首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Abstract Electron microscopic observation demonstrated that linear DNA plasmids, pGKL1 and pGKL2, were replicated by a strand displacement mechanism similar to adenovirus and Bacillus subtilis ø 29 phage. Moreover, their DNA replication was prevented by α-factor, a mating hormone which prevents the replication of chromosomal DNA and 2 μm plasmid in Saccharomyces cerevisiae mating type a cells. This result suggests that the replication of pGKL plasmids is controlled by the same genes that control the initiation or maintenance of chromosomal DNA and 2 μm plasmid replications.  相似文献   

3.
Two linear killer plasmids (pGKL1 and pGKL2) from Kluyveromyces lactis stably replicated and expressed the killer phenotype in a neutral petite mutant [( rho0]) of Saccharomyces cerevisiae. However, when cytoplasmic components were introduced by cytoduction from a wild-type [( rho+]) strain of S. cerevisiae, the linear plasmids became unstable and were frequently lost from the cytoductant cells during mitosis, giving rise to nonkiller clones. The phenomenon was ascribed to the incompatibility with the introduced S. cerevisiae mitochondrial DNA (mtDNA), because the plasmid stability was restored by [rho0] mutations in the cytoductant cells. Incompatibility with mtDNA was also apparent for the transmission of plasmids into diploid progeny in crosses between killer cells carrying the pGKL plasmids and [rho+] nonkiller cells lacking the plasmids. High-frequency transmission of the plasmids was observed in crosses lacking mtDNA [( rho0] by [rho0] crosses) and in crosses involving mutated mtDNA with large deletions of various regions of mitochondrial genome. In contrast, mutated mtDNA from various mit- mutations also exerted the incompatibility effect on the transmission of plasmids. Double-stranded RNA killer plasmids were stably maintained and transmitted in the presence of wild-type mtDNA and stably coexisted with pGKL killer plasmids in [rho0] cells of S. cerevisiae.  相似文献   

4.
The linear dsDNA plasmids, pGKL1 (8.9 kb) and pGKL2 (13.4 kb) discovered in Kluyveromyces lactis, confer killer and immunity characteristics upon various yeast strains. We have devised an immunity assay and have been able to show the expression of an immunity phenotype in the K. lactis transformants harbouring conventional circular plasmids which contain DNA fragments of pGKL1. Using this expression system, the immunity determinant on pGKL1 was identified as ORF5. In addition, the presence of pGKL2 was proved to be essential for the expression of the immunity phenotype. This is the first demonstration of this new pGKL2 function, as distinct from its known functions for the replication and maintenance of pGKL1 in yeast cells.  相似文献   

5.
6.
By the kar1-mediated cytoduction, linear double-stranded DNA plasmids pGKL1 and pGKL2, encoding killer toxin complex, have been successfully transferred to the recipient strains with about 30% frequency. The killer toxin was found to be secreted through the normal yeast secretory pathway by introducing pGKL plasmids into the several Saccharomyces cerevisiae sec mutants and examining the secretion of killer toxin. S. cerevisiae cells, harboring newly isolated deletion plasmid pGKL1D, expressed only the 28K protein among three killer subunits, and secreted the 28K subunit at a level of zero to 20% efficiency of the cells containing intact pGKL1 plasmid. These data indicated that subunit interaction (cosecretion) of killer proteins is required for the efficient secretion of 28K subunit. The 28K precursor protein was found to translocate across the canine pancreatic endoplasmic reticulum membrane under the direction of its own signal peptide in vitro without any other subunits. From kex2 mutant cells harboring pGKL1 plasmid, the 97K subunit, and its precursor 128K protein were not secreted, however, the 28K subunit was secreted in the same amount as that secreted from KEX2 cells. These lines of evidence suggest that the final assembly of killer toxin complex after KEX2 site of Golgi apparatus is not essential for the secretion of 28K subunit, and therefore, that putative interaction between 128K protein and 28K subunit for the transport between endoplasmic reticulum and Golgi apparatus may be required for the efficient secretion of 28K subunit.  相似文献   

7.
Saccharomyces cerevisiae harboring linear dsDNA plasmids, pGKL1 and pGKL2, secretes a killer toxin consisting of 97, 31 and 28 kilodalton subunits (Nucleic Acids Res., 15, 1031-1046, 1987). We isolated the DNA encoding the N-terminal pre-sequence of the 28K precursor protein and constructed a new secretion vector in S. cerevisiae. Mouse alpha-amylase fused to the 28K signal sequence was secreted into the culture medium with a high efficiency similar to those fused to the mating factor alpha and 97K-31K killer signal sequences. This data clearly indicates that 28K presequence functions as a secretion signal. Glycosylated and nonglycosylated alpha-amylase molecules were detected in the culture medium. The secretion of alpha-amylase was blocked by sec18-1 mutation. The secreted alpha-amylase recovered from the medium was found to migrate faster in SDS-polyacrylamide gel than the precursor form of alpha-amylase synthesized in vitro. These lines of evidence suggest that mouse alpha-amylase fused to 28K killer signal sequence was processed, glycosylated and secreted through the normal secretion pathway of the yeast.  相似文献   

8.
Cdc47p is a member of the minichromosome maintenance (MCM) family of polypeptides, which have a role in the early stages of chromosomal DNA replication. Here, we show that Cdc47p assembles into stable complexes with two other members of the MCM family, Cdc46p and Mcm3p. The assembly of Cdc47p into complexes with Cdc46p does not appear to be cell cycle regulated, making it unlikely that these interactions per se are a rate-limiting step in the control of S phase. Cdc45p is also shown to interact with Cdc47p in vivo and to be a component of high-molecular-weight MCM complexes in cell lysates. Like MCM polypeptides, Cdc45p is essential for the initiation of chromosomal DNA replication in Saccharomyces cerevisiae; however, Cdc45p remains in the nucleus throughout the cell cycle, whereas MCMs are nuclear only during G1. We characterize two mutations in CDC47 and CDC46 which arrest cells with unduplicated DNA as a result of single base substitutions. The corresponding amino acid substitutions in Cdc46p and Cdc47p severely reduce the ability of these polypeptides to assemble in a complex with each other in vivo and in vitro. This argues that assembly of Cdc47p into complexes with other MCM polypeptides is important for its role in the initiation of chromosomal DNA replication.  相似文献   

9.
The phosphorylation level of the Saccharomyces cerevisiae Cdc28 protein remained invariant under conditions that resulted in cell cycle arrest in the G1 phase and loss of Cdc28-specific protein kinase activity when the activity was assayed in vitro. These results are in contrast to the proposed regulation of the homologous Cdc2 protein kinase of Schizosaccharomyces pombe.  相似文献   

10.
The adsorption of the yeast killer toxin KT28 to susceptible cells of Saccharomyces cerevisiae was prevented by concanavalin A, which blocks the mannoprotein receptor. Certain mannoprotein mutants of S. cerevisiae that lack definite structures in the mannan of their cell walls were found to be resistant to KT28, whereas the wild-type yeast from which the mutants were derived was susceptible. Isolated mannoprotein from a resistant mutant was unable to adsorb killer toxin. By comparing the resistances of different mannoprotein mutants, information about the molecular structure of the receptor was obtained. At least two mannose residues have to be present in the side chains of the outer chain of the cell wall mannan, whereas the phosphodiester-linked mannose group is not essential for binding and the subsequent action of killer toxin KT28.  相似文献   

11.
Killer toxin from killer strains of Saccharomyces cerevisiae was isolated from concentrates of extracellular medium by precipitation in poly(ethylene glycol) and chromatography through glyceryl-controlled-pore glass. The toxin migrated as a single protein band on sodium dodecyl sulfate/polyacrylamide gel electrophoresis. A molecular weight of 11470 was determined for the toxin protein from its electrophoretic mobility and amino acid composition. Gel filtration of the active toxin indicated that the 11,470-Mr monomer was the active unit. Electrophoretic comparison of extracellular concentrates from a killer strain and an isogenic non-killer showed the presence of the toxin protein only in the killer-derived material. The activity of the toxin was most stable between pH 4.2 and 4.6. At 30 degrees C toxin from a superkiller strain was more stable than that from a normal killer.  相似文献   

12.
An expression plasmid for goat alpha-lactalbumin in Saccharomyces cerevisiae, pSKA100, was constructed into a shuttle vector, pYG100, by inserting cDNA which encodes goat pre-alpha-lactalbumin and two-thirds of the 3'-non-coding region. The goat alpha-lactalbumin was expressed under the yeast glyceraldehyde 3-phosphate dehydrogenase (GPD) promoter and terminator of pYG100 and secreted in the growth medium for yeast as a precise mature protein, possessing specific activity essentially the same as that of authentic goat alpha-lactalbumin in lactose synthesis.  相似文献   

13.
Recessive mutations in two chromosomal unlinked genes kir1 and kir2 of Saccharomyces cerevisiae K2 result in weak killer activity or in complete loss of killer capacity. Kir1 is located on chromosome 7 and is linked to ade7 and ski6. The kir1 and kir2 mutants reveal no alteration of cell membrane. They normally excrete acid phosphatase and have a normal level of mating and sporulation. The analysis of the plasmid nucleic acid in two strains containing the mutant alleles kir1-12 and kir2-23 shows the increased content of L double-stranded DNA, the content of M double-stranded RNA being increased.  相似文献   

14.
The killer toxin KT 28 of Saccharomyces cerevisiae strain 28 is primarily bound to the mannoprotein of the cell wall of sensitive yeasts. The mannoprotein of S. cerevisiae X 2180 was purified; gel filtration and SDS-PAGE indicated an estimated Mr of 185,000. The ability to bind killer toxin KT 28 increased during purification of the mannoprotein. Removing the protein part of the mannoprotein by enzymic digestion or removing the alkali-labile oligosaccharide chains by beta-elimination did not destroy the ability to bind killer toxin KT 28. However, binding activity was lost when the 1,6-alpha-linkages of the outer carbohydrate backbone were hydrolysed by acetolysis. The separated oligomannosides of the side chains also failed to bind toxin, indicating that the main mannoside chains were essential for the receptor activity. The reversible adsorption of killer toxin to mannoprotein was demonstrated by linking it covalently to Sepharose and using this material for affinity chromatography. A 90-fold increase in the specific activity of a preparation of killer toxin KT 28 was achieved in this way.  相似文献   

15.
Elevated dosage of the GAC1 gene from the yeast Saccharomyces cerevisiae causes hyperaccumulation of glycogen whereas a gene disruption of GAC1 results in reduced glycogen levels. Glycogen synthase is almost entirely in the active, glucose 6-phosphate-independent, form in cells with increased gene dosage of GAC1 whereas the enzyme is mostly in the inactive form in strains lacking GAC1. GAC1 encodes an 88 kDa protein that is similar to the regulatory subunit (RG1) of phosphoprotein phosphatase type 1 (PP-1) from skeletal muscle that targets PP-1 to glycogen particles. Taken together, these results suggest that GAC1 encodes a regulatory subunit of PP-1. As previously shown for glycogen phosphorylase (GPH1), GAC1 RNA accumulates concomitantly with the appearance of glycogen. A strain with a mutation in the regulatory subunit of the cAMP-dependent protein kinase (bcy1) fails to accumulate GPH1 and GAC1 RNA. These results point to coordinate regulation of enzymes involved in glycogen metabolism at the level of RNA accumulation and indicate that at least part of this control is exerted by the RAS-cAMP pathway.  相似文献   

16.
Mutually antagonistic K1 and K2 killer strains compete when mixed and serially subcultured. At pH 4.6, where the K1 killer toxin is more stable in vitro, the K1 strain outcompeted the K2 strains at both 18 and 30 degrees C. At pH 4.0, closer to the in vitro pH optimum of the K2 killer toxin, the K1 strain again predominated at 18 degrees C, but at 30 degrees C the K2 strains became the sole cell type on subculture. To show more clearly that these results were dependent upon the respective killer toxins, control experiments were conducted with isogenic, nonkiller strains cured of the dsRNA-based killer virions. Such nonkiller strains were unable to compete with antagonistic killers under conditions where their isogenic killer parents could, strongly suggesting that the killer phenotype was important in these competitions. Double K1-K2 killer strains cannot stably exist, as their dsRNA genomes compete at a replicative level. Using recombinant DNA methodology, a stable K1-K2 killer strain was constructed. This strain outcompeted both K1 and K2 killers when serially subcultured under conditions where either the K1 or the K2 strains would normally predominate in mixed cultures. Such a double killer may be useful in commercial fermentations, where there is a risk of contamination by killer yeasts.  相似文献   

17.
The susceptibility of sensitive yeast to killer toxins is known to depend on various factors, such as the selected killer toxin, the exposed yeast strain, its growth phase and the state of culture under given experimental conditions. The aim of this paper was to find whether individual cells from one culture are equally susceptible to the impact of the killer toxin. For this purpose the rhodamine B assay in a modified form was used. In order to observe the fate of individual cell the method of fluorescence video microscopy with a digital picture analysis was applied. Four selected groups of specific cells (with no, small, medium, and large bud, respectively) were investigated. Different sensitivity of Saccharomyces cerevisiae cells to the killer toxin K1 was observed in these cell groups. The most susceptible appeared to be the cells which were in S-phase (cells with the small buds); the least susceptible were the M-phase cells with large buds. The enhanced susceptibility in S-phase results probably from coincidence in higher porosity of the cell wall, accumulation of surface receptors, and enlarged growth activity at the surface cell structures.  相似文献   

18.
Summary The nuclear genome encoded yeast protein CBS2 is required for translational activation of mitochondrial cytochrome b RNA. Genetic studies have shown that the target sequence of the CBS2 protein is the 5 untranslated leader sequence of cytochrome b RNA. Here we report on the intracellular localization of CBS2. CBS2 protein, expressed in Escherichia coli and prepared from inclusion bodies, was used as an antigen to raise a polyclonal rabbit antiserum. Affinity-purified CBS2 antibodies detect a 45 kDa protein in mitochondrial lysates of wild-type cells, which is absent in a strain in which the CBS2 gene has been deleted. The protein is overexpressed in mitochondrial extracts of a transformant carrying the CBS2 gene on a high copy number plasmid, but undetectable in the post-mitochondrial supernatant. Intramitochondrial localization of CBS2 was verified by in vitro import of CBS2 protein that had been synthesized in a reticulocyte lysate programmed with CBS2 mRNA transcribed in vitro. Mitochondrial import of CBS2 is not accompanied by any detectable proteolytic processing.  相似文献   

19.
A Meskauskas  D Citavicius 《Gene》1992,111(1):135-139
The cDNA copies of M2-1, the larger heat-cleavage product of M2 double-stranded (ds) RNA, have been synthesized, cloned, sequenced and expressed in yeast. This sequence, in combination with the known terminal sequence of M2-1 dsRNA, identifies a translation reading frame for a 362-amino-acid protein of 38.7 kDa, similar in size to the one of several protein species produced from M2-1 dsRNA in vitro translation. The expression of this cDNA clone in yeast confers both killer and immunity phenotypes.  相似文献   

20.
We have purified a yeast protein kinase that is phospholipid-dependent and activated by Diacylglycerol (DAG) in the presence of Ca2+ or by the tumour-promoting agent tetradecanoyl-phorbol acetate (TPA). The properties of this enzyme are similar to those of the mammalian protein kinase C (PKC). The enzyme was purified using chromatography on DEAE-cellulose followed by hydroxylapatite. The latter chromatography separated the activity to three distinguishable sub-species, analogous to the mammalian PKC isoenzymes. The fractions enriched in PKC activity contain proteins that specifically bind TPA, are specifically phosphorylated in the presence of DAG and recognized by anti-mammalian PKC antibodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号