首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
轻度水分胁迫下苹果叶片Pr迅速升高 ,CAT活性变化不大 ,NaHSO3 处理能显著降低叶内H2 O2 含量 ,表明光呼吸的加强促进了H2 O2 产生可能是叶内H2 O2大量积累的主要原因 ;中度水分胁迫下叶片AsA含量的下降和Mehler反应的增强都非常明显 ,DDTC和AsA处理都能有效降低叶内H2 O2 积累 ,但MV处理的作用不大 ,说明叶片H2 O2 主要来源于Mehler反应 ,AsA降解造成叶片对H2 O2 清除能力的下降是其积累的根本原因 ;严重水分胁迫时 ,NaHSO3 和DDTC都不能有效地减轻叶内H2 O2 积累 ,光呼吸和Mehler反应都可能不是H2 O2 的主要来源  相似文献   

2.
3.
研究了H2 O2 和蛋白水解酶在小麦 (TriticumaestivumL .cv.Yanmai15 8)叶片老化过程中的关系。小麦叶片老化期间 ,H2 O2 含量高的叶片中内肽酶活力也高。老化后期 ,内源H2 O2 迅速累积 ,内肽酶活力迅速上升 ;通过内肽酶同工酶电泳可检测到新增一种活力较强的内肽酶。用外源H2 O2 处理全展旗叶的内肽酶粗提液 ,随着H2 O2 浓度的升高 ,内肽酶活力先上升后下降。  相似文献   

4.
水杨酸(salicylic acid,SA)处理可诱导丹参悬浮培养细胞内H2O2产生及其培养基碱化。利用NADPH氧化酶抑制剂咪唑(imidazole,IMD)、H2O2淬灭剂二甲基硫脲(dimethylthiourea,DMTU)、质膜H+-ATPase抑制剂钒酸钠(Na3VO4)及激活剂壳梭孢菌素(fusicoccin,FC)处理丹参悬浮培养细胞,探讨SA诱导的H2O2迸发与培养基碱化之间的关系。结果表明,H2O2可促发培养基碱化,IMD和DMTU抑制SA诱发的培养基碱化,说明H2O2参与SA诱发的培养基碱化过程;SA抑制质膜H+-ATPase活性,Na3VO4引发培养基碱化并使H2O2迸发时间提前,FC处理逆转了SA诱导的培养基碱化及H2O2迸发,说明质膜H+-ATPase调控培养基pH值变化,培养基碱化促进了H2O2产生。因此,丹参悬浮培养细胞内H2O2水平与其培养基碱化程度之间相互关联、共同作用,协同响应SA的诱导。  相似文献   

5.
不同浓度盐和H_2O_2对海马齿PHGPx活性的影响   总被引:1,自引:0,他引:1  
磷脂氢谷胱甘肽过氧化物酶(PHGPx)是目前发现的唯一能够直接还原膜上脂类过氧化物的抗氧化酶,在保护生物膜免受过氧化损伤方面发挥重要作用.本研究探讨了海马齿PHGPx活性的测定,检测了不同浓度盐和H_2O_3胁迫对PHGPx活性的影响.结果显示,以蒸馏水为缓冲液提取的叶片总蛋白效果较好;NaCl梯度浓度处理下,海马齿叶片PHGPx活性呈先降低后升高然后再降低的趋势,其中500 mmol/L NaCl处理可以诱导最大活性;H_2O_2梯度浓度处理下,海马齿叶片PHGPx活性呈先升高后降低再升高趋势,0.5 mmol/LH_2O_2处理获得最大活性;海马齿植株经H_2O_2清除剂DMTU处理后再用H_2O_2处理,PHGPx的活性降低,同时NaCl的诱导效果并不受到影响.这些研究结果表明,海马齿中PHGPx的活性受到盐和H_2O_2的调节,并且它们对PHGPx酶活的调节可能是两个独立的过程.  相似文献   

6.
为提高微生物发酵玉米芯提取木聚糖的效率,本研究采用H2O2预处理结合微生物发酵的方法提取玉米芯中的木聚糖,并通过扫描电镜(SEM)从微观结构初步探讨了H2O2预处理提高微生物发酵提取玉米芯木聚糖的原因。其结果表明:利用4%H2O2预处理玉米芯1小时,木聚糖含量可达40. 21±0. 21 mg/g,较未处理组玉米芯中木聚糖含量提高了87. 72%;4%H2O2预处理结合微生物发酵玉米芯,可显著提高木聚糖得率,其含量可达52. 72 mg/g,较未经H2O2预处理组提高了186. 67%;进一步利用响应面法优化微生物发酵经H2O2预处理玉米芯提取木聚糖的工艺,得到了发酵最佳培养基组成为含水量50%、尿素添加量0. 25%、葡萄糖添加量0. 75%,此条件下木聚糖含量达70. 84 mg/g,较未发酵提高了249. 82%;SEM图像显示H2O2预处理使得玉米芯结构变得疏松,微生物发酵结合H2O2预处理后的玉米芯出现较大孔洞,结构变得更为疏松。因此,H2O2预处理可改善玉米芯结构,促进微生物发酵,提高玉米芯木聚糖的提取效率,为玉米芯木聚糖的高效开发利用提供了参考。  相似文献   

7.
在系统中H2O2与所含有的亚铁离子通过Fenton反应主要生成OH自由基损伤细胞,但H2O2也可损伤细胞膜或细胞。为区分Fenton自由基体与H2O2分别对红细胞膜脂质及蛋白分子相对旋转时间影响机理的不同,分别对体外不同浓度Fenton体系和不同浓度H2O2作用30分钟后,红细胞膜剪切弹性模量μ、细胞表面指数Si、膜蛋白分子τp及脂质分子τl相对旋转时间和它们的化学结构进行了比较分析。结果发现,(  相似文献   

8.
流加H_2O_2对提高供氧及微生物代谢的影响   总被引:6,自引:0,他引:6  
在大部分的需氧发酵中 ,供氧通常是通过向发酵液通气来实现的。在某一临界细胞浓度时 ,供氧不能满足细胞生长所需 ,成为细胞生长的限制基质 ,进而导致细胞密度和产品浓度较低[1] 。传统方法改善供氧主要是从反应器设计和工艺等方面考虑 ,如增大搅拌速率 ,提高通气速率 ,使用纯氧通气 ,提高罐压等。但由于氧气的溶解度低以及机械和操作上的原因 ,其操作范围有限。近年来出现了一些新的方法来改善发酵过程中的供氧问题 ,如加入氧载体[1~ 3 ] ,流加H2 O2[4~ 7] ,与藻类共培养[8~ 10 ] ,以及通过基因克隆转入携带氧的基因等方法。本文将着…  相似文献   

9.
以H2O2为中心的活性氧(reactive oxygen species,ROS)的产生是动植物发育与响应外界生物与非生物胁迫的普遍特征,其在生理和分子2个水平上调控植物的发育和对外界胁迫的响应,并与一系列信号转导过程相关联。作为关键的ROS产生酶,质膜NADPH氧化酶(plasma membrane NADPH oxidase,PM-NOX)在植物应对各种生物和非生物胁迫中具有重要作用,被广泛认为是胁迫条件下植物细胞ROS产生并积累的主要来源。该文简要综述了近年来人们在植物细胞ROS产生、清除、生理功能以及PM-NOX酶的结构特征与功能等方面的研究进展,并认为H2O2-NOX系统是一种植物体内普遍存在的重要发育调控与胁迫响应机制。  相似文献   

10.
目的:研究黄芪苷Ⅳ(AST)是否通过细胞外信号调节激酶1/2(ERK1/2)通路发挥对H2O2诱导的H9c2细胞氧化损伤的保护作用。方法:用200μmol/L的H2O2处理细胞6 h,采用MTT法检测细胞存活率,建立H2O2诱导的H9c2细胞氧化损伤模型;比色法测定细胞培养液中乳酸脱氢酶(LDH)活性、总超氧化物歧化酶(T-SOD)和锰超氧化物歧化酶(Mn-SOD)活力以及丙二醛(MDA)含量;Western blot检测H9c2细胞ERK1/2蛋白的磷酸化水平。结果:在H2O2浓度为200μmol/L作用6 h条件下,细胞存活率降低程度适中,实验结果重复性好,确定后续实验采用200μmol/L H2O2作用6 h建立模型。与H2O2组比较,10 mg/L及20 mg/L AST均显著提高细胞存活率(P<0.01),使细胞培养液中LDH活性显著降低(P<0.01),T-SOD及Mn-SOD活力显著提高(P<0.01),MDA含量显著降低(P<0.01)。10 mg/L及20 mg/L AST均显著增加H2O2损伤的H9c2细胞p-ERK1/2蛋白的表达(P<0.01),当用PD98059(ERK1/2的抑制剂...  相似文献   

11.
Direct electron transfer of hemoglobin modified with quantum dots (QDs) (CdS) has been performed at a normal graphite electrode. The response current is linearly dependent on the scan rate, indicating the direct electrochemistry of hemoglobin in that case is a surface-controlled electrode process. UV–vis spectra suggest that the conformation of hemoglobin modified with CdS is little different from that of hemoglobin alone, and the conformation changes reversibly in the pH range 3.0–10.0. The hemoglobin in a QD film can retain its bioactivity and the modified electrode can work as a hydrogen peroxide biosensor because of its peroxidase-like activity. This biosensor shows an excellent response to the reduction of H2O2 without the aid of an electron mediator. The catalytic current shows a linear dependence on the concentration of H2O2 in the range 5 × 10−7–3 × 10−4 M with a detection limit of 6 × 10−8 M. The response shows Michaelis–Menten behavior at higher H2O2 concentrations and the apparent Michaelis–Menten constant is estimated to be 112 μM.  相似文献   

12.
The electrocatalytic reduction of H2O2 was studied for carbonaceous electrodes modified with horse-radish peroxidase (HRP), microperoxidase (MP), and lactoperoxidase (LP). The carbonaceous electrodes were of three different graphites, carbon and glassy carbon. The peroxidase modified electrode was inserted as the working electrode in a flow through amperometric cell of the wall jet type and connected to a flow injection system. The effect of different pretreatments of the electrode surface prior to adsorption of the enzyme was investigated. Heating the electrodes in a muffle furnace at 700°C for 1.5 min was found to yield the highest currents. The electrocatalytic current for HRP-modified electrodes starts at about +600 mV vs. Ag/AgCl (pH 7.0) and reaches a maximum value at about −200 mV. For MP- and LP-modified electrodes the currents start at a lower potential (≈ 300 mV). For the best electrode material for HRP, straight calibration curves were obtained between 1 and 500 μM H2O2 at 0 mV. The mechanism for the electron transfer from the electrode to the adsorbed peroxidase is discussed. Deliberate modification of the electrode surface with quinoid type electroactive species was found to mediate the reaction. It is proposed that spontaneously occurring electrochemically active surface groups mediate the electron transfer to the adsorbed enzyme. However, a contribution to the observed current from a direct electron transfer cannot be ruled out.  相似文献   

13.
A simple colorimetric method for determination of hydrogen peroxide in plant materials is described. The method is based on hydrogen peroxide producing a stable red product in reaction with 4-aminoantipyrine and phenol in the presence of peroxidase. Plant tissues was ground with trichloroacetic acid (5% w/v) and extracts were adjusted to pH 8.4 with ammonia solution. Activated charcoal was added to the homogenate to remove pigments, antioxidants and other interfering substances. The colorimetric reagent (pH 5.6) consisted of 4-aminoantipyrine, phenol, and peroxidase. With this method, we have determined the hydrogen peroxide concentration in leaves of eight species which ranged from 0.2 to 0.8 μmol g−1 FW. Changes in hydrogen peroxide concentration of Stylosanthes guianensis in response to heat stress are also analyzed using this method.  相似文献   

14.
Disposable screen-printed, film carbon electrodes (PFCE) were modified with cast-coated Osmium–polyvinylpyrridine-wired horse radish peroxidase gel polymer (Os-gel-HRP) to enable the detection of the reduction at 0 mV of hydrogen peroxide (H2O2) derived from a post-column immobilized enzyme reactor (IMER) containing acetylcholinesterase and choline oxidase. In another series of experiments PFCE were initially modified with cast-coated Os-gel-HRP and then treated with glucose oxidase in bovine serum albumin (BSA) and cross-linked with glutaraldehyde to form a bi-layer glucose–Os-gel-HRP PFCE. This bi-layer glucose–Os-gel-HRP PFCE generated a reduction current at 0 mV to H2O2 derived from the reaction of glucose oxidase and glucose in solution. These enzyme-modified PFCE were housed in a radial flow cell and coupled with cation-exchange liquid chromatographic methods to temporally separate substrates in solution for the determination of acetylcholine (ACh) and choline (Ch) in the first experimental series, or glucose in the second experimental series. These two disposable enzyme-modified PFCE exhibited linear current vs. substrate relations, were durable, being usable for approximately 40 determinations, and were sufficiently sensitive to be employed in biological sampling. Both assays utilized the same HPLC equipment. The limit of detection for ACh was 16 fmol/10 μl and that for glucose was 12 μmol/7.5 μl. ACh and Ch were measured from a microdialysate from the frontal cortex of a rat. Glucose in human urine was determined using the bi-layer glucose oxidase–Os-gel-HRP PFCE.  相似文献   

15.
生物安全实验室微环境消毒是控制实验室污染的重要环节。过氧化氢广泛用于病原微生物实验室微环境消毒,但其对不同病原微生物的消毒效果有待研究。本文研究了过氧化氢干雾(粒径%10μm)以不同消毒程序对生物安全柜表面常见微生物的消毒效果。结果显示,在生物安全柜内采用优化的消毒程序(发散循环8次,每次1min,达60ppm后,静置消毒2h),过氧化氢干雾可完全杀灭1×106CFU枯草芽胞杆菌、嗜热脂肪芽胞杆菌、金黄色葡萄球菌、表皮葡萄球菌、耻垢分枝杆菌,以及1×106CFU大肠埃希菌。然而,当金黄色葡萄球菌、表皮葡萄球菌、耻垢分枝杆菌浓度达1×107CFU时,过氧化氢干雾无法完全杀灭。因此,建议在进行过氧化氢干雾消毒时,应先用消毒剂处理,以期彻底杀灭生物安全柜微环境中污染的病原微生物。  相似文献   

16.
Hydrogen peroxide (H2O2) is known to both induce and inhibit apoptosis, however the mechanisms are unclear. We found that H2O2 inhibited the activity of recombinant caspase-3 and caspase-8, half-inhibition occurring at about 17 μM H2O2. This inhibition was both prevented and reversed by dithiothreitol while glutathione had little protective effect. 100–200 μM H2O2 added to macrophages after induction of caspase activation by nitric oxide or serum withdrawal substantially inhibited caspase activity. Activation of H2O2-producing NADPH oxidase in macrophages also caused catalase-sensitive inactivation of cellular caspases. The data suggest that the activity of caspases in cells can be directly but reversibly inhibited by H2O2.  相似文献   

17.
Vanadium peroxides are known as very effective oxidants of different organic and inorganic substrates. In this short account reactivity, structural and mechanistic studies concerning the behaviour of peroxovanadates toward a number of different substrates are collected. Homogeneous and two-phase systems are presented, in addition, interesting synthetic results obtained with the use of ionic liquids as reaction media are also presented.  相似文献   

18.
An absorption-based surface plasmon resonance (SPR(Abs)) biosensor probe has been developed for simple and reproducible measurements of hydrogen peroxide using a modified Trinder's reagent (a chromogenic reagent). The reagent enabled the determination of the hydrogen peroxide concentration by the development of deep color dyes (lambda(max)=630nm) through the oxidative coupling reaction with N-ethyl-N-(2-hydroxy-3-sulfopropyl)-3,5-dimethylaniline sodium salt monohydrate (MAOS; C(13)H(20)NNaO(4)S.H(2)O) and 4-aminoantipyrine (4-AA) in the presence of hydrogen peroxide and horseradish peroxidase (HRP). In the present study, urea as an adduct of hydrogen peroxide for color development could be omitted from the measurement solution. The measurement solution containing 5mM hydrogen peroxide was deeply colored at a high absorbance value calculated as 46.7cm(-1) and was directly applied to the SPR(Abs) biosensing without dilution. The measurement was simply performed by dropping the measurement solution onto the surface of the SPR sensor probe, and the SPR(Abs) biosensor response to hydrogen peroxide was obtained as a reflectivity change in the SPR spectrum. After investigation of the pH profiles in the SPR(Abs) biosensor probe, a linear calibration curve was obtained between 1.0 and 50mM hydrogen peroxide (r=0.991, six points, average of relative standard deviation; 0.152%, n=3) with a detection limit of 0.5mM. To examine the applicability of this SPR(Abs) biosensor probe, 20mM glucose detection using glucose oxidase was also confirmed without influence of the refractive index in the measurement solution. Thus, the SPR(Abs) biosensor probe employing the modified Trinder's reagent demonstrated applicability to other analyte biosensing tools.  相似文献   

19.
The present work analyzes the activity in decomposition of H2O2 using magnetite-immobilized catalase. The support of catalase is a glutaraldehyde-treated magnetite (Fe3O4). The data obtained in the H2O2 decomposition are analyzed. The fitting of the initial rate of the H2O2 decomposition versus hydrogen peroxide concentration data is discussed using a specific program for enzyme kinetics modeling (Leonora). The free catalase from Aspergillus niger (3.5 or 10 U/mL) does not show substrate inactivation up to 0.4 M H2O2. The immobilized catalase at low catalyst concentration shows substrate inhibition. Using 1 mg/mL of supported catalase the predicted maximum activity is higher than in the case of the free catalase at similar catalase concentration, although the optimum temperature is lower (40 °C versus 60 °C).  相似文献   

20.
Sites of H2O2 generation in lightly prefixed, intact thyroid follicles were studied by two cytochemical reactions: peroxidase-dependent DAB oxidation and cerium precipitation. In both cases reaction product accumulated on the apical surface of the follicle cell at the membrane-colloid interface. The former reaction was inhibited by the peroxidase inhibitor, aminotriazole; both reactions were blocked by the presence of catalase. NADH in the medium slightly increased the amount of cerium precipitation. The ferricyanide technique for oxidoreductase activity was also applied; reaction product again was associated with the apical surface. These results strongly imply that the follicle cells have a NADH oxidizing system generating H2O2 at the apical plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号