首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AIMS: We report a biochemical method for the isolation and identification of the current species of vibrios using just one operative protocol. METHODS AND RESULTS: The method involves an enrichment phase with incubation at 30 degrees C for 8-24 h in alkaline peptone water and an isolation phase on thiosulphate-citrate-salt sucrose agar plates incubating at 30 degrees C for 24 h. Four biochemical tests and Alsina's scheme were performed for genus and species identification, respectively. All biochemical tests were optimized as regards conditions of temperature, time of incubation and media composition. The whole standardized protocol was always able to give a correct identification when applied to 25 reference strains of Vibrio and 134 field isolates. CONCLUSIONS: The data demonstrated that the assay method allows an efficient recovery, isolation and identification of current species of Vibrio in seafood obtaining results within 2-7 days. SIGNIFICANCE AND IMPACT OF THE STUDY: This method based on biochemical tests could be applicable even in basic microbiology laboratories, and can be used simultaneously to isolate and discriminate all clinically relevant species of Vibrio.  相似文献   

2.
Ticks are important ectoparasites, causing a variety of serious infectious diseases in humans and domestic animals. There is very limited taxonomic information about the tick species of Turkey in the literature, even though Turkey has very suitable climate and vegetation for ticks. In the current study, species diversity, hosts and geographical distribution of the ticks present in Turkey are reviewed based on taxonomic data in the literature from 1915 to 2011 and our recent observations. The names of tick species are arranged according to the most recent check lists. The taxonomic records in the literature and our studies on actual tick samples indicated that the tick fauna of Turkey consists of 46 species; 38 species from Ixodidae and 8 species from Argasidae.  相似文献   

3.
Song Y 《Anaerobe》2005,11(1-2):79-91
Conventional methods to identify anaerobic bacteria have often relied on unique clinical findings, isolation of organisms, and laboratory identification by morphology and biochemical tests (phenotypic tests). Although these methods are still fundamental, there is an increasing move toward molecular diagnostics of anaerobes. In this review, some of the molecular approaches to anaerobic diagnostics based on the polymerase chain reaction (PCR) are discussed. This includes several technological advances in PCR-based methods for the detection, identification, and quantitation of anaerobes including real-time PCR which has been successfully used to provide rapid, quantitative data on anaerobic species on clinical samples. Since its introduction in the mid-1980s, PCR has provided many molecular diagnostic tools, some of which are discussed within this review. With the advances in micro-array technology and real-time PCR methods, the future is bright for the development of accurate, quantitative diagnostic tools that can provide information not only on individual anaerobic species but also on whole communities.  相似文献   

4.
Presumptive identification of different Enterobacteriaceae species is routinely achieved based on biochemical properties. Traditional practice includes manual comparison of each biochemical property of the unknown sample with known reference samples and inference of its identity based on the maximum similarity pattern with the known samples. This process is laborintensive, time-consuming, error-prone, and subjective. Therefore, automation of sorting and similarity in calculation would be advantageous. Here we present a MATLAB-based graphical user interface(GUI) tool named Bio Cluster. This tool was designed for automated clustering and identification of Enterobacteriaceae based on biochemical test results. In this tool, we used two types of algorithms, i.e., traditional hierarchical clustering(HC) and the Improved Hierarchical Clustering(IHC), a modified algorithm that was developed specifically for the clustering and identification of Enterobacteriaceae species. IHC takes into account the variability in result of 1–47 biochemical tests within this Enterobacteriaceae family. This tool also provides different options to optimize the clustering in a user-friendly way. Using computer-generated synthetic data and some real data, we have demonstrated that Bio Cluster has high accuracy in clustering and identifying enterobacterial species based on biochemical test data. This tool can be freely downloaded at http://microbialgen.du.ac.bd/biocluster/.  相似文献   

5.
The introduction of novel biochemical, genetic, molecular and cell biology tools to the study of insect immunity has generated an information explosion in recent years. Due to the biodiversity of insects, complementary model systems have been developed. The conceptual framework built based on these systems is used to discuss our current understanding of mosquito immune responses and their implications for malaria transmission. The areas of insect and vertebrate innate immunity are merging as new information confirms the remarkable extent of the evolutionary conservation, at a molecular level, in the signaling pathways mediating these responses in such distant species. Our current understanding of the molecular language that allows the vertebrate innate immune system to identify parasites, such as malaria, and direct the acquired immune system to mount a protective immune response is very limited. Insect vectors of parasitic diseases, such as mosquitoes, could represent excellent models to understand the molecular responses of epithelial cells to parasite invasion. This information could broaden our understanding of vertebrate responses to parasitic infection and could have extensive implications for anti-malarial vaccine development.  相似文献   

6.
Classification of microorganisms on the basis of traditional microbiological methods (morphological, physiological and biochemical) creates a blurred image about their taxonomic status and thus needs further clarification. It should be based on a more pragmatic approach of deploying a number of methods for the complete characterization of microbes. Hence, the methods now employed for bacterial systematics include, the complete 16S rRNA gene sequencing and its comparative analysis by phylogenetic trees, DNA-DNA hybridization studies with related organisms, analyses of molecular markers and signature pattern(s), biochemical assays, physiological and morphological tests. Collectively these genotypic, chemotaxonomic and phenotypic methods for determining taxonomic position of microbes constitute what is known as the ‘polyphasic approach’ for bacterial systematics. This approach is currently the most popular choice for classifying bacteria and several microbes, which were previously placed under invalid taxa have now been resolved into new genera and species. This has been possible owing to rapid development in molecular biological techniques, automation of DNA sequencing coupled with advances in bioinformatic tools and access to sequence databases. Several DNA-based typing methods are known; these provide information for delineating bacteria into different genera and species and have the potential to resolve differences among the strains of a species. Therefore, newly isolated strains must be classified on the basis of the polyphasic approach. Also previously classified organisms, as and when required, can be reclassified on this ground in order to obtain information about their accurate position in the microbial world. Thus, current techniques enable microbiologists to decipher the natural phylogenetic relationships between microbes.  相似文献   

7.
Conventional methods to identify fungi have often relied on identification of disease symptoms, isolation and culturing of environmental organisms, and laboratory identification by morphology and biochemical tests. Although these methods are still fundamental there is an increasing move towards molecular diagnostics of fungi in all fields. In this review, some of the molecular approaches to fungal diagnostics based on polymerase chain reaction (PCR) and DNA/RNA probe technology are discussed. This includes several technological advances in PCR-based methods for the detection, identification and quantification of fungi including real-time PCR which has been successfully used to provide rapid, quantitative data on fungal species from environmental samples. PCR and probe based methods have provided new tools for the enumeration of fungal species, but it is still necessary to combine the new technology with more conventional methods to gain a fuller understanding of interactions occurring in the environment. Since its introduction in the mid 1980's PCR has provided many molecular diagnostic tools, some of which are discussed within this review, and with the advances in micro-array technology and real-time PCR methods the future is bright for the development of accurate, quantitative diagnostic tools that can provide information not only on individual fungal species but also on whole communities.  相似文献   

8.
入侵物种空间分布建模的核心数据源来源于物种多样性采样(物种出现点和未出现点),然而,大多数入侵物种标本库只记录物种出现点样本信息,缺乏对未出现点(负样本)位置的记录。因此,生成有效的入侵物种虚拟负样本是建立物种空间分布模型的关键。本文提出了一种基于地理环境相似度的虚拟负样本生成方法。首先利用主成分分析(PCA)方法对地理环境原始变量进行线性相关性建模,基于提取的主成分,采用K-means算法对入侵物种样本进行聚类分析并计算各样本的地理环境相似度。在此基础上,通过建立基于主成分的入侵物种相似性度量与可信度计算框架来识别虚拟负样本。以长江经济带入侵物种一年蓬(Erigeron annuus)数据集为例,分析了整个区域虚拟负样本的可信度。结果表明,与空间随机采样和单类支持向量机采样相比,用本研究提出的方法生成的样本数据建立的logistic回归和支持向量机预测结果更优,验证了该方法的可行性与有效性。基于地理环境相似度的虚拟负样本抽样策略有助于解决由于随机采样而引起的误采样到潜在入侵点的难题,同时负样本的可信度能有助于识别不同等级的入侵物种适应区。  相似文献   

9.
Prediction of neuropeptide cleavage sites in insects   总被引:1,自引:0,他引:1  
MOTIVATION: The production of neuropeptides from their precursor proteins is the result of a complex series of enzymatic processing steps. Often, the annotation of new neuropeptide genes from sequence information outstrips biochemical assays and so bioinformatics tools can provide rapid information on the most likely peptides produced by a gene. Predicting the final bioactive neuropeptides from precursor proteins requires accurate algorithms to determine which locations in the protein are cleaved. RESULTS: Predictive models were trained on Apis mellifera and Drosophila melanogaster precursors using binary logistic regression, multi-layer perceptron and k-nearest neighbor models. The final predictive models included specific amino acids at locations relative to the cleavage sites. Correct classification rates ranged from 78 to 100% indicating that the models adequately predicted cleaved and non-cleaved positions across a wide range of neuropeptide families and insect species. The model trained on D.melanogaster data had better generalization properties than the model trained on A. mellifera for the data sets considered. The reliable and consistent performance of the models in the test data sets suggests that the bioinformatics strategies proposed here can accurately predict neuropeptides in insects with sequence information based on neuropeptides with biochemical and sequence information in well-studied species.  相似文献   

10.
Isolation and characterization of actinomycetes from soil samples from altitudinal gradient of North-East India were investigated for computational RNomics based phylogeny. A total of 52 diverse isolates of Streptomyces from the soil samples were isolated on four different media and from these 6 isolates were selected on the basis of cultural characteristics, microscopic and biochemical studies. Sequencing of 16S rDNA of the selected isolates identified them to belong to six different species of Streptomyces. The molecular morphometric and physico-kinetic analysis of 16S rRNA sequences were performed to predict the diversity of the genus. The computational RNomics study revealed the significance of the structural RNA based phylogenetic analysis in a relatively diverse group of Streptomyces.  相似文献   

11.
Morphological, biochemical, and molecular genetic studies were performed on an unknown anaerobic, catalase-negative, non-spore-forming, rod-shaped bacterium isolated from dog feces. The unknown bacterium was tentatively identified as a Eubacterium species, based on cellular morphological and biochemical tests. 16S rRNA gene sequencing studies, however, revealed that it was phylogenetically distant from Eubacterium limosum, the type species of the genus Eubacterium. Phylogenetically, the unknown species forms a hitherto unknown sub-line proximal to the base of a cluster of organisms (designated rRNA cluster XVI), which includes Clostridium innocuum, Streptococcus pleomorphus, and some Eubacterium species. Based on both phenotypic and phylogenetic criteria, it is proposed that the unknown bacterium be classified as a new genus and species, Allobaculum stercoricanis. Using a specific rRNA-targeted probe designed to identify Allobaculum stercoricanis, in situ hybridisation showed this novel species represents a significant organism in canine feces comprising between 0.1% and 3.7% of total cells stained with DAPI (21 dog fecal samples). The type strain of Allobaculum stercoricanis is DSM 13633(T)=CCUG 45212(T).  相似文献   

12.
1. Blood samples obtained from 114 animals of three species of the genus Gazella (Gazella dama, Gazella dorcas and Gazella cuvieri) were analyzed from hematology (osmotic fragility, red blood cells morphology and hemoglobin electrophoresis) and biochemical values (glucose-6-phosphate dehydrogenase, pyruvate kinase and glutathione reductase deficiencies and superoxide dismutase activity). 2. Standard methods were used. Hemoglobin polymorphism was found. 3. There was no abnormality in the osmotic fragility and red blood cells morphology. 4. The biochemical results are compared with information from the literature and with the normal human range.  相似文献   

13.
Although fungi are among the most important organisms in the world, only limited and incomplete information is currently available for most species and current estimates of species numbers for fungi differ significantly. This lack of basic information on taxonomic diversity has significant implications for many aspects of evolutionary biology. While the figure of 1.5 million estimated fungal species is commonly used, critics have questioned the validity of this estimate. Data on biogeographic distributions, levels of endemism, and host specificity must be taken into account when developing estimates of global fungal diversity. This paper introduces a set of papers that attempt to develop a rigorous, minimum estimate of global fungal diversity based on a critical assessment of current species lists and informed predictions of missing data and levels of endemism. As such, these papers represent both a meta-analysis of current data and a gap assessment to indicate where future research efforts should be concentrated.  相似文献   

14.
15.
This review uses proxies of past temperature and atmospheric CO(2) composition based on fossil leaves to illustrate the uncertainties in biologically based proxies of past environments. Most leaf-based proxies are geographically local or genetically restricted and therefore can be confounded by evolution, extinction, changes in local environment or immigration of species. Stomatal frequency proxies illustrate how genetically restricted proxies can be particularly vulnerable to evolutionary change. High predictive power in the modern world resulting from the use of a very narrow calibration cannot be confidently extrapolated into the past (the Ginkgo paradox). Many foliar physiognomic proxies of climate are geographically local and use traits that are more or less fixed for individual species. Such proxies can therefore be confounded by floristic turnover and biome shifts in the region of calibration. Uncertainty in proxies tends to be greater for more ancient fossils. I present a set of questions that should be considered before using a proxy. Good proxies should be relatively protected from environmental and genetic change, particularly through having high information content and being founded on biomechanical or biochemical principles. Some current and potential developments are discussed, including those that involve more mechanistically sound proxies and better use of multivariate approaches.  相似文献   

16.
宏蛋白质组学是一门新型科学,它运用质谱技术规模化地采集自然界微生物种群的蛋白质信息,并结合多种组学数据,开展微生物种群的遗传特征及其生物功能的研究.宏蛋白质组学的信息分析与传统蛋白质组学方法有较大的不同,亟需拓展新的分析思路.由于宏蛋白质组的研究对象是复杂度极高的微生物样品,因此,需要构建尽可能囊括样本中所含微生物的基因组信息的物种数据库.面对庞大的数据库,必须考虑到分析过程中所消耗的计算资源和鉴定结果的质控标准,因此,需要高度优化库容量、搜库、假阳性控制等参数.鉴于宏蛋白质组数据中广泛存在复杂的同源蛋白质序列,因此,需要充分利用NCBI数据库中的分类信息进行匹配,并运用LCA算法过滤处理才能将蛋白质有效地归组到物种.本文立足于宏蛋白质组学信息分析,从宏蛋白质组的数据库建立、蛋白质归并、生物学意义发掘等几个方面着手,对该领域的发展现状、面临挑战以及未来研究方向进行了评述.  相似文献   

17.
For the majority of families affected by one of the neuronal ceroid lipofuscinoses (NCLs), a biochemical and/or genetic diagnosis can be achieved. In an individual case this information not only increases understanding of the condition but also may influence treatment choices and options. The presenting clinical features prompt initial investigation and also guide clinical care. The clinical labels "infantile NCL", "late infantile NCL" and "juvenile NCL", therefore remain useful in practice. In unusual or atypical cases ultra-structural analysis of white blood cells or other tissue samples enables planning and prioritisation of biochemical and genetic tests.This review describes current methods available to achieve clinical, pathological, biochemical and genetic diagnosis in children presenting with symptoms suggestive of one of the NCLs.  相似文献   

18.
Shotgun lipidomics, comprised of intrasource separation, multidimensional mass spectrometry and computer-assisted array analysis, is an emerging powerful technique in lipidomics. Through effective intrasource separation of predetermined groups of lipid classes based on their intrinsic electrical propensities, analyses of lipids from crude extracts of biologic samples can be directly and routinely performed. Appropriate multidimensional array analysis of lipid pseudomolecular ions and fragments can be performed leading to the identification and quantitation of targeted lipid molecular species. Since most biologic lipids are linear combinations of aliphatic chains, backbones and head groups, a rich repertoire of multiple lipid building blocks present in discrete combinations represent experimental observables that can be computer reconstructed in conjunction with their pseudomolecular ions to directly determine the lipid molecular structures from a lipid extract. Through this approach, dramatic increases in the accessible dynamic range for ratiometric quantitation and discrimination of isobaric molecular species can be achieved without any prior column chromatography or operator-dependent supervision. At its current state of development, shotgun lipidomics can analyze over 20 lipid classes, hundreds of lipid molecular species and more than 95% of the mass content of a cellular lipidome. Thus, understanding the biochemical mechanisms underlying lipid-mediated disease states will be greatly facilitated by the power of shotgun lipidomics.  相似文献   

19.
Shotgun lipidomics, comprised of intrasource separation, multidimensional mass spectrometry and computer-assisted array analysis, is an emerging powerful technique in lipidomics. Through effective intrasource separation of predetermined groups of lipid classes based on their intrinsic electrical propensities, analyses of lipids from crude extracts of biologic samples can be directly and routinely performed. Appropriate multidimensional array analysis of lipid pseudomolecular ions and fragments can be performed leading to the identification and quantitation of targeted lipid molecular species. Since most biologic lipids are linear combinations of aliphatic chains, backbones and head groups, a rich repertoire of multiple lipid building blocks present in discrete combinations represent experimental observables that can be computer reconstructed in conjunction with their pseudomolecular ions to directly determine the lipid molecular structures from a lipid extract. Through this approach, dramatic increases in the accessible dynamic range for ratiometric quantitation and discrimination of isobaric molecular species can be achieved without any prior column chromatography or operator-dependent supervision. At its current state of development, shotgun lipidomics can analyze over 20 lipid classes, hundreds of lipid molecular species and more than 95% of the mass content of a cellular lipidome. Thus, understanding the biochemical mechanisms underlying lipid-mediated disease states will be greatly facilitated by the power of shotgun lipidomics.  相似文献   

20.
Abstract

The Río Caldera occupies the northernmost subbasin of the Río Chiriqui watershed area. Two of its tributaries, Quebrada Grande and Quebrada Jaramillo, occur in close proximity and on opposite sides, and have different recent geologic histories and current land use patterns. The species richness of adult caddisflies in these drainages is very similar. However, their assemblage composition is quite different. When compared to optimal and minimal lists of genera, mimicking collections of larval stages, the similarity between these two tributaries increases significantly. This study suggests that adult caddisfly identifications at the species level provide higher overall information content, produce better estimates of species diversity, are potentially useful in determining relative similarity of streams and drainages based on assemblage composition, and generate questions which would not be possible employing larval, generic-level identifications. However, multiple samples over time and space employing multiple sample methods are required to provide robust estimates of species diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号