首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Suttle JC 《Plant physiology》1986,82(4):930-935
The influence of cytokinins on ethylene production was examined using cotton leaf tissues. Treatment of intact cotton (Gossypium hirsutum L. cv LG 102) seedlings with both natural and synthetic cytokinins resulted in an increase in ethylene production by excised leaves. The effectiveness of the cytokinins tested was as follows: thidiazuron BA isopentyladenine ≥ zeatin kinetin. Using 100 micromolar thidiazuron (TDZ), an initial increase in ethylene production was observed 7 to 8 hours post-treatment, reached a maximum by 24 hours and then declined. Inhibitors of 1-aminocyclopropane-1-carboxylic acid (ACC) synthesis and its oxidation to ethylene reduced ethylene production 24 hours post-treatment; however, by 48 hours only inhibitors of ACC oxidation were effective. The increase in ethylene production was accompanied by a massive accumulation of ACC and its acid-labile conjugate. TDZ treatment resulted in a significant increase in the capacity of tissues to oxidize ACC to ethylene. Endogenous levels of methionine remained constant following TDZ treatment. It was concluded that the stimulation of ethylene production in cotton leaves following cytokinin treatment was the result of an increase in both the formation and oxidation of ACC.  相似文献   

2.
Suttle JC 《Plant physiology》1985,78(2):272-276
The effect of the defoliant thidiazuron (N-phenyl-N′-1,2,3-thiadiazol-5-ylurea) on endogenous ethylene evolution and the role of endogenous ethylene in thidiazuron-mediated leaf abscission were examined in cotton (Gossypium hirsutum L. cv Stoneville 519) seedlings. Treatment of 20- to 30-day-old seedlings with thidiazuron at concentrations equal to or greater than 10 micromolar resulted in leaf abscission. At a treatment concentration of 100 micromolar, nearly total abscission of the youngest leaves was observed. Following treatment, abscission of the younger leaves commenced within 48 hours and was complete by 120 hours. A large increase in ethylene evolution from leaf blades and abscission zone explants was readily detectable within 24 hours of treatment and persisted until leaf fall. Ethylene evolution from treated leaf blades was greatest 1 day posttreatment and reached levels in excess of 600 nanoliters per gram fresh weight per hour (26.7 nanomoles per gram fresh weight per hour). The increase in ethylene evolution occurred in the absence of increased ethane evolution, altered leaf water potential, or decreased chlorophyll levels. Treatment of seedlings with inhibitors of ethylene action (silver thiosulfate, hypobaric pressure) or ethylene synthesis (aminoethoxyvinylglycine) resulted in an inhibition of thidiazuron-induced defoliation. Application of exogenous ethylene or 1-aminocyclopropane-1-carboxylic acid largely restored the thidiazuron response. The results indicate that thidiazuron-induced leaf abscission is mediated, at least in part, by an increase in endogenous ethylene evolution. However, alterations of other phytohormone systems thought to be involved in regulating leaf abscission are not excluded by these studies.  相似文献   

3.
Liu Y  Su LY  Yang SF 《Plant physiology》1985,77(4):891-895
When whole unripe green tomato fruits (Lycopersicon esculentum Mill, cv T3) were treated with ethylene (10 microliters per liter) for 18 hours, the fruit's ability to convert 1-aminocyclopropane-1-carboxylic acid (ACC) to N-malonyl-ACC (MACC) increased markedly and such an effect was also observed in fruits of mutant nor, which cannot ripen normally. The promotion of the capability to malonylate ACC by ethylene increased with the increasing ethylene concentration from 0.1 to 100 microliters per liter and with increasing duration of ethylene treatment up to 8 hours; a longer duration of ethylene treatment did not further increase the malonylation capability. When ethylene was withdrawn, the promotion disappeared within 72 hours. Norbornadiene, a competitive inhibitor of ethylene action, effectively eliminated the promotive effect of ethylene. Ethylene treatment also promoted the fruits' capability to conjugate d-amino acids and α-amino-isobutyric acid. Since the increase in the tissue's capability to malonylate ACC was accompanied by an increase in the extractable activity of ACC and d-amino acid malonyltransferase, ethylene is thought to promote the development of ACC/d-amino acid malonyltransferase in unripe tomato fruits.  相似文献   

4.
《Phytochemistry》1986,25(2):311-317
The effects of N-phenyl-N′-1,2,3,-thidiazol-5-ylurea (thidiazuron; Dropp; SN49537; TDZ) on metabolic changes in apple buds during dormancy break were determined. The data showed that thidiazuron has the capacity to release lateral buds from dormancy. Decreasing degree of bud break and bud growth with thidiazuron treatment occurred in a basipetal direction, suggesting a gradient of increasingly deep rest from shoot apex to base. The breaking of dormancy by thidiazuron is correlated with increase in DNA, RNA, protein, 1-aminocyclopropane-1-carboxylic acid (ACC), 1-(malonylamino) cyclopropane-1-carboxylic acid (MACC), S-adenosylmethionine (SAM) as well as with greater polyamine formation. Polyamine and ethylene biosynthesis did not seem to be competing for SAM, their common substrate, during bud break and bud development. The release of dormancy in apple bud by thidiazuron was inhibited by cordycepine, 5-fluorouracil, 6-methylpurine and cycloheximide. Inhibition of bud break and bud growth also resulted from treatment with α-difluoromethylarginine (DFMA) and α-difluoromethylornithine (DFMO). DFMO was more inhibitory than DFMA.  相似文献   

5.
The effect of the herbicide chlorsulfuron (2-chloro-N-[(4-methoxy - 6 - methyl -1, 3,5 - triazin - 2 - yl)aminocarbonyl]benzenesulfonamide) on ethylene production in light-grown sunflower (Helianthus annuus L.) seedlings was examined. Application of chlorsulfuron to the apex stimulated ethylene production in all tissues examined: cotyledons, hypocotyls, and roots. The greatest stimulation occurred in the upper portion of the hypocotyl adjacent to, and including, the cotyledonary node. Ethylene evolution from hypocotyls excised from treated seedlings was stimulated over control levels 1 day after herbicide application and reached a maximum (approx. 75 x control or 17 nl/g f wt/h) 2 to 3 days after treatment. Labeling and inhibitor studies indicated that the ethylene produced was derived primarily from methionine. Chlorsulfuron treatment stimulated the rate of accumulation of the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), as well as the ability of the tissue to convert exogenous ACC to ethylene. Chlorsulfuron had little effect on ethylene production when administered to the hypocotylsin vitro. Removal of the cotyledons from treated seedlings reduced the rate of ethylene evolution from the hypocotyls. These results suggest that stimulation of ethylene production in sunflower hypocotyls by chlorsulfuron is not a wound response but rather is dependent on factors derived from the cotyledons.  相似文献   

6.
Suttle JC 《Plant physiology》1988,86(1):241-245
The effect of the defoliant thidiazuron (TDZ) on basipetal auxin transport in petiole segments isolated from cotton (Gossypium hirsutum L. cv LG102) seedlings was examined using the donor/receiver agar block technique. Treatment of intact seedlings with TDZ at concentrations of 1 micromolar or greater resulted in a dose-dependent inhibition of 14C-IAA transport in petiole segments isolated 1 or 2 days after treatment. Using 100 micromolar TDZ, the inhibition was detectable 19 hours after treatment and was complete by 27 hours. Both leaves and petiole segments exhibited a marked increase in ethylene production following treatment with TDZ at concentrations of 0.1 micromolar or greater. The involvement of ethylene in this TDZ response was evaluated by examining the effects of two inhibitors of ethylene action: silver thiosulfate, 2,5-norbornadiene. One day after treatment, both inhibitors effectively antagonized the TDZ-induced inhibition of auxin transport. Two days after TDZ treatment both inhibitors were ineffective. The decrease in IAA transport in TDZ treated tissues was associated with increased metabolism of IAA. The transport of 14C-2,4-dichlorophenoxyacetic acid was also inhibited by TDZ treatment. This inhibition was not accompanied by increased metabolism. Incorporation of TDZ into the receiver blocks had no effect on auxin transport. The ability of the phytotropin N-1-naphthylphthalamic acid to stimulate IAA uptake from a bathing medium was reduced in TDZ-treated tissues. This reduction is thought to reflect a decline in the auxin efflux system following TDZ treatment.  相似文献   

7.
An excised tissue system consisting of corolla rib segments was developed to study the relationship between senescence and ethylene production in morning-glory flowers (Ipomoea tricolor). Such segments, isolated 1 or 2 days (day −1 or day −2) before flower opening (day 0) passed through the same developmental phases as did the corresponding tissues of the intact organ. When excised on day −1 and incubated overnight, the rib segments turned from purple to blue and changed from a slightly curled to a flat configuration. On day 0, these segments rolled up during the afternoon and turned purple again, as did the ribs of an intact corolla; the rolling up coincided with an increased rate of ethylene production. Premature rolling up and associated ethylene evolution were induced by ethylene or propylene treatment. When segments were excised on day −2 and incubated overnight, there were no changes in color or shape; during day −1, no spontaneous rolling up and little ethylene evolution occurred. Application of ethylene or propylene to these immature segments elicited rolling up but did not stimulate endogenous ethylene production.  相似文献   

8.
At a concentration of 17 µmol·L–1, paclobutrazol (PP), a triazole plant growth retardant, effectively reduced the elongation and increased the thickness of hypocotyls in 6-day-old Phaseolus vulgaris L. cv. Juliska seedlings, both in the light and in the dark. PP treatment did not increase the cell number in transverse sections of hypocotyls. The diameter of hypocotyls was uniform from the zone of intensive elongation along the whole hypocotyl in etiolated plants, but those grown in the light exhibited an additional lateral expansion at the base. Ethylene evolution was not reduced by PP in etiolated hypocotyls, and did not differ significantly in the elongating apical and fully grown basal zones. PP reduced the ethylene release by the growing zones in green hypocotyls, but not in the basal parts, which resulted in an increasing ethylene gradient towards the hypocotyl base. The level of 1-aminocyclopropane-1-carboxylic acid (ACC), the immediate precursor of ethylene, was much higher in retardant-treated hypocotyls than in the controls, which was due in part to the reduced malonylation. The swelling of the hypocotyl bases could be eliminated by inhibitors of ethylene biosynthesis or action, or could be induced by 10 µmol·L–1ACC in control plants in the light. None of these treatments had a significant effect on the lateral expansion of hypocotyls in etiolated seedlings. PP treatment induced a similar effect to that of white light in etiolated seedlings, and amplified the effect of light in green plants with respect to the ACC distribution, and consequently, the ethylene production in the hypocotyls of 6-day-old bean seedlings. It can be concluded that the lateral expansion of hypocotyl bases in PP-treated green plants is controlled by ethylene.  相似文献   

9.
Cytokinins of the urea and adenine type induced leaf abscission in young cotton (Gossypium hirsutum) plants in the following order of activity: N-phenyl-N′-1,2,3-thiadiazol-5-ylurea (thidiazuron) » N-phenyl-N′-(2-chloro-4-pyridyl)urea > isopentenyladenine ≥ 6-benzyladenine > zeatin = dihydrozeatin > kinetin. It is suggested that ethylene production is implicated in this response because it was stimulated by the compounds in cotton leaf discs with nearly the same effectiveness. Moreover, similar to thidiazuron (JC Suttle [1985] Plant Physiol 78: 272-276), isopentenyladenine-induced defoliation was inhibited by aminoethoxyvinylglycine, and the effect was restored by 1-aminocyclopropane-1-carboxylic acid.  相似文献   

10.
Role of ethylene in the senescence of detached rice leaves   总被引:6,自引:2,他引:4       下载免费PDF全文
Kao CH  Yang SF 《Plant physiology》1983,73(4):881-885
The role of ethylene in the senescence of detached rice leaves in relation to their changes in 1-aminocyclopropane-1-carboxylic acid (ACC) content and ethylene production was studied. In freshly excised rice leaf segments, ACC level and ethylene production rates were very low. Following incubation, the rates of ethylene production increased and reached a maximum in 12 h, and subsequently declined. The rise of ethylene production was associated with a 20- to 30-fold increase in ACC level.

Ethylene seems to be involved in the regulation of the senescence of detached rice leaves. This conclusion was based on the observations that (a) maximum ethylene production preceded chlorophyll degradation, (b) ACC application promoted chlorophyll degradation, (c) inhibitors of ethylene production and ethylene action retarded chlorophyll degradation, and (d) various treatments such as light, cycloheximide, α,α-dipyridyl, Ni2+, and cold temperature, which retarded chlorophyll degradation, also inhibited ethylene production.

Abscisic acid promoted senescence but significantly decreased ethylene production, whereas benzyladenine retarded senescence but promoted ethylene production. This is interpreted to indicate that abscisic acid treatment increased the tissue sensitivity to ethylene, whereas benzyladenine treatment decreased it.

  相似文献   

11.
The four Helianthus annuus (sunflower) inbred lines examined showed different abilities to convert 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene and different morphological responses to exogenous ACC, however, ACC had no effect on precocious flowering. The greatest effect of ACC was seen with inbred SS405B where it suppressed shoot growth and induced hypocotyl enlargement and callus induction. The greatest response did not correlate with the highest ethylene production. Although each inbred responded differently, callus induction and hypocotyl enlargement observed in hypocotyl segments treated with naphthalene acetic acid and benzyladenine could be partially explained as ethylene-mediated effects of the two hormones. It is suggested that inbred differences could be due to different endogenous hormone levels and/or different sensitivities to them.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AVG aminoethoxyvinylglycine - BA benzyladenine - NAA naphthalene acetic acid  相似文献   

12.
Auxin-induced ethylene biosynthesis and its regulatory stepsin etiolated mung bean hypocotyl segments were examined. Theendogenous content of 1-aminocyclopropane- 1-carboxylic acid(ACC), an immediate precursor of ethylene, increased correspondingto the rate of ethylene production. Benzyladenine (BA), whichis a synergistic stimulator of auxin-induced ethylene production,increased the ACC content parallel to the rate of ethylene productionin the presence of IAA, but failed to increase the ACC contentin the absence of IAA while ethylene production was significantlystimulated by BA. Abscisic acid (ABA) inhibited the formationof ACC. The ACC synthase activity in the tissue was increasedby IAA, and the increase was further promoted by the presenceof BA. Cycloheximide severely inhibited the development of auxin-inducedACC synthase. The enzymatic properties of mung bean ACC synthasewere similar to those of the tomato fruit enzyme. Aminoethoxyvinylglycine(AVG) and aminooxyacetic acid, which inhibit the ACC synthasereaction, stimulated the development of ACC synthase. The regulatorymechanisms of the growth regulators are discussed in relationto ACC formation. (Received December 3, 1980; Accepted January 22, 1981)  相似文献   

13.
In Clark and Shelby soybean (Glycine max [L.] Merr.) seedlings, hypocotyl elongation was inhibited and hypocotyl swelling and root dry weight were increased by a temperature of 25 C. At 20 and 30 C, development was normal, as was development of Hawkeye and Mandarin soybean seedlings at all three temperatures. Dry matter distribution at 9 days indicates that inhibition of hypocotyl elongation is not due to a lack of translocation from cotyledons, but to a diversion of dry matter from hypocotyl to root. Ethylene evolution by Clark seedlings at 25 C exceeds that at 20 and 30 C. At all three temperatures, Mandarin seedlings' ethylene evolution is at the same low rates as those of Clark at 20 and 30 C. Clark's enhanced rate at 25 C precedes the deceleration of hypocotyl elongation occurring at 5 days. The abnormal effects of a temperature of 25 C on Clark seedlings' development is partially reversed by CO2 and GA3 and can be duplicated in Mandarin by applying ethylene. In Clark, effects of the temperature can be further accentuated by indoleacetic acid, which stimulates ethylene evolution, and by applying ethylene to the seedlings. It is concluded that the temperature-induced symptoms, similar in most respects to the well known “triple response” of legume seedlings, are caused by abnormally high levels of ethylene in tissues of the anomalous cultivars.  相似文献   

14.
15.
The in vivo formation of 1-malonylaminocyclopropane-1-carboxylic acid (malonyl-ACC) and its relationship to ethylene production in the axial tissue of cocklebur (Xanthium pennsylvanicum) seeds were investigated using the stereoisomers of the 2-ethyl derivative of ACC (AEC), as tracers of ACC. Of the four AEC isomers, the (1R, 2S)-isomer was converted most effectively to a malonyl conjugate as well as to 1-butene. Malonyl-AEC, once formed, was not decomposed, supporting the view that malonyl-ACC does not liberate free ACC for ethylene production in this tissue. d-Phenylalanine inhibited the formation of malonyl-AEC and, at the same time, promoted the evolution of 1-butene, whereas l-phenylalanine did not. Possibly, the d-amino-acid-stimulated ethylene production in cocklebur seed tissues is due to an increase in the amount of ACC available for ethylene production which results from the decrease of ACC malonylation in the tissues treated with d-amino acid. 2-Aminoisobutyric acid, a competitive inhibitor of ACC-ethylene conversion, did not affect the malonylation of AEC.  相似文献   

16.
Riov J  Yang SF 《Plant physiology》1982,70(1):136-141
Exogenous ethylene stimulated ethylene production in intact citrus (Citrus sinensis L. Osbeck cv. “Washington Navel”) leaves and leaf discs following a 24-hour exposure. Studies with leaf discs showed that ethylene production decreased when ethylene was removed by aeration. The extent of stimulation was dependent upon the concentration of exogenous ethylene (1-10 microliters per liter). Silver ion blocked the autocatalytic effect of ethylene at concentrations of 0.5 millimolar and lower, but increased ethylene production at higher concentrations. The stimulating effect of ethylene resulted from the enhancement of both 1-aminocyclopropane-1-carboxylic acid (ACC) formation and the conversion of ACC to ethylene. Whereas autocatalysis was evident following 24 hours incubation, autoinhibition of wound- and mannitol-induced ethylene production was observed during the first 24-hour incubation. Ethylene treatment during this period resulted in a marked decrease in ACC levels and ethylene production rates. Furthermore, in leaf discs treated for 24 hours with ethylene, ethylene production rates increased greatly during the first 2 hours after removal of exogenous ethylene by aeration. This increase was eliminated if the discs were transferred to propylene instead of air, indicating that the autocatalytic effect of ethylene is counteracted by its autoinhibitory effect. It is suggested that autocatalysis involves increased synthesis of ACC synthase and the enzyme responsible for the conversion of ACC to ethylene, whereas autoinhibition involves suppression of the activity of these two enzymes.  相似文献   

17.
Auxin-induced and 1-aminocyclopropane-1-carboxylic acid (ACC)-dependentethylene production in mung bean (Vigna radiata [L] Wilczek)hypocotyl sections, from which epidermis had been removed, wasinvestigated. Ethylene production in hypocotyl sections withoutepidermis was induced by treatment with IAA, and also occurredfrom exogenously supplied ACC in the presence of 0.2 M mannitol.Isolated epidermal strips alone failed to produce substantialamounts of ethylene in response to IAA or from exogenous ACC.3,4-[14C]-Methionone was incorporated into both ACC and ethylenein peeled sections treated with IAA, but not in the isolatedepidermal strips. Radioactive ACC, however, was detected inthe epidermal strips separated from the unpeeled sections previouslyfed with 3,4-[14C]-methionine in the presence of IAA. We concludethat the Site of auxin-induced ethylene production is not inthe epidermis, but in other hypocotyl cells, and that epidermalcells lack the activity which converts ACC to ethylene. (Received January 28, 1985; Accepted May 4, 1985)  相似文献   

18.
Lycoricidinol, a natural growth inhibitor isolated from bulbsof Lycoris radiata Herb. strongly suppressed auxin-induced ethyleneproduction from the hypocotyl segments of etiolated mung bean(Vigna radiata Wilczek) seedlings. The inhibitor did not significantlyinhibit ethylene formation from its immediate precursor, 1-aminocyclopropane-1-carboxylicacid (ACG), during short-term (up to 4 h) incubation. The ACCcontent in tissue treated with IAA was reduced by lycoricidinolin close parallel with the inhibition of ethylene production.Examination of radioactive metabolites in tissues labeled with3,4-14C-methionine indicated that reduction of the ACC contentwas not due to any possible promotive effect of lycoricidinolon conjugation of ACC with malonate. Lycoricidinol showed noinhibitory effect on the activity of ACC synthase if appliedin vitro, but it almost completely abolished the increase inthe enzyme activity when applied in vivo during incubation ofthe tissue with IAA. Lycoricidinol also strongly inhibited incorporationof 14C-leucine into protein in the tissue. The suppression ofthe enzyme induction and, in turn, that, of ethylene productionby lycoricidinol were interpreted as being due to the inhibitionof protein synthesis. (Received September 30, 1983; Accepted December 8, 1983)  相似文献   

19.
Incubation of plant tissues at a constant elevated temperature greatly inhibits both basal and wound ethylene production. However, recovery from heat treatment is relatively rapid and is followed by stimulated ethylene production. The present investigation examines the kinetics of ethylene production after short-term heal treatment and the regulation of heat-altered ethylene production. Subapical stem segments of 7-day-old etiolated pea L. cv. Alaska) seedlings were analyzed for ethylene production, 1-aminocyclopropane-l-carboxylic acid (ACC) oxidation, and ACC and l-(malonylamino)cyclopropane-l-carboxylic acid (MACC) content after a 2-min 40°C heat pulse. The short-term heat pulse transiently inhibited ethylene production and ACC oxidation accompanied by a slight ACC accumulation within a 30-min time period. Conjugation to MACC did not appear to play an integral role in heat-regulated ethylene production. It was concluded that the major factor affecting ethylene production after heat treatment is the temporary inactivation of ACC oxidation. The possible roles of ACC synthase, ACC oxidase and lipoxygenase in regulating ethylene production after heat treatment are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号