首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dethiolation experiments of thiolated albumin with thionitrobenzoic acid and thiols (glutathione, cysteine, homocysteine) were carried out to understand the role of albumin in plasma distribution of thiols and disulfide species by thiol/disulfide (SH/SS) exchange reactions. During these experiments we observed that thiolated albumin underwent thiol substitution (Alb-SS-X+RSH<-->Alb-SS-R+XSH) or dethiolation (Alb-SS-X+XSH<-->Alb-SH+XSSX), depending on the different pK(a) values of thiols involved in protein-thiol mixed disulfides (Alb-SS-X). It appeared in these reactions that the compound with lower pK(a) in mixed disulfide was a good leaving group and that the pK(a) differences dictated the kind of reaction (substitution or dethiolation). Thionitrobenzoic acid, bound to albumin by mixed disulfide (Alb-TNB), underwent rapid substitution after thiol addition, forming the corresponding Alb-SS-X (peaks at 0.25-1 min). In turn, Alb-SS-X were dethiolated by the excess nonprotein SH groups because of the lower pK(a) value in mixed disulfide with respect to that of other thiols. Dethiolation of Alb-SS-X was accompanied by formation of XSSX and Alb-SH up to equilibrium levels at 35 min, which were different for each thiol. Structures by molecular simulation of thiolated albumin, carried out for understanding the role of sulfur exposure in mixed disulfides in dethiolation process, evidenced that the sulfur exposure is important for the rate but not for determining the kind of reaction (substitution or dethiolation). Our data underline the contribution of SH/SS exchanges to determine levels of various thiols as reduced and oxidized species in human plasma.  相似文献   

2.
The pairing of the four intrachain disulfide bonds of bovine seminal ribonuclease, a dimeric protein isolated from bovine seminal plasma, has been established by the isolation and characterization of the cystine peptides obtained from a thermolytic-tryptic hydrolysate of the protein. These disulfide bonds involve eight half-cystine residues located in the protein subunit chain at sequence positions identical with those of the eight half-cystine residues of the strictly homologous chain of bovine pancreatic ribonuclease. The results reported show that these eight 'homologous' half-cystine residues pair in seminal ribonuclease exactly as they do in pancreatic ribonuclease. They also indirectly confirm that the remaining two half-cystine residues present in each chain of the seminal enzyme are involved in intersubunit bonds.  相似文献   

3.
The thiol-disulfide exchange reaction plays a central role in the formation of disulfide bonds in newly synthesized proteins and is involved in many aspects of cellular metabolism. Because the thiolate form of the cysteine residue is the key reactive species, its electrostatic milieu is thought to play a key role in determining the rates of thiol disulfide exchange reactions. While modest reactivity effects have previously been seen in peptide model studies, here, we show that introduction of positive charges can have dramatic effects on disulfide bond formation on a structurally restricted surface. We have studied properties of vicinal cysteine residues in proteins using a model system based on redox-sensitive yellow fluorescent protein (rxYFP). In this system, the formation of a disulfide bond between two cysteines Cys149 and Cys202 is accompanied by a 2.2-fold decrease in fluorescence. Introduction of positively charged amino acids in the proximity of the two cysteines resulted in an up to 13-fold increase in reactivity toward glutathione disulfide. Determination of the individual pK(a) values of the cysteines showed that the observed increase in reactivity was caused by a decrease in the pK(a) value of Cys149, as well as favorable electrostatic interactions with the negatively charged reagents. The results presented here show that the electrostatic milieu of cysteine thiols in proteins can have substantial effects on the rates of the thiol-disulfide exchange reactions.  相似文献   

4.
The single cysteine residue of human serum albumin (HSA-SH) is the most abundant plasma thiol. HSA transports fatty acids (FA), a cargo that increases under conditions of diabetes, exercise or adrenergic stimulation. The stearic acid-HSA (5/1) complex reacted sixfold faster than FA-free HSA at pH 7.4 with the disulfide 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) and twofold faster with hydrogen peroxide and peroxynitrite. The apparent pK(a) of HSA-SH decreased from 7.9±0.1 to 7.4±0.1. Exposure to H(2)O(2) (2mM, 5min, 37°C) yielded 0.29±0.04mol of sulfenic acid (HSA-SOH) per mole of FA-bound HSA. The reactivity of HSA-SOH with low molecular weight thiols increased ~threefold in the presence of FA. The enhanced reactivity of the albumin thiol at neutral pH upon FA binding can be rationalized by considering that the corresponding conformational changes that increase thiol exposure both increase the availability of the thiolate due to a lower apparent pK(a) and also loosen steric constraints for reactions. Since situations that increase circulating FA are associated with oxidative stress, this increased reactivity of HSA-SH could assist in oxidant removal.  相似文献   

5.
Thiols represent preferential targets of peroxynitrite in biological systems. In this work, we investigated the mechanisms and kinetics of the reaction of peroxynitrite with the dithiol dihydrolipoic acid (DHLA) and its oxidized form, lipoic acid (LA). Peroxynitrite reacted with DHLA being oxidation yields higher at alkaline pH. The stoichiometry for the reaction was two thiols oxidized per peroxynitrite. LA formation accounted for approximately 50% DHLA consumption at pH 7.4, probably reflecting secondary reactions between LA and peroxynitrite. Indeed, peroxynitrous acid reacted with LA with an apparent second-order rate constant (k(2app)) of 1400 M(-1) s(-1) at pH 7.4 and 37 degrees C. Nitrite and LA-thiosufinate were formed as reaction products. Surprisingly, the k(2app) for peroxynitrite-dependent DHLA oxidation was only 250 M(-1) s(-1) per thiol, at pH 7.4 and 37 degrees C. Testing various low-molecular-weight thiols, we found that an increase in the thiol pK (pK(SH)) value correlated with a decrease of k(2app) for the reaction with peroxynitrite at pH 7.4. The pK(SH) for DHLA is 10.7, in agreement with its modest reactivity with peroxynitrite.  相似文献   

6.
Oligomeric cyclic disulfides, obtained by mild oxidation of the fully protected dipeptide L -cysteinyl-L -cysteine, have been isolated by gel and thin-layer chromatography. Polymeric material was recycled by a thiol–disulfide exchange-reaction performed at basic pH. Spectroscopic investigations of the monomer and the two dimers indicate that conformers characterized by dihedral angles about the S? S bond close to ±90° are preferred. Moreover, chiroptical and 1H-nmr data for these compounds suggest higher mobility for the two dimers. The antiparallel dimeric disulfide can be considered a model compound for the hinge region formed at the subunit interface of the bovine seminal ribonuclease, a dimeric enzyme showing a complex kinetic behavior.  相似文献   

7.
A quantitative structure-reactivity relationship for the Michael-type addition of thiols onto acrylates was determined. Several thiol-containing peptides were investigated by examining the correlation between the second-order rate constant of their addition onto PEG-diacrylate and the pK(a) of the thiols within a peptide. By introducing charged amino acids in close proximity to a cysteine, the pK(a) of the thiol was systematically modulated by electrostatic interactions. Positive charges from the amino acid arginine decreased the pK(a) of the thiol and accelerated the reaction with acrylates while negative charges from aspartic acids showed the opposite effect. A linear correlation between thiolate concentrations and kinetic constants was found, confirming the role of thiolates as the reactive species in this Michael-type reaction. The relevant factors influencing the reactivity were the sign and the number of the neighboring charges, while the position of these charges had little effect on reactivity. These results provide a basis for the rational design of peptides, where the kinetics and thus selectivity of protein/peptide conjugation with polymeric structures via Michael-type addition reactions can be controlled.  相似文献   

8.
In alkaline media the thiamine cyclic form is converted into a thiol form (pK(a) 9.2) with an opened thiazole ring. The thiamine thiol form releases nitric oxide from S-nitrosoglutathione (GSNO). Thiamine disulfide, mixed thiamine disulfide with glutathione, and nitric oxide are produced in the reaction. Free glutathione was recorded in small amounts. The concentration of formed nitric oxide agreed well with the concentration of degraded GSNO. The concentration of released nitric oxide was determined under anaerobic conditions spectrophotometrically by production of nitrosohemoglobin. In air, the release of nitric oxide was recorded by the production of nitrite or the oxidation of oxyhemoglobin to methemoglobin. The concentration of the thiol form in the body under physiological pH values (7.2-7.4) did not exceed 1.5-2.0%. We believe that due to the exchange reactions between the thiamine thiol form and S-nitrosocysteine protein residues, nitric oxide can be released and mixed thiamine-protein disulfides are formed. The mixed thiamine disulfides (including thiamine ester disulfides) as well as the thiamine disulfide form are quite easily reduced by low molecular weight thiols to form the thiamine cyclic form with a closed thiazole ring. A possible role of the thiamine thiol form in releasing deposited nitric oxide from low-molecular-weight S-nitrosothiols and protein S-nitrosothiols and in regulation of blood flow in the vascular bed is discussed.  相似文献   

9.
Aliphatic thiols are effective as redox buffers for folding non-native disulfide-containing proteins into their native state at high pH values (8.0-8.5) but not at neutral pH values (6-7.5). In developing more efficient and flexible redox buffers, a series of aromatic thiols was analyzed for its ability to fold scrambled ribonuclease A (sRNase A). At equivalent pH values, the aromatic thiols folded sRNase A 10-23 times faster at pH 6.0, 7-12 times faster at pH 7.0, and 5-8 times faster at pH 7.7 than the standard aliphatic thiol glutathione. Similar correlations between thiol pK(a) values and folding rates at each pH value suggest that the apparent folding rate constants (k(app)) are a function of the redox buffer properties (pH, thiol pK(a) and [RSH]). Fitting the observed data to a three-variable model (logk(app)=-4.216(+/-0.030)+0.5816(+/-0.0036)pH-0.233(+/-0.004)pK(a)+log(1-e(-0.98(+/-0.02)[RSH]))) gave good statistics: r2=0.915, s=0.10.  相似文献   

10.
R A Bednar 《Biochemistry》1990,29(15):3684-3690
The reactivity of simple alkyl thiolates with N-ethylmaleimide (NEM) follows the Br?nsted equation, log kS- = log G + beta pK, with G = 790 M-1 min-1 and beta = 0.43. The rate constant for the reaction of the thiolate of 2-mercaptoethanol with NEM is 10(7) M-1 min-1, whereas the rate constant for the reaction of the protonated thiol is less than 0.0002 M-1 min-1. The intrinsic reactivity of the protonated thiol (SH) is over (5 X 10(10]-fold less than the thiolate (S-) and makes a negligible contribution to the reactivity of thiols toward NEM. The rate of NEM modification of chalcone isomerase was conveniently measured by following the concomitant loss in enzymatic activity. The pseudo-first-order rate constants for inactivation show a linear dependence on the concentration of NEM up to 200 mM and yield no evidence for noncovalent binding of NEM to the enzyme. Evidence is presented demonstrating that the modification of chalcone isomerase by NEM is limited to a single cysteine residue over a wide range of pH. Kinetic protection against inactivation and modification by NEM is provided by competitive inhibitors and supports the assignment of this cysteine residue to be at or near the active site of chalcone isomerase. The pH dependence of inactivation of the enzyme by NEM indicates a pK of 9.2 for the cysteine residue in chalcone isomerase. At high pH, the enzymatic thiolate is only (3 X 10(-5))-fold as reactive as a low molecular weight alkyl thiolate of the same pK, suggesting a large steric inhibition of reaction on the enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Selective reduction of seminal ribonuclease by glutathione   总被引:1,自引:0,他引:1  
Incubation of seminal ribonuclease with glutathione leads to the formation of a monomeric species which exhibits twice the specific activity of the native dimer. The monomer was found to possess two mixed disulfides of glutathione at residues 31 and 32, the residues ordinarily involved in the intermolecular disulfide bonds linking the subunits of the native dimer. Formation of the monomer results in only minor changes in the far ultraviolet circular dichroism spectra. The rate of the glutathione-facilitated dissociation reaction is fairly slow, requiring 60 min for completion. Attempts to dimerize the monomer all failed, implying that the dissociation reaction is irreversible. The glutathione reduced monomer was compared with the monomer formed during the regeneration of reduced, denatured bovine seminal ribonuclease in the presence of glutathione. By all criteria examined, the two monomeric forms are identical. It is concluded that the mixed disulfide monomer is the favored form of the enzyme in the presence of glutathione.  相似文献   

12.
Thiol redox chemical reactions play a key role in a variety of physiological processes, mainly due to the presence of low-molecular-weight thiols and cysteine residues in proteins involved in catalysis and regulation. Specifically, the subtle sensitivity of thiol reactivity to the environment makes the use of simulation techniques extremely valuable for obtaining microscopic insights. In this work we review the application of classical and quantum–mechanical atomistic simulation tools to the investigation of selected relevant issues in thiol redox biochemistry, such as investigations on (1) the protonation state of cysteine in protein, (2) two-electron oxidation of thiols by hydroperoxides, chloramines, and hypochlorous acid, (3) mechanistic and kinetics aspects of the de novo formation of disulfide bonds and thiol−disulfide exchange, (4) formation of sulfenamides, (5) formation of nitrosothiols and transnitrosation reactions, and (6) one-electron oxidation pathways.  相似文献   

13.
A simple and specific method for analyzing thiols and disulfides on the basis of the reversibility of N-ethylmaleimide (NEM) alkylation of thiols is described. When the adduct of NEM and glutathione (GSH) was electrolyzed at neutral pH, all of the GSH was recovered. When the adduct was exposed to pH 11.0 for 15 min at 30 degrees C before electrolysis, GSH was not detected. The same behavior was observed after protein thiols reacted with NEM. This pH-dependent production of thiol from the adduct was used to assay GSH and oxidized glutathione in yeast cells, to assay sulfhydryl groups and disulfide bonds in authentic proteins, and to protect thiols from oxidation during enzymatic digestion of protein. This method is useful for assay of thiols and disulfides of both small and large molecules and can be used to identify labile thiols in biological samples that are oxidized during extraction procedures.  相似文献   

14.
Gough JD  Gargano JM  Donofrio AE  Lees WJ 《Biochemistry》2003,42(40):11787-11797
The production of proteins via recombinant DNA technology often requires the in vitro folding of inclusion bodies, which are protein aggregates. To create a more efficient redox buffer for the in vitro folding of disulfide containing proteins, aromatic thiols were investigated for their ability to increase the folding rate of scrambled RNase A. Scrambled RNase A is fully oxidized RNase A with a relatively random distribution of disulfide bonds. The importance of the thiol pK(a) value was investigated by the analysis of five para-substituted aromatic thiols with pK(a) values ranging from 5.2 to 6.6. Folding was measured at pH 6.0 where the pK(a) value of the thiols would be higher, lower, or equal to the solution pH. Thus, relative concentrations of thiol and thiolate would vary across the series. At pH 6.0, the aromatic thiols increased the folding rate of RNase A by a factor of 10-23 over that observed for glutathione, the standard additive. Under optimal conditions, the apparent rate constant increased as the thiol pK(a) value decreased. Optimal conditions occurred when the concentration of protonated thiol in solution was approximately 2 mM, although the total thiol concentration varied considerably. The importance of the concentration of protonated thiol in solution can be understood based on equilibrium effects. Kinetic studies suggest that the redox buffer participates as the nucleophile and/or the center thiol in the key rate determining thiol disulfide interchange reactions that occur during protein folding. Aromatic thiols proved to be kinetically faster and more versatile than classical aliphatic thiol redox buffers.  相似文献   

15.
Porcine ribonuclease inhibitor (RI) contains 30 1/2-cystinyl residues, all of which occur in the reduced form. Reaction of the native protein with 5,5'-dithiobis (2-nitrobenzoic acid) resulted in the release of 30 mol of the product 5-mercapto-2-nitrobenzoate, and the loss of the RNase inhibitory activity. A linear relationship between the degree of modification and inactivation was observed. The rate of modification was greatly increased in the presence of 6 M guanidinium HCl. Reaction with substoichiometric amounts of 5,5'-dithiobis(2-nitrobenzoic acid) was found to yield a mixture of fully reduced active molecules, and fully oxidized inactive ones, but no partially oxidized forms were detected. This suggests that an "all-or-none" type of modification and inactivation took place. All 1/2-cystinyl residues in the inactive, monomeric inhibitor had formed disulfide bridges, judged by the absence of either free thiol groups or mixed disulfides with 5-mercapto-2-nitrobenzoate. This fully disulfide-cross-linked molecule had an open conformation compared to the native one, as shown by gel filtration and limited proteolysis. Reaction of phenylarsinoxide with vicinal dithiols yields products that are much more stable than those with monothiols. Titration of RI with this reagent yielded complete inactivation at a reagent/thiol ratio of 0.5. Taken together, these observations suggest that the thiol groups in RI have a diminished reactivity due to three-dimensional constraints. After the initial modification of a small number of thiol groups, a conformational change occurs which causes an increase in reactivity of the remaining thiols. The thiol groups are situated close enough together to permit the formation of 15 disulfide bridges in the inactive molecule.  相似文献   

16.
A simple and specific method for analyzing thiols and disulfides on the basis of the reversibility of N-ethylmaleimide (NEM) alkylation of thiols is described. When the adduct of NEM and glutathione (GSH) was electrolyzed at neutral pH, all of the GSH was recovered. When the adduct was exposed to pH 11.0 for 15 min at 30°C before electrolysis, GSH was not detected. The same behavior was observed after protein thiols reacted with NEM. This pH-dependent production of thiol from the adduct was used to assay GSH and oxidized glutathione in yeast cells, to assay sulfhydryl groups and disulfide bonds in authentic proteins, and to protect thiols from oxidation during enzymatic digestion of protein. This method is useful for assay of thiols and disulfides of both small and large molecules and can be used to identify labile thiols in biological samples that are oxidized during extraction procedures.  相似文献   

17.
The dimeric structure of seminal ribonuclease (BS-RNase) is maintained by noncovalent interactions and by two intersubunit disulfide bridges. Another unusual feature of this enzyme is its antitumour action, consisting in a cytotoxic activity selective for malignant cells. This cytotoxic action is exerted when the protein reaches the cytosol of the affected cells, where it degrades ribosomal RNA, thus blocking protein synthesis and leading cells to death. The current model proposed for the mechanism of antitumour action of BS-RNase is based on the ability of the protein to resist the neutralizing action of the cytosolic RNase inhibitor, a resistance due to the dimeric structure of the enzyme. Monomeric RNases, and monomeric derivatives of BS-RNase, are strongly bound by the inhibitor and inactive as antitumor agents. Here we report on monomeric derivatives of BS-RNase that, although strongly inhibited by the cytosolic RNase inhibitor, are cytotoxic towards malignant cells. These monomers are produced by reductive cleavage of the intersubunit disulfides of the native, dimeric protein followed by linking the exposed sulfhydryls to small thiols through formation of mixed disulfides. We found that sulfhydryls from cell monolayers and cell membranes can attack these mixed disulfides in the monomeric derivatives, and reconstitute, through sulfhydryl-disulfide interchange reactions, the native dimeric protein, which is internalized as such, and displays its antitumour action.  相似文献   

18.
Shen B  English AM 《Biochemistry》2005,44(42):14030-14044
Although biologically active, nitroxyl (HNO) remains one of the most poorly studied NO(x). Protein-based thiols are suspected targets of HNO, forming either a disulfide or sulfinamide (RSONH2) through an N-hydroxysulfenamide (RSNHOH) addition product. Electrospray ionization mass spectrometry (ESI-MS) is used here to examine the products formed during incubation of thiol proteins with the HNO donor, Angeli's salt (AS; Na2N2O3). Only the disulfide, cystine, was formed in incubates of 15 mM free Cys with equimolar AS at pH 7.0-7.4. In contrast, the thiol proteins (120-180 microM), human calbindin D(28k) (HCalB), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and bovine serum albumin (BSA) gave four distinct types of derivatives in incubates containing 0.9-2.5 mM AS. Ions at M + n x 31 units were detected in the ESI mass spectra of intact HCalB (n = 1-5) and GAPDH (n = 2), indicating conversion of thiol groups on these proteins to RSONH2 (+31 units). An ion at M + 14 dominated the mass spectrum of BSA, and intramolecular sulfinamide cross-linking of Cys34 to one of its neighboring Lys or Arg residues would account for this mass increase. Low abundant M + 14 adducts were observed for HCalB, which additionally formed mixed disulfides when free Cys was present in the AS incubates. Cys149 and Cys153 formed an intramolecular disulfide in the AS/GAPDH incubates. Since AS also produces nitrite above pH 5 (HN2O3(-) --> HNO + NO2(-)), incubation with NaNO2 served to confirm that protein modification was HNO-mediated, and prior blocking with the thiol-specific reagent, N-ethylmaleimide, demonstrated that thiols are the targets of HNO. The results provide the first systematic characterization of HNO-mediated derivatization of protein thiols.  相似文献   

19.
Reactivities of the two essential cysteine residues in the heavy metal binding motif, MTC(14)AAC(17), of the periplasmic Hg(2+)-binding protein, MerP, have been examined. While Cys-14 and Cys-17 have previously been shown to be Hg(2+)-binding residues, MerP is readily isolated in an inactive Cys-14-Cys-17 disulfide form. In vivo results demonstrated that these cysteine residues are reduced in the periplasm of Hg(2+)-resistant Escherichia coli. Denaturation and redox equilibrium studies revealed that reduced MerP is thermodynamically favored over the oxidized form. The relative stability of reduced MerP appears to be related to the lowered thiol pK(a) (5.5) of the Cys-17 side chain. Despite its much lower pK(a), the Cys-17 thiol is far less accessible than Cys-14, reacting 45 times more slowly with iodoacetamide at pH 7.5. This is reminiscent of proteins such as thioredoxin and DsbA, which contain a similar C-X-X-C motif, except in those cases the more exposed thiol has the lowered pK(a). In terms of MerP function, electrostatic attraction between Hg(2+) and the buried Cys-17 thiolate may be important for triggering the structural change that MerP has been reported to undergo upon Hg(2+) binding. Control of cysteine residue reactivity in heavy metal binding motifs may generally be important in influencing specific metal-binding properties of proteins containing them.  相似文献   

20.
Kinetics of disulfide reduction in alpha-lactalbumin by dithiothreitol are investigated by measuring time-dependent changes in absorption at 310 nm and in CD ellipticity at 270 nm (pH 8.5 or 7.0, and 25 degrees C). When the disulfide-intact protein is folded, the kinetics are biphasic. The disulfide bond between the half-cystines-6 and -120 is reduced in the fast phase, and the other three disulfide bonds are reduced in the slow phase. The apparent rate constants of the two phases are both proportional to the concentration of dithiothreitol, indicating that both phases are expressed by bimolecular reactions. However, detailed molecular mechanisms that determine the reaction rates are markedly different between the two phases. The slow phase shows a sigmoidal increase in the reaction rate with increasing concentration of a denaturant, urea, and is also accelerated by destabilization of the native state on removal of the bound Ca2+ ion in the protein. The disulfide bonds are apparently protected against the reducing agent in the native structure. The fast phase reaction rate is, however, decreased with an increase in the concentration of urea, and the disulfide bond shows extraordinary superreactivity in native conditions. It is 140 times more reactive than normal disulfides in the fully accessible state, and three-disulfide alpha-lactalbumin produced by the fast phase assumes nativelike structure under a strongly native condition. As ionic strength does not affect the superreactivity of this disulfide bond, electrostatic contributions to the reactivity must be negligible. Inspection of the disulfide bond geometry based on the refined X-ray coordinates of baboon alpha-lactalbumin [Acharya et al. (1989) J. Mol. Biol. 208, 99-127] and comparison of the geometry with those in five other proteins clearly demonstrate that the superreactivity arises from the geometric strain imposed on this disulfide bond by the native structure folding. Relationships of the disulfide strain energy to the protein stability and the disulfide reactivity are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号