首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Hen oviduct chromatin was digested with DNase II and separated into two fractions. The MgCl2 insoluble chromatin fraction (43% of the total DNA) was enriched in nucleosome-like particles, which sedimented at 11 S and contained 185 base pairs of DNA. The MgCl2 soluble chromatin fraction (5% of the total DNA) was characterized by 5 S and 14 S peaks in sucrose gradients; Estrogen receptors in the chromatin fractions were labelled with [3H] estradiol using the steroid exchange assay. The concentration of receptors in the MgCl2 soluble chromatin was 4;5 times higher than that in the MgCl2 insoluble chromatinmin sucrose gradient analysis the 11 S particles displayed a negligible specific radioactivity suggesting that estrogen receptors mainly bind to extranucleosomal chromatin.  相似文献   

3.
A factor termed Physarum actinin was isolated and partially purified from plasmodia of a myxomycete, Physarum polycephalum. When Physarum actinin was mixed with purified Physarum or rabbit striated muscle G-actin in a weight ratio of about 1 actinin to 9 actin and then the polymerization of G-actin induced, G-actin polymerized to the ordinary F-actin on addition of 0.1 M KCl. However, it polymerized to Mg-polymer on addition of 2 mM MgCl2. The reduced viscosity (etasp/C) of the Mg-polymer was 1.2 dl/g, about one-seventh of that of the F-actin (7.4 dl/g). The sedimentation coefficient of the Mg-polymer was 22.8 S, almost the same as that of the F-actin (29.4 S). The Mg-polymer showed the specific ATPase activity of the order of 1 . 10(-3) mumol ATP/mg actin per min. It was shown that Physarum actinin copolymerized with G-actin to form Mg-polymer on addition of 2 mM MgCl2. The molecular weights of Physarum actinin were about 90 000 in salt-free or slat solutions and 43 000 in a dodecyl sulfate solution. The range of salting out with ammonium sulfate was 50--65% saturation, which was different from that of Physarum actin (15--35% saturation). Physarum actinin did not interact with Physarum myosin or muscle heavy meromyosin. When the weight ratio of actinin to actin increased, the flow birefringence of the formed Mg-polymer decreased, and it became almost zero at the weight ratio of 1 actinin to 5 actin. ATPase activity reached the maximum level (2.2 . 10(-3) mumol ATP/mg actin per min) at the same ratio. On the addition of Physarum actinin to purified Physarum F-actin which had been polymerized on addition of 2 mM MgCl2 the viscosity decreased rapidly, suggesting that the F-actin filaments were broken in the smaller fragments or that they transformed to Mg-polymers. A factor with properties similar to Physarum actinin was isolated from acetone powder of sea urchin eggs.  相似文献   

4.
The distribution of estradiol receptor and vitellogenin gene was studied in estradiol stimulated chick liver chromatin fractions prepared by limited DNAse II digestion and MgCl2 precipitation. The receptor was found in all fractions, undigested chromatin (P1), Mg2+ insoluble chromatin (P2) and Mg2+ soluble chromatin (S2). This last fraction was rich in acidic proteins, had a high protein:DNA ratio (7.0 w/w), contained 28% of rapidly labelled RNA, 20% of the receptor, 3-5% of chromatin DNA and showed a 2 fold enrichment of vitellogenin DNA sequences over unfractionated chromatin as well as P1 and P2 DNA. On isopycnic metrizamide gradients, all chromatin fractions showed a receptor peak banding at 1.23 g/cm3, the density of nucleoproteins. Hybridization experiments showed that the DNA banding at this density in fraction S2 was enriched 4 fold in vitellogenin DNA sequences over unfractionated chromatin as well as P1 and P2 DNA. These results suggest an association of hormone receptor complex with nucleoprotein structures of an apparently active chromatin fraction.  相似文献   

5.
6.
7.
An endogenous Ca2+, Mg2+-dependent factor of enzymic nature (apparently an endonuclease) digests a part of chromatin in the rat liver nuclei producing DNA fragments of an uniform size. After 60 min of incubation at 15 degrees C and pH 7.50 in the presence of 5 mM MgCl2 and 2 mM CaCl2 87-93% of the total chromatin becomes soluble. The insoluble chromatin however contains 70-85% of the in vivo newly synthesized RNA. In regenerating liver the proportion of the insoluble residual chromatin increases while the radioactivity of the newly synthesized DNA in this fraction is highest. Residual chromatin can be solubilized by ultrasonic treatment only. The Ca2+, Mg2+-dependent dissolving factor is not present either in brain or in PMN leucocyte nuclei.  相似文献   

8.
9.
10.
By treatment with tRNA in the presence of 1 mM MgCl2, a chromatin preparation was obtained containing all five major histone fractions but lacking a considerable portion of non-histone proteins. This chromatin preparation as well as chromatin extracted with 0.6 M NaCl (depleted of H1 histone and some non-histone proteins) were characterized in respect of solubility and chromatin DNA accessibility. Both samples possessed practically the same solubility in the presence of 0.15 M NaCl and 1 mM MgCl2. The solubility of tRNA-treated chromatin in 5 and 10 mM MgCl2 was higher than that of salt-extracted chromation. The accessibility of the DNA of these chromatin preparations was tested with DNA-dependent RNA polymerase of Escherichia coli as a probe, using procedure that permits measurement of binding site frequency. Both tRNA-treated and salt-extracted chromatin contained as many as 33% and untreated chromatin as few as 4% of the number of binding sites found on protein-free DNA. These results demonstrate that at least in part the non-histone proteins are responsible for salt-induced insolubility and low DNA accessibility of chromatin, thus revealing the importance of non-histone proteins in the maintenance of an overall chromatin structure.  相似文献   

11.
12.
Using a differential extraction procedure which had previously been shown to yield one nucleic acid fraction enriched in cytoplasmic RNA and another enriched in nuclear RNA, we have been able to isolate two polyadenylated RNA populations from microplasmodia of Physarum polycephalum. The poly(A)-containing RNA from the cytoplasmic-enriched fraction accounts for approximately 1.2% of the cytoplasmic nucleic acid, has a number-average nucleotide size of 1339+/- 39 nucleotides, and has been shown, in a protein-synthesizing system in vitro, to be capable of directing the synthesis of peptides which have also been shown to be synthesized in vivo by microplasmodia. The poly(A)-containing RNA from the nuclear-enriched fraction has a number-average nucleotide size of 1533 +/- 104 nucleotides and represents a mixture of cytoplasmic and nuclear adenylated RNA molecules. Based upon these observations, we have identified the polyadenylated RNA isolated from the fraction enriched in cytoplasmic nuclei acid as Physarum poly(A)-containing messenger RNA.  相似文献   

13.
Structure of transcriptionally-active chromatin subunits.   总被引:4,自引:0,他引:4  
Rat liver chromatin is organized into regions of DNA which differ in degree of susceptibility to attack by the endonucleases DNase I and DNase II. The most nuclease-sensitive portion of chromatin DNA is enriched in transcribed sequences. This fraction may be separated from the bulk of chromatin by virtue of its solubility in solutions containing 2 mM MgCl2. Both transcribed and nontranscribed regions of chromatin are organized into repeating units of DNA and histone, which appear as 100 A beads in the electron microscope. The length of DNA in the repeat unit is the same for these two classes of chromatin (198 +/- 6 base pairs in rat liver); however, the subunits of active, Mg++-soluble chromatin differ from the nucleosomes of inactive regions of chromatin in several respects. Active subunits are enriched in nascent RNA and nonhistone protein and exhibit higher sedimentation values than the corresponding subunits of inactive chromatin.  相似文献   

14.
The composition of rat testis chromatin proteins in fractions produced by limited DNase II digestion followed by differential precipitation with MgCl2 has been studied. Over 50% of the acid-soluble proteins in the soluble chromatin fraction appeared to be quite similar to proteins which are associated with ribonucleoprotein (RNP) particles in HeLa cells. Although the ratios of the testis RNP protein components differed from those of HeLa RNP particles, the three major polypeptides were most similar to the HeLa components designated A2, B2, and C1. The soluble chromatin fraction was also enriched in the high mobility group proteins HMG1 and HMG2.  相似文献   

15.
Digestion of pig liver chromatin with DNAse II afforded three different fractions which were characterized in terms of their DNA, RNA and tightly bound non-histone protein content, their DNA fragment size and their template activity. Two of these fractions are soluble after digestion with DNAase II and have been separated on the basis of their different solubility in MgCl2. A third fraction is not solubilized even after extensive digestion, although the size of its DNA is comparable to that of the enzyme solubilized fractions. The three fractions show qualitatively and quantitatively different distribution of tightly bound non-histone proteins, with specific protein components in each fraction; furthermore the non-solubilized fraction is greatly enriched in proteins tightly bound to DNA. From all the data obtained it can be suggested that the tightly bound proteins of the insoluble fraction may play, directly or indirectly, a role in maintaining an organized chromatin structure.  相似文献   

16.
Treatment of chromatin gel with low ionic strength solution of tRNA has produced the dioxyribonucleoprotein (dnptRNA) in which only part of non-histone proteins was removed without loss of any major histone fraction. The solubility of DNP in the presence of 0.15 M NaCl and 1 to 5 mM MgCl2 was considerably higher than that of initial untreated chromatin. It has been assumed that the solubility of chromatin depended primarily on some non-histone proteins and not on H1 histone.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号