首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The selection pressures by which mating preferences for ornamental traits can evolve in genetically monogamous mating systems remain understudied. Empirical evidence from several taxa supports the prevalence of dual‐utility traits, defined as traits used both as armaments in intersexual selection and ornaments in intrasexual selection, as well as the importance of intrasexual resource competition for the evolution of female ornamentation. Here, we study whether mating preferences for traits used in intrasexual resource competition can evolve under genetic monogamy. We find that a mating preference for a competitive trait can evolve and affect the evolution of the trait. The preference is more likely to persist when the fecundity benefit for mates of successful competitors is large and the aversion to unornamented potential mates is strong. The preference can persist for long periods or potentially permanently even when it incurs slight costs. Our results suggest that, when females use ornaments as signals in intrasexual resource competition, males can evolve mating preferences for those ornaments, illuminating both the evolution of female ornamentation and the evolution of male preferences for female ornaments in monogamous species.  相似文献   

2.
A spatially explicit, individual‐based simulation model is used to study the spread of an allele for mate‐choice copying (MCC) through horizontal cultural transmission when female innate preferences do or do not coevolve with a male viability‐increasing trait. Evolution of MCC is unlikely when innate female preferences coevolve with the trait, as copier females cannot express a higher preference than noncopier females for high‐fitness males. However, if a genetic polymorphism for innate preference persists in the population, MCC can evolve by indirect selection through hitchhiking: the copying allele hitchhikes on the male trait. MCC can be an adaptive behavior—that is, a behavior that increases a population's average fitness relative to populations without MCC—even though the copying allele itself may be neutral or mildly deleterious.  相似文献   

3.
The costs of choice in sexual selection   总被引:15,自引:0,他引:15  
In Fisher's model of sexual selection female mating preferences are not subject to direct selection but evolve purely because they are genetically correlated with the favoured male trait. But when female choice is costly relative to random mating, for example in energy, time or predation risks, the evolution of female mating preference is subject also to direct selection. With costly female choice the set or line of equilibria found in models of Fisher's process no longer exists. On the line the male trait is under zero net selection, and there is no advantage for a female choosing a male with a more exaggerated character. Therefore any cost to choice causes choosiness to decline. In turn this lowers the strength of sexual selection and the male trait declines as well. So when Fisher's process is the sole force of sexual selection and female choice is costly, only transitory increases in female choice and the preferred male trait are possible. It has often been claimed that exaggerated male characters act as markers or revealers of the genetic quality of potential mates. If females choose their mates using traits that correlate with heritable viability differences then stable exaggeration of both female choice and the preferred male character is possible, even when female choice is costly. The offspring of choosy females have not only a Fisherian reproductive advantage but also greater viability. This suggests that in species with exaggerated male ornamentation, in which female choice is costly, it is likely that female mate choice will be for traits that correlate with male genetic quality.  相似文献   

4.
There are many examples of male mate choice for female traits that tend to be associated with high fertility. I develop quantitative genetic models of a female trait and a male preference to show when such a male preference can evolve. I find that a disagreement between the fertility maximum and the viability maximum of the female trait is necessary for directional male preference (preference for extreme female trait values) to evolve. Moreover, when there is a shortage of available male partners or variance in male nongenetic quality, strong male preference can evolve. Furthermore, I also show that males evolve to exhibit a stronger preference for females that are more feminine (less resemblance to males) than the average female when there is a sexual dimorphism caused by fertility selection which acts only on females.  相似文献   

5.
Males of monogamous birds often show secondary sexual traits that are conspicuous but considerably less extreme than those of polygynous species. We develop a quantitative-genetic model for the joint evolution of a male secondary sexual trait, a female mating preference, and female breeding date, following a theory proposed by Darwin and Fisher. Good nutritional condition is postulated to cause females to breed early and to have high fecundity. The most-preferred males are mated by early-breeding females and receive a sexual-selection advantage from those females' greater reproductive success. Results show that conspicuous male traits that decrease survival can evolve but suggest that the extent of maladaptive evolution is greatly limited relative to what is possible in a polygynous mating system for two reasons. First, in the absence of direct fitness effects of mate choice on the female, the equilibria for the male trait and female preference form a curve whose shape shows that the maximum possible strength of sexual selection on males (and hence the potential for maladaptive evolution) is constrained. Under certain conditions, a segment of the equilibrium curve may become unstable, leading to two alternative stable states for the male trait. Second, male parental care will often favor the evolution of mating preferences for less conspicuous males. We also find that sexual selection can appear in the absence of the nutritional effects emphasized by Darwin and Fisher. A review of the literature suggests that the assumptions of the Darwin-Fisher mechanism may often be met in monogamous birds and that other mechanisms may often reinforce it by producing additional components of sexual selection.  相似文献   

6.
Females of many species are frequently courted by promiscuous males of their own and other closely related species. Such mating interactions may impose strong selection on female mating preferences to favor trait values in conspecific males that allow females to discriminate them from their heterospecific rivals. We explore the consequences of such selection in models of the evolution of female mating preferences when females must interact with heterospecific males from which they are completely postreproductively isolated. Specifically, we allow the values of both the most preferred male trait and the tolerance of females for males that deviate from this most preferred trait to evolve. Also, we consider situations in which females base their mating decisions on multiple male traits and must interact with males of multiple species. Females will rapidly differentiate in preference when they sometimes mistake heterospecific males for suitable mates, and the differentiation of female preference will select for conspecific male traits to differentiate as well. In most circumstances, this differentiation continues indefinitely, but slows substantially once females are differentiated enough to make mistakes rare. Populations of females with broader preference functions (i.e., broader tolerance for males with trait values that deviate from females' most preferred values) will evolve further to differentiate if the shape of the function cannot evolve. Also, the magnitude of separation that evolves is larger and achieved faster when conspecific males have lower relative abundance. The direction of differentiation is also very sensitive to initial conditions if females base their mate choices on multiple male traits. We discuss how these selection pressures on female mate choice may lead to speciation by generating differentiation among populations of a progenitor species that experiences different assemblages of heterospecifics. Opportunities for differentiation increase as the number of traits involved in mate choice increase and as the number of species involved increases. We suggest that this mode of speciation may have been particularly prevalent in response to the cycles of climatic change throughout the Quaternary that forced the assembly and disassembly of entire communities on a continentwide basis.  相似文献   

7.
In many species, females display preferences for extreme male signal traits, but it has not been determined if such preferences evolve as a consequence of females gaining genetic benefits from exercising choice. If females prefer extreme male traits because they indicate male genetic quality that will enhance the fitness of offspring, a genetic correlation will evolve between female preference genes and genes that confer offspring fitness. We show that females of Drosophila serrata prefer extreme male cuticular hydrocarbon (CHC) blends, and that this preference affects offspring fitness. Female preference is positively genetically correlated with offspring fitness, indicating that females have gained genetic benefits from their choice of males. Despite male CHCs experiencing strong sexual selection, the genes underlying attractive CHCs also conferred lower offspring fitness, suggesting a balance between sexual selection and natural selection may have been reached in this population.  相似文献   

8.
In his mathematical treatment of Fisher's ideas on sexual selection (so-called runaway selection) Lande (1981) predicted that males may evolve increasingly elaborate sexual characters despite opposing viability selection as a consequence of the associated costs. Lande thereby assumed that female mate preferences are not subject to selection since (1) females are all inseminated and (2) the quantity and quality of their offspring are independent of the female's mate preferences. Kirkpatrick (1985) removed the latter assumption and investigated the consequences for the mean phenotype with respect to both female and male traits. He also explored the dynamics of the (co)-variance matrix by numerical methods. In this paper we consider a simpler model with just two multi-allelic loci. This enables us to derive explicit expressions for (co)-variances under steady state conditions. Rather than assume natural selection through differential fertility (as in Kirkpatrick, 1985), we take sexual selection on females into account by modelling the preference-dependent risk that females remain unmated. We argue that this wallflower effect is a realistic feature of any mating system, since it merely depends on the existence of (1) variation in mating preferences and (2) a finite mating season. Our approach provided an insight into the dynamic behaviour of the means of the phenotypes. This is because the dynamics of the means depend on the steady state (co)-variance matrix. Thus, an insight into the former requires explicit expressions for the latter. Whereas Lande and Kirkpatrick predicted runaway processes, despite opposing viability selection, our model predicts a globally stable steady state, i.e. no runaway, even without opposing viability selection (under the assumption of an asymptotically stable steady state of the (co)-variances. Admittedly, we have no analytic proof of this stability but only support for it, based on simulations.) The absence of the runaway processes in our model is caused by the wallflower effect, since it imposes constraints on the steady state of the (co)-variance matrix. When mutational input applies to female traits but not to male traits, explicit expressions for the (co)-variances under steady state conditions can be derived, and these show that: (1) both the genetic covariance and the variance of male traits are equal to zero, but (2) the variance of the female trait exceeds to zero. Should there be mutational input influencing the male trait, then these results would suggest that the male-to-female ratio of variances is much smaller than unity. This prediction is of tremendous importance for speciation through founding events.  相似文献   

9.
A model is used to study quantitatively the impact of a good genes process and direct natural selection on the evolution of a mating preference. The expression of a male display trait is proportional to genetic quality, which is determined by the number of deleterious mutations a male carries throughout his genome. Genetic variances and covariances, including the covariance between the preference and male trait that drives the good genes process, are allowed to evolve under an infinitesimal model. Results suggest that the good genes process generates only weak indirect selection on preferences, with an effective selection intensity of a few percent or less. If preferences are subject to direct natural selection of the intensity observed for other characters, the good genes process alone is not expected to exaggerate the male trait by more than a few phenotypic standard deviations, contrary to what is observed in highly sexually selected species. Good genes can, however, cause substantial exaggeration if preference genes are nearly selectively neutral. Alternatively, direct selection on preference genes, acting on mating behavior itself or on the genes' pleiotropic effects, can cause mating preferences and male display traits to be exaggerated by any degree. Direct selection of preference genes may therefore play an important role in species that show extreme sexual selection.  相似文献   

10.
Males of many species use multiple sexual ornaments in their courtship display. We investigate the evolution of female sexual preferences for more than a single male trait by the handicap process. The handicap process assumes that ornaments are indicators of male quality, and a female benefits from mate choice by her offspring inheriting “good genes” that increase survival chances. A new handicap model is developed that allows equilibria to be given in terms of selection pressures, independent of genetic parameters. Multiple sexual preferences evolve if the overall cost of choice is not greatly increased by a female using additional male traits in her assessment of potential mates. However, only a single preference is evolutionarily stable if assessment of additional male traits greatly increases the overall cost of choice (more than expected by combining the cost of each preference independently). Any single preference can evolve, the outcome being determined by initial conditions. The evolution of one preference effectively blocks the evolution of others, even for traits that are better indicators of male quality. Comparison is made with sexual selection caused by Fisher's runaway process in which male traits are purely attractive characters. This shows that sexual preferences for multiple Fisher traits are likely to evolve alongside preference for a single handicap trait that indicates male quality. This is a general difference in the evolutionary outcome of these two causes of sexual selection.  相似文献   

11.
While competing males and choosy females may be common in animal mating systems, male choice can evolve under certain conditions. Sexual cannibalism is such a condition because of the high mortality risk for males. In mantids, female body condition is associated with male mate preference, with fat females preferred, due to at least two reasons: females in poor nutritional condition are likely to attack and predate males, and fat females can potentially increase the number of offspring. Thus, the risk of cannibalism and female fecundity can influence male mating behavior. In this study, we attempted to separate these factors by using the praying mantid Tenodera angustipennis to examine whether male preference for fat female mantids was based on avoiding sexual cannibalism (cannibalism avoidance hypothesis) or preference for female fecundity (fecundity preference hypothesis). The feeding regimes were experimentally manipulated to discriminate between the effects of female fecundity and female hunger status on male and female mating behaviors. We found that recently starved females more frequently locomoted toward the male, and that male abdominal bending was less intensive and escape was sooner from recently starved females. These female and male behavioral responses to female hunger condition may reveal male avoidance of dangerous females in this mantid.  相似文献   

12.
Janna L. Fierst 《Genetica》2013,141(4-6):157-170
Environmental patterns of directional, stabilizing and fluctuating selection can influence the evolution of system-level properties like evolvability and mutational robustness. Intersexual selection produces strong phenotypic selection and these dynamics may also affect the response to mutation and the potential for future adaptation. In order to to assess the influence of mating preferences on these evolutionary properties, I modeled a male trait and female preference determined by separate gene regulatory networks. I studied three sexual selection scenarios: sexual conflict, a Gaussian model of the Fisher process described in Lande (in Proc Natl Acad Sci 78(6):3721–3725, 1981) and a good genes model in which the male trait signalled his mutational condition. I measured the effects these mating preferences had on the potential for traits and preferences to evolve towards new states, and mutational robustness of both the phenotype and the individual’s overall viability. All types of sexual selection increased male phenotypic robustness relative to a randomly mating population. The Fisher model also reduced male evolvability and mutational robustness for viability. Under good genes sexual selection, males evolved an increased mutational robustness for viability. Females choosing their mates is a scenario that is sufficient to create selective forces that impact genetic evolution and shape the evolutionary response to mutation and environmental selection. These dynamics will inevitably develop in any population where sexual selection is operating, and affect the potential for future adaptation.  相似文献   

13.
Mate choice and mate competition can both influence the evolution of sexual isolation between populations. Assortative mating may arise if traits and preferences diverge in step, and, alternatively, mate competition may counteract mating preferences and decrease assortative mating. Here, we examine potential assortative mating between populations of Drosophila pseudoobscura that have experimentally evolved under either increased (‘polyandry’) or decreased (‘monogamy’) sexual selection intensity for 100 generations. These populations have evolved differences in numerous traits, including a male signal and female preference traits. We use a two males: one female design, allowing both mate choice and competition to influence mating outcomes, to test for assortative mating between our populations. Mating latency shows subtle effects of male and female interactions, with females from the monogamous populations appearing reluctant to mate with males from the polyandrous populations. However, males from the polyandrous populations have a significantly higher probability of mating regardless of the female's population. Our results suggest that if populations differ in the intensity of sexual selection, effects on mate competition may overcome mate choice.  相似文献   

14.
Male mate choice, expressed through courtship preferences, sometime occurs even under the mating system of polygyny, when the operational sex ratio is skewed toward males. The conditions under which male mate choice may be expected during polygyny are not well established. Servedio and Lande (2006, Evolution 60:674-685), assuming strict polygyny where all females have equal mating success, show that when having a preference does not increase the amount of energy that a male can put into courtship, male preferences for "arbitrary" female ornaments should not be expected to evolve; direct selection acts against them because they place males that carry them into situations in which there is high competition for mates. Here I explore in detail two situations under which logic dictates that this effect may be overcome or reversed. First I determine the contributions that direct and indirect selection place on male versus female preferences for traits that increase viability, using notation that allows the exact expression of these measures of selection. I find that direct selection against male preferences still predominates in the male mate choice model, causing less evolution by male than female preferences under these conditions. Second I address whether male mate choice is likely to evolve as a mechanism of premating isolation leading to species recognition, driven by the process of reinforcement. Reinforcement is compared under male and female mate choice, using a variety of models analyzed by both analytical techniques assuming weak selection and numerical techniques under broader selective conditions. I demonstrate that although under many conditions stronger premating isolation evolves under female mate choice, reinforcement may indeed occur via male mate choice alone.  相似文献   

15.
It is possible to interpret components of seed development in angiosperms from the perspective of parent-offspring conflict (a special case of kin selection) or sexual selection. Available parent-offspring conflict models predict the evolution of traits determining the outcome of competition among related individuals soliciting maternal resources. In such models, ‘selfishness’ may spread even if it reduces female fecundity and thus population mean fitness may decline. These models are limited, however, because most of them do not simultaneously consider selection among maternal genotypes varying in the tendency to respond to their offspring. Available sexual selection models, in contrast, do consider the joint evolution of polygenic male traits (influencing viability, mating success and fecundity) and female preferences (influencing the mating success of different male phenotypes). These models have shown that male traits may evolve that are non-optimal with respect to viability. Only one recent sexual selection model explicitly incorporates direct fecundity selection upon females; this model concludes that fecundity will be maximized at equilibrium. Hence population mean fitness may decline due to reduced male viability but not due to diminished female fecundity. Available sexual selection models, however, are limited because they do not consider the effects of interactions among relatives. The assumptions and qualitative results of the two types of models are compared and discussed in the context of seed development. Differential allocation of maternal resources among genetically distinct developing seeds may be viewed from the perspective of either. Because the results of the available models of parent-offspring conflict and sexual selection are not wholly consistent and because data confirming the genetic basis of maternal patterns of investment or differential male reproductive success are scant, it is not clear which set of conclusions is most appropriate to apply to plants. To achieve the generality towards which mathematical approaches aspire, new models concerning the evolution of traits influencing resource allocation in plants must incorporate the components of both parent-offspring conflict and sexual selection.  相似文献   

16.
Most theoretical models on evolution of male secondary sexual characters and female preferences for these characters suggest that the male characters evolve in response to female preferences that may themselves evolve in response to direct or indirect benefits of choice. In Drosophila montana (a species of the D. virilis group), females use male song in their mate choice, preferring males that produce songs with short sound pulses and a high carrier frequency. We demonstrate here that the females get indirect benefits from their choice: in our data the frequency of the male song correlated with the survival rate of the male''s progeny from egg to adulthood (indirect benefit for the female), but not with the fecundity of his mating partner (no direct benefit for the female). Male wing centroid asymmetry did not correlate with male wing song characters, nor with female egg production nor the fitness of her progeny, suggesting that fluctuating asymmetry in male wings does not play a major role in sexual signalling. The fact that the male song gives the female information on the male''s condition/genetic quality in D. montana suggests that in this species the evolution of female preferences for male song characters could have evolved through condition-dependent viability selection presented in some ''good genes'' models.  相似文献   

17.
The relationship between sexual and viability selection in females is necessarily different than that in males, as investment in sexual traits potentially comes at the expense of both fecundity and survival. Accordingly, females do not usually invest in sexually selected traits. However, direct benefits obtained from mating, such as nuptial gifts, may encourage competition among females and subsidize investment into sexually selected traits. We compared sexual and viability selection on female tree crickets Oecanthus nigricornis, a species where females mate frequently to obtain nuptial gifts and sexual selection on females is likely. If male choice determines female mating success in this species, we expect sexual selection for fecundity traits, as males of many species prefer more fecund females. Alternatively, intrasexual scramble or combat competition on females may select for larger jumping legs or wider heads (respectively). We estimated mating success in wild caught crickets using microsatellite analysis of stored sperm and estimated relative viability by comparing surviving female O. nigricornis to those captured by a common wasp predator. In support of the scramble competition hypothesis, we found sexual selection for females with larger hind legs and narrower heads. We also found stabilizing viability selection for intermediate head width and hind leg size. As predicted, traits under viability and sexual selection were very similar, and the direction of that selection was not opposing. However, because the shape of sexual and viability selection differs, these episodes of selection may favour slightly different trait sizes.  相似文献   

18.
Costly female mating preferences for purely Fisherian male traits (i.e. sexual ornaments that are genetically uncorrelated with inherent viability) are not expected to persist at equilibrium. The indirect benefit of producing ‘sexy sons’ (Fisher process) disappears: in some models, the male trait becomes fixed; in others, a range of male trait values persist, but a larger trait confers no net fitness advantage because it lowers survival. Insufficient indirect selection to counter the direct cost of producing fewer offspring means that preferences are lost. The only well‐cited exception assumes biased mutation on male traits. The above findings generally assume constant direct selection against female preferences (i.e. fixed costs). We show that if mate‐sampling costs are instead derived based on an explicit account of how females acquire mates, an initially costly mating preference can coevolve with a male trait so that both persist in the presence or absence of biased mutation. Our models predict that empirically detecting selection at equilibrium will be difficult, even if selection was responsible for the location of the current equilibrium. In general, it appears useful to integrate mate sampling theory with models of genetic consequences of mating preferences: being explicit about the process by which individuals select mates can alter equilibria.  相似文献   

19.
Extravagant secondary sexual characters are assumed to have arisen and be maintained by sexual selection. While traits like horns, antlers and spurs can be ascribed to intrasexual competition, other traits such as extravagant feather ornaments, displays and pheromones have to be ascribed to mate choice. A number of studies have tested whether females exert selection on the size of male ornaments, but only some of these have recorded female preferences for the most extravagantly ornamented males. Here I demonstrate that female choice can be directly predicted from the relationship between the degree of fluctuating asymmetry and the size of a secondary sexual character. Fluctuating asymmetry is an epigenetic measure of the ability of individuals to cope with stress, and it occurs when an individual is unable to undergo identical development of an otherwise bilaterally symmetric trait on both sides of its body. There is a negative relationship between the degree of fluctuating asymmetry and the absolute size of an ornament in those bird species with a female preference for the largest male sex trait, while there is a flat or U-shaped relationship among species without a female preference. These results suggest that females prefer exaggerated secondary sexual characters if they reliably demonstrate the ability of males to cope with genetic and environmental stress. Some species may demonstrate a flat or U-shaped relationship between the degree of fluctuating asymmetry and the absolute size of an ornament because (i) the genetic variance in viability signalled by the secondary sex trait has been depleted; (ii) the secondary sex trait is not particularly costly and therefore does not demonstrate condition dependence; or because (iii) the sex traits can be considered arbitrary traits rather than characters reflecting good genes.  相似文献   

20.
Females often choose their mates, instead of mating at random, even when a father contributes nothing but genes to his offspring. Costly female preferences for males with exaggerated traits that reduce viability, such as the peacock's tail, are particularly puzzling. Such preferences can evolve if directly favoured by natural selection or when the exaggerated trait, although maladaptive per se, indicates high overall quality of the male's genotype. Two recent analyses suggested that the advantage to mate choice based on genetic quality is too weak to explain extreme cases of exaggeration of display traits and the corresponding preferences. We studied coevolution of a female mate-preference function and a genotype-dependent male display function where mutation supplies variation in genotype quality and mate preference is costly. Preference readily evolves, often causing extreme exaggeration of the display. Mate choice and trait expression can approach an equilibrium, or a limit cycle, or exaggeration can proceed forever, eventually causing extinction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号