首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
V L Davidson  M A Kumar  J Y Wu 《Biochemistry》1992,31(5):1504-1508
Methanol dehydrogenase activity, when assayed with phenazine ethosulfate (PES) as an electron acceptor, was inhibited by superoxide dismutase (SOD) and by Mn2+ only under aerobic conditions. Catalase, formate, and other divalent cations did not inhibit the enzyme. The enzyme also exhibited significantly higher levels of activity when assayed with PES under anaerobic conditions relative to aerobic conditions. The oxygen- and superoxide-dependent effects on methanol dehydrogenase were not observed when either Wurster's Blue or cytochrome c-55li was used as an electron acceptor. Another quinoprotein, methylamine dehydrogenase, which possesses tryptophan tryptophylquinone (TTQ) rather than pyrroloquinoline quinone (PQQ) as a prosthetic group, was not inhibited by SOD or Mn2+ when assayed with PES as an electron acceptor. Spectroscopic analysis of methanol dehydrogenase provided no evidence for any oxygen- or superoxide-dependent changes in the redox state of the enzyme-bound PQQ cofactor of methanol dehydrogenase. To explain these data, a model is presented in which this cofactor reacts reversibly with oxygen and superoxide, and in which oxygen is able to compete with PES as an electron acceptor for the reduced species.  相似文献   

2.
We demonstrate the construction of glucose sensors employing pyrroloquinoline quinone (PQQ) glucose dehydrogenase (PQQGDH) from Acinetobacter calcoaceticus and glucose oxidase (GOD) from Aspergillus nigar coupled with Escherichia coli soluble cytochrome b(562) (cyt b(562)) as electron acceptor. PQQGDH and GOD do not show direct electrochemical recycling of the prosthetic group at the electrode surface leading to a corresponding current signal. We constructed PQQGDH and GOD electrodes co-immobilized with 100-fold molar excess of cyt b(562) and investigated the electrochemical properties without synthetic electron mediators. PQQGDH/cyt b(562) and GOD/cyt b(562) electrodes both responded well to glucose whereas no current increase was observed from the electrode immobilizing enzyme alone. The detection limits for the PQQGDH/cyt b(562) and GOD/cyt b(562) electrodes were 0.1 and 0.8 mM, respectively, and their linearity extended to over 2 and 9 mM, respectively. These results demonstrate that a sensor system can be constructed without a synthetic electron mediator by using a natural electron acceptor. Furthermore, we have demonstrated the potential application of cyt b(562) in direct electron transfer type sensor systems with oxidoreductases whose quaternary structure do not contain any electron transfer subunit.  相似文献   

3.
Dewanti AR  Duine JA 《Biochemistry》2000,39(31):9384-9392
Spectral and kinetic studies were performed on enzyme forms of soluble glucose dehydrogenase of the bacterium Acinetobacter calcoaceticus (sGDH) in which the PQQ-activating Ca(2+) was absent (Holo X) or was replaced with Ba(2+) (Ba-E) or in which PQQ was replaced with an analogue or a derivative called "nitroPQQ" (E-NPQ). Although exhibiting diminished rates, just like sGDH, all enzyme forms were able to oxidize a broad spectrum of aldose sugars, and their reduced forms could be oxidized with the usual artificial electron acceptor. On inspection of the plots for the reductive half-reaction, it appeared that the enzyme forms exhibited a negative cooperativity effect similar to that of sGDH itself under turnover conditions, supporting the view that simultaneous binding of substrate to the two subunits of sGDH causes the effect. Stopped-flow spectroscopy of the reductive half-reaction of Ba-E with glucose showed a fluorescing transient previously observed in the reaction of sGDH with glucose-1-d, whereas no intermediate was detected at all in the reactions of E-NPQ and Holo X. Using hydrazine as a probe, the fluorescing C5 adduct of PQQ and hydrazine was formed in sGDH, Ba-E, and Holo X, but E-NPQ did not react with hydrazine. When this is combined with other properties of E-NPQ and the behavior of enzyme forms containing a PQQ analogue, we concluded that the catalytic potential of the cofactor in the enzyme is not determined by its adduct-forming ability but by whether it is or can be activated with Ca(2+), activation being reflected by the large red shift of the absorption maximum induced by this metal ion when binding to the reduced cofactor in the enzyme. This conclusion, together with the observed deuterium kinetic isotope effect of 7.8 on transient formation in Ba-E, and that already known on transient decay, indicate that the sequential steps in the mechanism of sGDH must be (1) reversible substrate binding, (2) direct transfer of a hydride ion (reversible or irreversible) from the C1 position of the beta-anomer of glucose to the C5 of PQQ, (3) irreversible, rate-determining tautomerization of the fluorescing, C5-reduced PQQ to PQQH(2) and release (or earlier) of the product, D-glucono-delta-lactone, and (4) oxidation of PQQH(2) by an electron acceptor. The PQQ-activating Ca(2+) greatly facilitates the reactions occurring in step 2. His144 may also play a role in this by acting as a general base catalyst, initiating hydride transfer by abstracting a proton from the anomeric OH group of glucose. The validity of the proposed mechanism is discussed for other PQQ-containing dehydrogenases.  相似文献   

4.
A significant lag in the thenoyltrifluoroacetone (TTFA)-sensitive succinate: ubiquinone reductase activity was observed when a ubiquinone-deficient resolved preparation of the enzyme was assayed in the presence of exogenous ubiquinone-2 (Q2) and 2,6-dichlorophenolindophenol. No such lag was seen when the free radical of N,N,N′,N′-tetramethyl-p-phenylenediamine (Wurster's Blue) was used as the terminal electron acceptor, or when the reduction of Q2 was directly measured. The apparent Km value for exogenous Q2 was determined in the Q2-mediated TTFA-sensitive succinate: Wurster's Blue reductase reaction. When the enzyme activity was measured directly by monitoring Q2 reduction without terminal acceptors, the time course of the reaction deviated from zero-order kinetics at Q2 concentrations which were much higher than those expected from the KQ2m value determined in the presence of Wurster's Blue. The time course of Q2 reduction fits a curve describing a competitive interrelationship between oxidized and reduced Q2 at the specific binding site. The data obtained are in agreement with the Q-pool behavior of ubiquinone in mitochondrial membranes and suggest that the rate of ubiquinone reduction by succinate is dependent on the ratio.  相似文献   

5.
No holoenzyme pyrroloquinoline quinone (PQQ)-dependent glucose dehydrogenase and only very low apoenzyme levels could be detected in cells of Klebsiella pneumoniae, growing anaerobically, or carrying out a fumarate or nitrate respiration. Low glucose dehydrogenase activity in some aerobic glucose-excess cultures of K. pneumoniae (ammonia or sulphate limitation) was increased significantly by addition of PQQ, whereas in cells already possessing a high glucose dehydrogenase activity (phosphate or potassium limitation) extra PQQ had almost no effect. These observations indicate that the glucose dehydrogenase activity in K. pneumoniae is modulated by both PQQ synthesis and synthesis of the glucose dehydrogenase apo-enzyme.Abbreviations PQQ 2, 7, 9-tricarboxy-1H-pyrrolo-(2,3-f)quinoline-4,5-dione - WB Wurster's Blue (1,4-bis-(dimethylamino)-benzene perchlorate)  相似文献   

6.
Ferricytochrome cL isolated from Hyphomicrobium X is an electron acceptor in assays for homologous methanol dehydrogenase (MDH), albeit a poor one compared with artificial dyes. The intermediates of MDH seen during the reaction are identical with those observed with Wurster's Blue as electron acceptor, indicating that the reaction cycles are similar. The assay showed a pH optimum of approx. 7.0 and scarcely any stimulation by NH4Cl, this being in contrast with assays with artificial dyes, where strong activation by NH4Cl and much higher pH optima have been reported. From the results obtained with stopped-flow as well as steady-state kinetics, combined with the isotope effects found for C2H3OH, it appeared that the dissimilarities between the electron acceptors can be explained from different rate-limiting steps in the reaction cycles. Ferricytochrome cL is an excellent oxidant of the reduced MDH forms at pH 7.0, but the substrate oxidation step is very slow and the activation by NH4Cl is very poor at this pH. At pH 9.0 the reverse situation exists: ferricytochrome cL is a poor oxidant of the reduced forms of MDH at this pH. No C2H3OH isotope effect was observed under these conditions, indicating that substrate oxidation is not rate-limiting, so that activation by NH4Cl cannot be found. Since just the opposite holds for assays with artificial dyes, the poor electron-acceptor capability and the different pH optimum of ferricytochrome cL as well as the insignificant activating effect of NH4Cl (all compared with artificial assays) can be explained. Although different views have been reported on the rate-limiting steps in the systems from Methylophilus methylotrophus and Methylobacterium sp. strain AM1, these are most probably incorrect, as rate-limiting electron transfer between ferrocytochrome cL and horse heart ferricytochrome c can occur. Therefore the conclusions derived for the Hyphomicrobium X system might also apply to the systems from other methylotrophic bacteria. Comparison of the assays performed in vitro (at pH 7.0) having ferricytochrome cL and Wurster's Blue as electron acceptor with methanol oxidation by whole cells shows that the former has similarity whereas the latter has not, this being although ferricytochrome cL is a poor electron acceptor in the assay performed in vitro. The reason for this is the absence of a (natural) activator able to activate the (rate-limiting) substrate oxidation step at physiological pH values.  相似文献   

7.
Several bacterial strains carrying quinoprotein quinate dehydrogenase (QDH) were screened through acetic acid bacteria and other bacteria. Strong enzyme activity was found in the membrane fraction of Gluconobacter melanogenus IFO 3294, G. oxydans IFO 3292, G. oxydans IFO 3244, and some strains of Acinetobacter calcoaceticus. Interestingly, in the membrane fraction of A. calcoaceticus AC3, which is unable to produce pyrroloquinoline quinone (PQQ), fairly large amounts of apo-QDH were formed, and were converted to holo-QDH only by the addition of PQQ. It was difficult to detach PQQ from the holo-QDH by EDTA treatment, and EDTA treatment with apo-QDH prior to PQQ addition gave no significant holo-QDH. For QDH purification, Gluconobacter strains were not suitable due to the presence of huge amounts of quinohemoprotein alcohol dehydrogenase (ADH) in the same membrane, which was co-solubilized with QDH and disturbed purification of QDH. Purification of holo-QDH was done with Acinetobacter sp. SA1 instead, which contained no ADH. Apo-QDH was purified from A. aclcoaceticus AC3. This is the first report dealing with QDH purification, and two different criteria of QDH purification were given. A combination of two steps using butyl-Toyopearl and hydroxyapatite columns gave a highly purified holo-QDH which was monodispersed and showed enough purity, though the specific activity did not increase as much as expected. When QDH purification was done with A. calcoaceticus AC3 in the absence of PQQ, purified apo-QDH appeared to be a dimer, which was converted to the monomer on addition of PQQ. Since QDH was highly hydrophobic, one-step chromatography on a DEAE-Sepharose column was tried. Purified holo-QDH of higher specific activity was obtained with a higher yield. The molecular mass of QDH was estimated to be 88 kDa. There was no characteristic absorption spectrum with the purified QDH except for a small bump around 420 nm. QDH oxidized only quinate and shikimate so far examined. The optimal QDH activity was found at pH 6-7 when assayed with artificial electron acceptors. QDH was formed in the presence or absence of quinate in the culture medium, although stronger induction was usually observed in the presence of quinate.  相似文献   

8.
Cell-free extracts of Pseudomonas testosteroni, grown on alcohols, contain quinoprotein alcohol dehydrogenase apoenzyme, as was demonstrated by the detection of dye-linked alcohol dehydrogenase activity after the addition of PQQ (pyrroloquinoline quinone). The apoenzyme was purified to homogeneity, and the holoenzyme was characterized. Primary alcohols (except methanol), secondary alcohols and aldehydes were substrates, and a broad range of dyes functioned as artificial electron acceptor. Optimal activity was observed at pH 7.7, and the presence of Ca2+ in the assay appeared to be essential for activity. The apoenzyme was found to be a monomer (Mr 67,000 +/- 5000), with an absorption spectrum similar to that of oxidized cytochrome c. After reconstitution to the holoenzyme by the addition of PQQ, addition of substrate changed the absorption spectrum to that of reduced cytochrome c, indicating that the haem c group participated in the enzymic mechanism. The enzyme contained one haem c group, and full reconstitution was achieved with 1 mol of PQQ/mol. In view of the aberrant properties, it is proposed to distinguish the enzyme from the common quinoprotein alcohol dehydrogenases by using the name 'quinohaemoprotein alcohol dehydrogenase'. Incorporation of PQQ into the growth medium resulted in a significant shortening of lag time and increase in growth rate. Therefore PQQ appears to be a vitamin for this organism during growth on alcohols, reconstituting the apoenzyme to a functional holoenzyme.  相似文献   

9.
In order to assess the functional significance of the quinoprotein glucose dehydrogenase recently found to be present in K+-limited Klebsiella aerogenes, a broad study was made of the influence of specific environmental conditions on the cellular content of this enzyme. Whereas high activities were manifest in cells from glucose containing chemostat cultures that were either potassium- or phosphate-limited, only low activities were apparent in cells from similar cultures that were either glucose-, sulphate- or ammonia-limited. With these latter two cultures, a marked increase in glucose dehydrogenase activity was observed when 2,4-dinitrophenol (1 mM end concentration) was added to the growth medium. These results suggested that the synthesis of glucose dehydrogenase is not regulated by the level of glucose in the growth medium, but possibly by conditions that imposed an energetic stress upon the cells. This conclusion was further supported by a subsequent finding that K+-limited cells that were growing on glycerol also synthesized substantial amounts of glucose dehydrogenase.The enzyme was found to be membrane associated, and preliminary evidence has been obtained that it is located on the periplasmic side of the cytoplasmic membrane and functionally linked to the respiratory chain. This structural and functional orientation is consistent with glucose dehydrogenase serving as a low impedance energy generating system.Abbreviations D dilution rate - DNP 2,4-dinitrophenol - PQQ 2,7,9-tricarboxy-1H-pyrrolo(2,3-f)quinoline-4,5-dione - PTS phosphoenolpyruvate: glucose phosphotransferase - WB Wurster's Blue  相似文献   

10.
1. Double-reciprocal plots of initial reaction rates of methanol dehydrogenase [alcohol--(acceptor) oxidoreductase, EC 1.1.99.8] in vitro show patterns of parallel lines. The results with various methanol, ammonia and phenazine methosulphate concentrations can be described by an equation valid for a Ping Pong kinetic mechanism with three reactants. 2. The overall maximum velocity was the same for several primary alcohols, C(2)-deuterated ethanols and different electron acceptors, but it was significantly lower for C(1)-deuterated substrates. 3. Oxidation of the isolated enzyme with electron acceptors required the presence of ammonia and a high pH. The inclusion of cyanide or hydroxylamine during the incubation was essential to prevent enzyme inactivation. The absorbance spectrum of an oxidized form of the enzyme was clearly different from that of the isolated enzyme and the free radical was no longer present. On addition of substrate, the original absorption spectrum and electron-spin-resonance signal reappeared and a concomitant substrate oxidation was found. This reaction could be carried out at pH 7 and ammonia was not required. 4. Based on the activity of the enzyme with one-electron acceptors, the presence of a free radical and the kinetic behaviour, an oxidation of the enzyme via one-electron steps is proposed.  相似文献   

11.
A carbohydrate:acceptor oxidoreductase from Paraconiothyrium sp. was purified and characterized. The enzyme efficiently oxidized beta-(1-->4) linked sugars, such as lactose, xylobiose, and cellooligosaccharides. The enzyme also oxidized maltooligosaccharides, D-glucose, D-xylose, D-galactose, L-arabinose, and 6-deoxy-D-glucose. It specifically oxidized the beta-anomer of lactose. Molecular oxygen and 2,6-dichlorophenol indophenol were reduced by the enzyme as electron acceptors. The Paraconiothyrium enzyme was identified as a carbohydrate:acceptor oxidoreductase according to its specificity for electron donors and acceptors, and its molecular properties, as well as the N-terminal amino acid sequence. Further comparison of the amino acid sequences of lactose oxidizing enzymes indicated that carbohydrate:acceptor oxidoreductases belong to the same group as glucooligosaccharide oxidase, while they differ from cellobiose dehydrogenases and cellobiose:quinone oxidoreductases.  相似文献   

12.
A water-soluble aldose sugar dehydrogenase (Asd) has been purified for the first time from Escherichia coli. The enzyme is able to act upon a broad range of aldose sugars, encompassing hexoses, pentoses, disaccharides, and trisaccharides, and is able to oxidize glucose to gluconolactone with subsequent hydrolysis to gluconic acid. The enzyme shows the ability to bind pyrroloquinoline quinone (PQQ) in the presence of Ca2+ in a manner that is proportional to its catalytic activity. The x-ray structure has been determined in the apo-form and as the PQQ-bound active holoenzyme. The beta-propeller fold of this protein is conserved between E. coli Asd and Acinetobacter calcoaceticus soluble glucose dehydrogenase (sGdh), with major structural differences lying in loop and surface-exposed regions. Many of the residues involved in binding the cofactor are conserved between the two enzymes, but significant differences exist in residues likely to contact substrates. PQQ is bound in a large cleft in the protein surface and is uniquely solvent-accessible compared with other PQQ enzymes. The exposed and charged nature of the active site and the activity profile of this enzyme indicate possible factors that underlie a low affinity for glucose but generic broad substrate specificity for aldose sugars. These structural and catalytic properties of the enzymes have led us to propose that E. coli Asd provides a prototype structure for a new subgroup of PQQ-dependent soluble dehydrogenases that is distinct from the A. calcoaceticus sGdh subgroup.  相似文献   

13.
Quinoprotein quinate dehydrogenase (QDH) is a membrane-bound enzyme containing pyrroloquinoline quinone (PQQ) as the prosthetic group. QDH in Gluconobacter oxydans IFO3244 was found to be inducible by quinate and it is not constitutively expressed in the absence of quinate. The purification of holo-form of QDH to nearly homogeneity was achieved. The purified QDH appears to have two subunits of approximately 65 and 21 kDa, which could be the result of proteolysis of single polypeptide. Kinetic analysis indicated that the purified enzyme is much more specific to quinate than QDH from Acinetobacter calcoaceticus. The efficiency of the artificial electron acceptor was also determined.  相似文献   

14.
Synthesis of the coenzyme pyrrolo-quinoline-quinone (PQQ) from Acinetobacter calcoaceticus requires the products of at least four different genes. In this paper we present the nucleotide sequence of a 5,085-base-pair DNA fragment containing these four genes. Within the DNA fragment three reading frames are present, coding for proteins of Mr 10,800, 29,700, and 43,600 and corresponding to three of the PQQ genes. In the DNA region where the fourth PQQ gene was mapped the largest possible reading frame encodes for a polypeptide of only 24 amino acids. Still, the expression of this region is essential for the biosynthesis of PQQ. A possible role for this DNA region is discussed. Sandwiched between two PQQ genes an additional reading frame is present, coding for a protein of Mr 33,600. This gene, which is probably transcribed in the same operon as three of the PQQ genes, seems not required for PQQ synthesis. Expression of the PQQ genes in Acinetobacter lwoffi and Escherichia coli K-12 led to the synthesis of the coenzyme in these organisms.  相似文献   

15.
The performance of pyrroloquinoline quinone (PQQ) dependent alcohol dehydrogenase (ADH) and two types of PQQ-glucose dehydrogenases in solution and when immobilized on the carbon paste electrodes modified with ferrocene derivatives is investigated. The immobilization of ADH consisting of PQQ and four hemes improves its stability up to 10 times. Both PQQ and heme moieties are involved in the electron transport from substrate to electrode. The ferrocene derivatives improve the electron transport 10-fold. Membrane-bound alcohol dehydrogenase from Gluconobacter sp. 33, intracellular soluble glucose dehydrogenase from Acinetobacter calcoaceticus L.M.D. 79.41 (s-GDH), and the membrane-bound enzyme (m-GDH) from Erwinia sp. 34-1 were purified and investigated. Soluble and membrane-bound PQQ-glucose dehydrogenases display different behavior during the immobilization on the modified carbon electrodes. The immobilization of s-GDH leads to a decrease in both stability and substrate specificity of the enzyme. This suggests that PQQ dissociates from the enzyme active center and operates as a free-diffusing mediator. The rate-limiting step of the process is likely the loading of PQQ onto the apo-enzyme. The immobilization of m-GDH leads to its substantial stabilization and improves the substrate specificity. The nature of m-GDH binding to the electrode surface is presumably similar to the binding to the cell membrane through its anchor-subunit. The enzyme operates as an enzyme and mediator complex.  相似文献   

16.
Klebsiella pneumoniae NCTC 418 was cultured aerobically in chemostat cultures (D=0.3 h-1; 35°C) under respectively carbon-, phosphate-, potassium-, sulphate-, and ammonia-limited conditions with glucose as the sole carbon and energy source. The effect of the external pH value on glucose metabolism and on the enzymes of the direct glucose oxidative pathway was examined. The pH value of the medium had a profound influence on both the activity and the synthesis of the glucose dehydrogenase and the gluconate dehydrogenase. At pH values ranging from pH 5.5 to pH 6.0 maximal activity and synthesis of these enzymes resulted in a more than 80% conversion of the glucose consumed into gluconate and 2-ketogluconate under potassium-or phosphate-limited conditions. On the other hand, no gluconate and/or 2-ketogluconate production could be detected when K. pneumoniae was cultured at pH 8.0. Whereas the synthesis of gluconate dehydrogenase seemingly was completely repressed, still some glucose dehydrogenase was present. The lack of glucose dehydrogenase activity at pH 8.0 was shown not to be due to the dissociation of the cofactor PQQ from the enzyme.Abbreviations DCIP dichlorophenol indophenol - PQQ pyrroloquinoline quinone [2,7,9-tricarboxy-1H-pyrrolo (2,3-f) quinoline-4,5-dione] - WB Wurster's Blue [1,4-bis-(dimethylamino)-benzene perchlorate]  相似文献   

17.
We cloned the gene coding for the quinoprotein glucose dehydrogenase from Acinetobacter calcoaceticus. This clone complements gdh mutations in A. calcoaceticus, Pseudomonas aeruginosa, and Escherichia coli. The gene codes for a protein with an Mr of 83,000. Evidence is presented for the presence of two different glucose dehydrogenase enzymes in A. calcoaceticus: a protein with an Mr of 83,000 and a dimer of two identical subunits with an Mr of 50,000.  相似文献   

18.
PQQ glucose dehydrogenase from Acinetobacter calcoaceticus (GDH-B) is one of the most industrially attractive enzymes, as a sensor constituent for glucose sensing, because of its high catalytic activity and insensitivity to oxygen. We attempted to engineer GDH-B to enable electron transfer to the electrode in the absence of artificial electron mediator by mimicking the domain structure of the quinohemoprotein ethanol dehydrogenase (QH-EDH) from Comamonas testosteroni, which is composed of a PQQ-containing catalytic domain and a cytochrome c domain. We genetically fused the cytochrome c domain of QH-EDH to the C-terminal of GDH-B. The constructed fusion protein showed not only intra-molecular electron transfer, between PQQ and heme of the cytochrome c domain, but also electron transfer from heme to the electrode, thereby allowing the construction of a direct electron transfer-type glucose sensor.  相似文献   

19.
Magnesium-limited chemostat cultures of Klebsiella pneumoniae NCTC 418 with 20 M CaCl2 in the medium showed a low rate of gluconate plus 2-ketogluconate production relative to potassium- or phosphate-limited cultures. However, when the medium concentration of CaCl2 was increased to 1 mM, the glucose dehydrogenase (GDH) activities also increased and became similar to those observed in potassium- or phosphate limited cultures. It is concluded that this is due to Mg2+ and Ca2+ ions being involved in the binding of pyrroloquinoline quinone (PQQ) to the GDH apoenzyme. There seems to be an absolute requirement of divalent cations for proper enzyme functioning and in this respect Ca2+ ions could replace Mg2+ ions. The high GDH activity which has been found in cells grown under Mg2–-limited conditions in the presence of higher concentrations of Ca2+ ions, is compatible with the earlier proposal that GDH functions as an auxiliary energy generating system involved in the maintenance of high transmembrane ion gradients.Abbreviations PQQ pyrroloquinoline quinone - GDH glucose dehydrogenase (EC 1.1.99.17) - GaDH gluconate dehydrogenase (EC 1.1.99.3) - CAP chloramphenicol - WB Wurster's Blue [1,4-bis-(dimethylamino)-benzene perchlorate]  相似文献   

20.
Several mutants of quinoprotein glucose dehydrogenase (GDH) in Escherichia coli, located around its cofactor pyrroloquinoline quinone (PQQ), were constructed by site-specific mutagenesis and characterized by enzymatic and kinetic analyses. Of these, critical mutants were further characterized after purification or by different amino acid substitutions. H262A mutant showed reduced affinities both for glucose and PQQ without significant effect on glucose oxidase activity, indicating that His-262 occurs very close to PQQ and glucose, but is not the electron acceptor from PQQH(2). W404A and W404F showed pronounced reductions of affinity for PQQ, and the latter rather than the former had equivalent glucose oxidase activity to the wild type, suggesting that Trp-404 may be a support for PQQ and important for the positioning of PQQ. D466N, D466E, and K493A showed very low glucose oxidase activities without influence on the affinity for PQQ. Judging from the enzyme activities of D466E and K493A, as well as their absorption spectra of PQQ during glucose oxidation, we conclude that Asp-466 initiates glucose oxidation reaction by abstraction of a proton from glucose and Lys-493 is involved in electron transfer from PQQH(2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号