pH 9.5) containing 50% glycerol up to concentration of 0.3 mg/ml. Anti-urate oxidase reacted with purified urate oxidase as well as with the crude preparation.After [3H]leucine was injected to rats, urate oxidase and catalase were purified from rat liver at certain intervals, and further precipitated by respective antibodies. The half-life of the catalase was 39 h and that of urate oxidase, 20 h. When the sonicated light mitochondrial fraction was incubated at 37°C and at pH 7.0 or 5.6, inactivation of catalase did not seem to differ between these pH values, and approximately 80% of the catalase activity remained even after 8 h. Urate oxidase was inactivated very rapidly at pH 5.6; only 30% of its activity survived incubation for 6 h. This inactivation was found to occur by some proteolytic process.From these findings, the turnover rate of urate oxidase was found to be different from that of catalase, and this distinction seemed to be due to different sensitivity to some degradative enzymes.  相似文献   

17.
Summary The biosynthesis, transport and degradation of catalase have been studied in the guinea pig liver parenchymal cell using 2-allyl-2-isopropylacetamide (AIA) as an inhibitor of de novo formation of catalase. Total catalase activity was assayed biochemically; cytoplasmic catalase was measured microspectrophotometrically after quantitative diaminobenzidine staining of the liver. By morphometry, number and size of peroxisomes in catalase stained sections were determined. From our data we conclude that (1) the final step in the catalase formation takes place inside peroxisomes, (2) catalase is transported from the peroxisomes into the cytoplasm, (3) in the cytoplasm catalase is degraded. These conclusions in part confirm the topological model on the intracellular catalase biosynthesis pathway of Lazarow and de Duve (1973) except for the presence of cytoplasmic catalase which is released from the peroxisomes as proposed earlier by Jones and Masters (1975).  相似文献   

18.
1. In order to test the hypothesis that the alcoholic cardiomyopathy under partial catalase inhibition is associated with the activation of lipid peroxidation in cardiomyocytes (Panchenko et al., Experientia 43, 580-581, 1987), the effects of ethanol and catalase inhibitor 3-amino-1,2,4-triazole (aminotriazole) on rat heart and liver content of reduced glutathione and on the activity of enzymes related to peroxide metabolism: catalase, superoxide dismutase, glutathione peroxidase, glutathione reductase, glutathione-S-transferase and glucose-6-phosphate dehydrogenase were investigated. 2. In accordance with the data obtained by Kino (J. molec, cell. Cardiol. 13, 5-12, 1981), when ethanol (36% of dietary calories) and aminotriazole were simultaneously administered an alcoholic cardiomyopathy developed while in the liver moderate fatty degeneration was revealed. 3. Chronic combined or separate administration of ethanol and aminotriazole was shown to increase glutathione concentration and glutathione-S-transferase activity in rat liver. In the groups of animals which received isocaloric carbohydrates in the diet instead of ethanol the liver glucose-6-phosphate dehydrogenase was increased. 4. Acute and chronic aminotriazole injections led to catalase inactivation and in the latter case also to inhibition of the liver superoxide dismutase and glutathione peroxidase activities. 5. Ethanol and aminotriazole treatment did not alter the glutathione level and the activity of all enzymes tested (except catalase) in rat myocardium.  相似文献   

19.
1. Clofenapate (methyl 2-[4-(p-chlorophenyl)phenoxy]-2-methylpropionate) fed to the rat in the diet increased the content of mitochondrial protein in the liver by 50-60%. In this respect it resembled the related compound clofibrate (ethyl alpha-p-chlorophenoxyisobutyrate), which is widely used as an antihypercholesterolaemic drug. 2. Both compounds when fed to the rat enhanced the activity of alpha-glycerol phosphate dehydrogenase in the liver mitochondria manyfold, but were without effect on the enzyme in the soluble fraction. 3. On the other hand, the catalase activity in the supernatant fraction increased twofold after administration of the drugs. The mitochondrial catalase activity showed a consistent decrease. 4. It was unlikely that under the influence of the drug the increase in catalase activity took place in the mitochondrial particles and was leached into the cytosol during isolation. 5. The increase in catalase activity in the cytosol under the influence of the drug is best explained on the assumption that peroxisomes which contain this enzyme, and which are known to increase on administration of the drug, were broken during the process of cellular fractionation and released the enzyme into the cytosol. 6. All the above effects shown by both drugs were fully reversed when drugs were withdrawn from the diet. 7. Clofenapate was effective in bringing about the above changes when administered to the animal at one-hundredth the concentration of clofibrate.  相似文献   

20.
Synopsis The distribution of catalase, amino acid oxidase, -hydroxy acid oxidase, urate oxidase and alcohol oxidase was studied cytochemically in rat hepatocytes. The presence of catalase was demonstrated with the conventional diaminobenzidine technique. Oxidase activities were visualized with methods based on the enzymatic or chemical trapping of the hydrogen peroxide produced by these enzymes during aerobic incubations.All enzymes investigated were found to be present in peroxisomes. Catalase activity was found in the peroxisomal matrix, but also associated with the nucleoid. After staining for oxidase activities the stain deposits occurred invariably in the peroxisomal matrix as well as in the nucleoids. In all experiments the activity of both catalase and the oxidases was confined to the peroxisomes. The presence of a hydrogen peroxide-producing alcohol oxidase was demonstrated for the first time in peroxisomes in liver cells.The results imply that the enzyme activity of the nucleoids of rat liver peroxisomes is not exclusively due to urate oxidase. The nucleoids obviously contain a variety of other enzymes that may be more or less loosely associated with the insoluble components of these structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号