首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
While adenovirus (Ad) gene delivery vectors are useful in many gene therapy applications, their broad tropism means that they cannot be directed to a specific target cell. There are also a number of cell types involved in human disease which are not transducible with standard Ad vectors, such as Epstein-Barr virus (EBV)-transformed B lymphocytes. Adenovirus binds to host cells via the viral fiber protein, and Ad vectors have previously been retargeted by modifying the fiber gene on the viral chromosome. This requires that the modified fiber be able to bind to the cell in which the vector is grown, which prevents truly specific vector targeting. We previously reported a gene delivery system based on a fiber gene-deleted Ad type 5 (Ad5) vector (Ad5.betagal.DeltaF) and packaging cells that express the viral fiber protein. Expression of different fibers in packaging cells will allow Ad retargeting without modifying the viral chromosome. Importantly, fiber proteins which can no longer bind to the producer cells can also be used. Using this approach, we generated for the first time pseudotyped Ad5.betagal.DeltaF particles containing either the wild-type Ad5 fiber protein or a chimeric fiber with the receptor-binding knob domain of the Ad3 fiber. Particles equipped with the chimeric fiber bound to the Ad3 receptor rather than the coxsackievirus-adenovirus receptor protein used by Ad5. EBV-transformed B lymphocytes were infected efficiently by the Ad3-pseudotyped particles but poorly by virus containing the Ad5 fiber protein. The strategy described here represents a broadly applicable method for targeting gene delivery to specific cell types.  相似文献   

2.
The future of genetic interventions in humans critically depends on the selectivity and efficiency of gene transfer to target tissues. The viral gene vectors explored to date cannot selectively transduce the desired targets. While substantial progress has been made in developing targeting strategies for adenovirus (Ad) vectors, future advances in this direction are severely limited by the shortage of naturally existing molecules available for use as targeting ligands. This shortage is due to fundamental and irresolvable differences at the level of both posttranslational modifications and intracellular trafficking between the Ad structural proteins and those natural proteins that are involved in interactions with the cell surface and could otherwise be considered as potential targeting ligands. We hypothesized that this problem could be resolved by altering the natural tropism of Ad vector through incorporation into its capsid of a rationally designed protein ligand, an affibody, whose structural, functional, and biosynthetic properties make it compatible with the Ad assembly process. We tested this hypothesis by redesigning the receptor-binding Ad protein, the fiber, using affibodies specific for human epidermal growth factor receptor type 2 (Her2), a major molecular marker of human tumors. The biosynthesis and folding of these fiber chimeras were fully compatible with Ad virion formation, and the resultant viral vectors were capable of selective delivery of a dual-function transgene to Her2-expressing cancer cells. By establishing the feasibility of this affibody-based approach to Ad vector targeting, the present study lays the foundation for further development of Ad vector technology toward its clinical use.  相似文献   

3.
The adenovirus fiber protein is responsible for attachment of the virion to unidentified cell surface receptors. There are at least two distinct adenovirus fiber receptors which interact with the group B (Ad3) and group C (Ad5) adenoviruses. We have previously shown by using expressed adenovirus fiber proteins that it is possible to change the specificity of the fiber protein by exchanging the head domain with another serotype which recognizes a different receptor (S. C. Stevenson et al., J. Virol. 69:2850-2857, 1995). A chimeric fiber cDNA containing the Ad3 fiber head domain fused to the Ad5 fiber tail and shaft was incorporated into the genome of an adenovirus vector with E1 and E3 deleted encoding beta-galactosidase to generate Av9LacZ4, an adenovirus particle which contains a chimeric fiber protein. Western blot analysis of the chimeric fiber vector confirmed expression of the chimeric fiber protein and its association with the adenovirus capsid. Transduction experiments with fiber protein competitors demonstrated the altered receptor tropism of the chimeric fiber vector compared to that of the parental Av1LacZ4 vector. Transduction of a panel of human cell lines with the chimeric and parental vectors provided evidence for a different cellular distribution of the Ad5 and Ad3 receptors. Three cell lines (THP-1, MRC-5, and FaDu) were more efficiently transduced by the vector containing the Ad3 fiber head than by the Ad5 fiber vector. In contrast, human coronary artery endothelial cells were transduced more readily with the vector containing the Ad5 fiber than with the chimeric fiber vector. HeLa and human umbilical vein endothelial cells were transduced at equivalent levels compared with human diploid fibroblasts, which were refractory to transduction with both vectors. These results provide evidence for the differential expression of the Ad5 and Ad3 receptors on human cell lines derived from clinically relevant target tissues. Furthermore, we show that exchange of the fiber head domain is a viable approach to the production of adenovirus vectors with cell-type-selective transduction properties. It may be possible to extend this approach to the use of ligands for a range of different cellular receptors in order to target gene transfer to specific cell types at the level of transduction.  相似文献   

4.
A potential barrier to the development of genetically targeted adenovirus (Ad) vectors for cell-specific delivery of gene therapeutics lies in the fact that several types of targeting protein ligands require posttranslational modifications, such as the formation of disulfide bonds, which are not available to Ad capsid proteins due to their nuclear localization during assembly of the virion. To overcome this problem, we developed a new targeting strategy, which combines genetic modifications of the Ad capsid with a protein bridge approach, resulting in a vector-ligand targeting complex. The components of the complex associate by virtue of genetic modifications to both the Ad capsid and the targeting ligand. One component of this mechanism of association, the Fc-binding domain of Staphylococcus aureus protein A, is genetically incorporated into the Ad fiber protein. The ligand is comprised of a targeting component fused with the Fc domain of immunoglobulin, which serves as a docking moiety to bind to these genetically modified fibers during the formation of the Ad-ligand complex. The modular design of the ligand solves the problem of structural and biosynthetic compatibility with the Ad and thus facilitates targeting of the vector to a variety of cellular receptors. Our study shows that targeting ligands incorporating the Fc domain and either an anti-CD40 single-chain antibody or CD40L form stable complexes with protein A-modified Ad vectors, resulting in significant augmentation of gene delivery to CD40-positive target cells. Since this gene transfer is independent of the expression of the native Ad5 receptor by the target cells, this strategy results in the derivation of truly targeted Ad vectors suitable for tissue-specific gene therapy.  相似文献   

5.
Altering adenovirus vector (Ad vector) targeting is an important goal for a variety of gene therapy applications and involves eliminating or reducing the normal tropism of a vector and retargeting through a distinct receptor-ligand pathway. The first step of Ad vector infection is high-affinity binding to a target cellular receptor. For the majority of adenoviruses and Ad vectors, the fiber capsid protein serves this purpose, binding to the coxsackievirus and adenovirus receptor (CAR) present on a variety of cell types. In this study we have explored a novel approach to altering Ad type 5 (Ad5) vector targeting based on serotypic differences in fiber function. The subgroup B viruses bind to an unidentified receptor that is distinct from CAR. The subgroup F viruses are the only adenoviruses that express two distinct terminal exons encoding fiber open reading frames. We have constructed chimeric fiber adenoviruses that utilize the tandem fiber arrangement of the subgroup F genome configuration. By taking advantage of serotypic differences in fiber expression, fiber shaft length, and fiber binding efficiency, we have developed a tandem fiber vector that has low binding efficiency for the known fiber binding sites, does not rely on an Ad5-based fiber, and can be grown to high titer using conventional cell lines. Importantly, when characterizing these vectors in vivo, we find the subgroup B system and our optimal tandem fiber system demonstrate reduced liver transduction by over 2 logs compared to an Ad5 fiber vector. These attributes make the tandem fiber vector a useful alternative to conventional strategies for fiber manipulation of adenovirus vectors.  相似文献   

6.
One of the objectives in adenovirus (Ad) vector development is to target gene delivery to specific cell types. Major attention has been given to modification of the Ad fiber knob, which is thought to determine virus tropism. However, among the human Ad serotypes with different tissue tropisms, not only the knob but also the length of the fiber shaft domain varies significantly. In this study we attempted to delineate the role of fiber length in coxsackievirus-adenovirus receptor (CAR)- and non-CAR-mediated infection. A series of Ad serotype 5 (Ad5) capsid-based vectors containing long or short fibers with knob domains derived from Ad5, Ad9, or Ad35 was constructed and tested in adsorption, internalization, and transduction studies. For Ad5 or Ad9 knob-possessing vectors, a long-shafted fiber was critical for efficient adsorption/internalization and transduction of CAR/alphav integrin-expressing cells. Ad5 capids containing short CAR-recognizing fibers were affected in cell adsorption and infection. In contrast, for the chimeric vectors possessing Ad35 knobs, which enter cells by a CAR/alphav integrin-independent pathway, fiber shaft length had no significant influence on binding or infectibility on tested cells. The weak attachment of short-shafted Ad5 or Ad9 knob-possessing vectors seems to be causally associated with a charge-dependent repulsion between Ad5 capsid and acidic cell surface proteins. The differences between short- and long-shafted vectors in attachment or infection were abrogated by preincubation of cells with polycations. This study demonstrates that the fiber-CAR interaction is not the sole determinant for tropism of Ad vectors containing chimeric fibers. CAR- and alphav integrin-mediated infections are influenced by other factors, including the length of the fiber shaft.  相似文献   

7.

Background

Successful gene therapy will require targeted delivery vectors capable of self-directed localization. In this regard, the use of antibodies or single chain antibody fragments (scFv) in conjunction with adenovirus (Ad) vectors remains an attractive means to achieve cell-specific targeting. However, a longstanding barrier to the development of Ad vectors with genetically incorporated scFvs has been the biosynthetic incompatibility between Ad capsid proteins and antibody-derived species. Specifically, scFv require posttranslational modifications not available to Ad capsid proteins due to their cytoplasmic routing during protein synthesis and virion assembly.

Methodology/Principal Findings

We have therefore sought to develop scFv-targeted Ad vectors using a secreted scFv that undergoes the requisite posttranslational modifications and is trafficked for secretion. Formation of the scFv-targeted Ad vector is achieved via highly specific association of the Ad virion and a targeting scFv employing synthetic leucine zipper-like dimerization domains (zippers) that have been optimized for structural compatibility with the Ad capsid and for association with the secreted scFv. Our results show that zipper-containing Ad fiber molecules trimerize and incorporate into mature virions and that zippers can be genetically fused to scFv without ablating target recognition. Most importantly, we show that zipper-tagged virions and scFv provide target-specific gene transfer.

Conclusions/Significance

This work describes a new approach to produce targeted Ad vectors using a secreted scFv molecule, thereby avoiding the problem of structural and biosynthetic incompatibility between Ad and a complex targeting ligand. This approach may facilitate Ad targeting using a wide variety of targeting ligands directed towards a variety of cellular receptors.  相似文献   

8.
The efficient uptake of adenovirus into a target cell is a function of adenovirus capsid proteins and their interaction with the host cell. The capsid protein fiber mediates high-affinity attachment of adenovirus to the target cell. Although the cellular receptor(s) for adenovirus is unknown, evidence indicates that a single receptor does not function as the attachment site for each of the 49 different serotypes of adenovirus. Sequence variation of the fiber ligand, particularly in the C- terminal knob domain, is associated with serotype-specific binding specificity. Additionally, this domain of fiber functions as a major serotype determinant. Fiber involvement in cell targeting and its function as a target of the host immune response make the fiber gene an attractive target for manipulation, both from the perspective of adenovirus biology and from the perspective of using adenovirus vectors for gene transfer experiments. We have constructed a defective chimeric adenovirus type 5 (Ad5) reporter virus by replacing the Ad5 fiber gene with the fiber gene from Ad7A. Using the chloramphenicol acetyltransferase reporter gene, we have characterized this virus with respect to infectivity both in vitro and in vivo. We have also characterized the role of antifiber antibody in the host neutralizing immune response to adenovirus infection. Our studies demonstrate that exchange of fiber is a strategy that will be useful in characterizing receptor tropism for different serotypes of adenovirus. Additionally, the neutralizing immune response to Ad5 and Ad7 does not differentiate between two viruses that differ only in their fiber proteins. Therefore, following a primary adenovirus inoculation, antibodies generated against fiber do not constitute a significant fraction of the neutralizing antibody population.  相似文献   

9.
Mizuguchi H  Hayakawa T 《Gene》2002,285(1-2):69-77
Adenovirus (Ad) fiber proteins are responsible for the initial attachment of the virion to the cell membrane. Most Ad vectors currently in use are based on the Ad type 5 (Ad5), which belong to subgroup C, and use the coxsackievirus and adenovirus receptors (CAR) as the initial receptor. Ad35, which belongs to subgroup B, recognizes unknown receptor(s) other than CAR. In this study, the feasibility of the Ad vector containing Ad5/35 chimeric fiber protein was examined in a wide variety of cell types, such as CAR-positive or -negative human tumor cells, rodent cells, and blood cells (a total of 20 cell types), and in mice in vivo. Transduction data suggested that the Ad vectors containing the Ad5/35 chimeric fiber protein exhibited altered and expanded tropism when compared with the Ad5-based vector. The chimeric vector also allows the packaging of larger foreign DNAs than the conventional Ad5-based vector, which can package approximately 8.1-8.2 kb of foreign DNA. The chimeric vector containing approximately 8.8 kb of foreign DNA was generated without affecting the viral growth rate and titer. These results suggested that inclusion of the Ad35 fiber protein into the Ad5-based vector could lead to an improved efficiency in gene therapy and in gene transfer experiments, especially for the cells lacking in sufficient CAR expression.  相似文献   

10.
Adenovirus type 5 (Ad5)-based vectors have been used in clinical trials for glioblastoma treatment, but the capacity of Ad5 to infect human glioma cells was questioned. Seeking to improve the adenovirus transduction, we tested four Ad5-based vectors differing only in their fiber gene on permanent and short-term cultures of glioblastoma cells. A wild-type fiber Ad5 vector (Ad5.Luc) was compared to an RGD integrin-binding motif-containing fiber adenovirus (AdlucRGD) and the two fiber chimeras Ad5/3 and Ad5/35, with vector binding redirected to the Ad3 or Ad35 receptor, respectively. Compared to Ad5, the transduction of the tested short-term glioblastoma cultures with the vector Ad5/35.Luc, AdlucRGD and Ad5/3.Luc was enhanced by approximately 72%, approximately 13% and approximately 2%, respectively. To limit adenovirus spread, we aimed to develop conditionally replicative Ad5/35 vectors by targeting the expression of the essential E1 and E4 genes; in addition, some vectors had the E1Delta24 deletion. We analyzed eleven promoters for their activity in glioblastoma cells and determined the specificity of eight replicative adenovirus vectors in vitro. We evaluated the most promising vectors with E1/E4 under the control of the GFAP/Ki67 or E2F-1/COX-2 promoters, and the native Ad5 or the chimeric Ad5/35 fiber for their antineoplastic activity in a subcutaneous and intracranial glioblastoma xenograft model. Animals treated with the Ad5/35-based vectors showed significantly smaller tumors and longer survival than those treated with the homologous Ad5 vectors; no significant toxicity was observed in the intracranial model. Our data suggest that Ad5/35-based vectors are promising tools for glioblastoma treatment.  相似文献   

11.
The major adenovirus (Ad) capsid proteins hexon, penton, and fiber influence the efficiency and tropism of gene transduction by Ad vectors. Fiber is the high-affinity receptor binding protein that serves to mediate cell attachment in vitro when using coxsackie-adenovirus receptor (CAR)-containing cell lines. This contrasts with transduction efficiency in macrophages or dendritic cells that lack high concentrations of CAR. To determine how fiber influences gene transduction and immune activation in a murine model, we have characterized Ad type 5 (Ad5) vectors with two classes of chimeric fiber, CAR binding and non-CAR binding. In a systemic infection, Ad5 fiber contributes to DNA localization and vector transduction in hepatic tissue. However, the majority of vector localization is due to Ad5 fiber-specific functions distinct from CAR binding. CAR-directed transduction occurs but at a modest level. In contrast to CAR binding vectors, the F7 and F7F41S non-CAR-binding vectors demonstrate a 2-log decrease in hepatic transduction, with a 10-fold decrease in the amount of vector DNA localizing to the hepatic tissue. To characterize the innate response to early infection using fiber chimeric vectors, intrahepatic cytokine and chemokine mRNAs were quantified 5 hours postinfection. Tumor necrosis factor alpha mRNA levels resulting from Ad5 fiber infections were elevated compared to viruses expressing serotype 7 or 41 fiber. Levels of chemokine mRNA (gamma interferon-inducible protein 10, T-cell activation gene 3, and macrophage inflammatory protein 1beta) were 10- to 20-fold higher with CAR binding vectors (Ad5 and F41T) than with non-CAR-binding vectors (F7 and F7F41S). In spite of quantitative differences in vector localization and innate activation, fiber pseudotyping did not significantly change the outcome of anti-Ad adaptive immunity. All vectors were cleared with the same kinetics as wild-type Ad5 vectors, and each induced neutralizing antibody. Although non-CAR-binding vectors were impaired in transduction by nearly 2 orders of magnitude, the level of antitransgene immunity was the same for each of the vectors. Using primary bone marrow-derived macrophages and dendritic cells, we demonstrate that transduction, induction of cytokine/chemokine, and phenotypic maturation of these antigen-presenting cells are independent of fiber content. Our data support a model where fiber-mediated hepatic localization enhances innate responses to virus infection but minimally impacts on adaptive immunity.  相似文献   

12.
The immunogenicity of adenovirus serotype 5 (Ad5) vectors has been shown to be suppressed by neutralizing antibodies (NAbs) directed primarily against the hexon hypervariable regions (HVRs). However, the role of NAbs directed against other capsid components, particularly the adenovirus fiber, remains unclear. Here we show that Ad5 NAbs target both hexon and fiber following vaccination and natural infection. Utilizing neutralization assays with capsid chimeric vectors, we observed that NAb responses to hexon appeared dominant and NAb responses against fiber were subdominant in sera from vaccinated mice, vaccinated humans, and naturally exposed humans. A novel chimeric Ad5 vector in which both the hexon HVRs and the fiber knob were exchanged nearly completely evaded Ad5-specific NAbs both in vitro and in vivo.  相似文献   

13.
Adenoviral (Ad) vectors have been widely used in human gene therapy clinical trials. However, their application has frequently been restricted by the unfavorable expression of cell surface receptors critical for Ad infection. Infections by Ad2 and Ad5 are largely regulated by the elongated fiber protein that mediates its attachment to a cell surface receptor, coxsackie and adenovirus receptor (CAR). The fiber protein is a homotrimer consisting of an N-terminal tail, a long shaft, and a C-terminal knob region that is responsible for high-affinity receptor binding and Ad tropism. Consequently, the modification of the knob region, including peptide insertion and C-terminal fusion of ligands for cell surface receptors, has become a major research focus for targeting gene delivery. Such manipulation tends to disrupt fiber assembly since the knob region contains a stabilization element for fiber trimerization. We report here the identification of a novel trimerization element in the Ad fiber shaft. We demonstrate that fiber fragments containing the N-terminal tail and shaft repeats formed stable trimers that assembled onto Ad virions independently of the knob region. This fiber shaft trimerization element (FSTE) exhibited a capacity to support peptide fusion. We showed that Ad, modified with a chimeric protein by direct fusion of the FSTE with a growth factor ligand or a single-chain antibody, delivered a reporter gene selectively. Together, these results indicate that the shaft region of Ad fiber protein contains a trimerization element that allows ligand fusion, which potentially broadens the basis for Ad vector development.  相似文献   

14.
Most of the presently used adenovirus (Ad) vectors are based on serotype 5. However, the application of these vectors is limited by the native tropism of Ad5. To address this problem, a series of fiber chimeric vectors were produced to take advantage of the different cellular receptors used by Ad of different subgroups. In this study we utilize an Ad5-based chimeric vector containing sequences encoding the Ad35 fiber knob domain instead of the Ad5 knob (Ad5/35L) to analyze factors responsible for selection of intracellular trafficking routes by Ads. By competition analysis with recombinant Ad5 and Ad35 knobs we showed that the Ad5/35L vector infected cells through a receptor different from the Ad5 receptor. Intracellular trafficking of Ad5 and Ad5/35L viruses was analyzed in HeLa cells by tracking fluorophore-conjugated Ad particles, by immunostaining for capsid hexon protein, by electron microscopy, and by Southern blotting for viral DNA. These studies showed that the interaction with the Ad35 receptor(s) predestines Ad5/35L vector to intracellular trafficking pathways different from those of Ad5. Ad5 efficiently escaped from the endosomes early after infection. In contrast, Ad5/35L remained longer in late endosomal/lysosomal compartments and used them to achieve localization to the nucleus. However, a significant portion of Ad5/35L particles appeared to be recycled back to the cell surface. This phenomenon resulted in significantly less efficient Ad5/35L-mediated gene transfer compared to that of Ad5. We also demonstrated that the selection of intracellular trafficking routes was determined by the fiber knob domain and did not depend on the length of the fiber shaft. This study contributes to a better understanding of the mechanisms that govern the infection of retargeted, capsid-modified vectors which have potential application for hematopoietic stem cell and tumor gene therapy.  相似文献   

15.
The efficacy of adenovirus (Ad)-based gene therapy might be significantly improved if viral vectors capable of tissue-specific gene delivery could be developed. Previous attempts to genetically modify the tropism of Ad vectors have been only partially successful, largely due to the limited repertoire of ligands that can be incorporated into the Ad capsid. Early studies identified stringent size limitations imposed by the structure of the Ad fiber protein on ligands incorporated into its carboxy terminus and thus limited the range of potential ligand candidates to short peptides. We have previously identified the HI loop of the fiber knob domain as a preferred site for the incorporation of targeting ligands and hypothesized that the structural properties of this loop would allow for the insertion of a wide variety of ligands, including large polypeptide molecules. In the present study we have tested this hypothesis by deriving a family of Ad vectors whose fibers contain polypeptide inserts of incrementally increasing lengths. By assessing the levels of productivity and infectivity and the receptor specificities of the resultant viruses, we show that polypeptide sequences exceeding by 50% the size of the knob domain can be incorporated into the fiber with only marginal negative consequences on these key properties of the vectors. Our study has also revealed a negative correlation between the size of the ligand used for vector modification and the infectivity and yield of the resultant virus, thereby predicting the limits beyond which further enlargement of the fiber knob would not be compatible with the virion's integrity.  相似文献   

16.
人C组5型腺病毒(Ad5)载体能够有效感染上皮来源的细胞,但对造血细胞的感染效率很低,限制了其在造血调控基础研究以及血液病基因治疗中的应用。为了建立高效感染血液细胞的新型靶向性腺病毒载体系统,对5型腺病毒载体的纤维顶球进行了改造,以AdEasy系统为基础,应用递归PCR的方法人工合成人B组11p型腺病毒的部分纤维(fiber)基因,采用一系列分子生物学方法将其替换AdEasy骨架质粒中的人5型腺病毒的fiber基因,得到新的腺病毒骨架质粒命名为pAdEasy-1/F11p,应用带有GFP报告基因的穿梭质粒pShuttle-GFP与AdEasy-1/F11p腺病毒DNA在BJ5183细菌内重组得到重组腺病毒质粒,将其转染293细胞获得重组腺病毒,命名为Ad5F11p-GFP。以Ad5-GFP作对照,同时感染K562、U937等白血病细胞系,流式细胞仪检测GFP的表达。初步检测结果显示:在10MOI时,Ad5F11p-GFP能够有效感染K562、U937等白血病细胞系,感染细胞效率>90%,对照Ad5-GFP感染细胞效率<30%,这表明改建后的腺病毒AdEasy-1/F11p可以高效介导基因转移到血液细胞,是一种很好的血液细胞靶向性腺病毒载体。  相似文献   

17.
Adenovirus (Ad) vectors are most potent for use as gene delivery vehicles to infect human cells in vitro and in vivo with high efficiency. The main limitation in utilization of Ad as a gene transfer vector is the lack of specificity. Genetic modifications of Ad capsid proteins resulting in incorporation of foreign polypeptide ligand sequences can redirect the vector towards target cells. However, in many cases the incorporated ligands lose specificity or lead to conformational changes influencing virion integrity. In order to select target-specific ligands a priori structurally compatible with Ad, we propose a system for displaying polypeptide sequences in the context of the Ad fiber knob on the surfaces of filamentous bacteriophages. To establish this concept, we displayed the wild-type Ad serotype 5 knob and knobs containing c-Myc epitopes and six-histidine sequences in the pJuFo phage system. The knobs remained trimeric and bound the coxsackievirus-Ad receptor, and the phage knob-displayed ligands recognized and bound their cognates in the phage-displayed knob context. Further development of this system may be useful for candidate ligand fidelity and Ad structural compatibility validation prior to Ad modification.  相似文献   

18.
BACKGROUND: A paucity of coxsackie adenovirus receptor (CAR) hampers the adenovirus serotype 5 (Ad5)-based vector-mediated gene transfer into malignant hematopoietic cells. Fiber-retargeted adenoviral vectors with species B tropism can potentially bypass the CAR requirement and facilitate efficient gene transfer into malignant hematopoietic cells. METHODS: For feasible generation of fiber-retargeted adenoviral vectors, we have modified the versatile AdEasy system with a chimeric fiber gene encoding the Ad5 fiber tail domain and Ad35 fiber shaft and knob domains. An Ad5-based vector encoding the green fluorescent protein (GFP) gene under the control of the PGK promoter with Ad35 fiber receptor specificity was generated (Ad5F35-GFP). The Ad5F35-GFP vector-mediated gene transfer efficiency was compared with a fiber non-modified Ad5-GFP vector, which also encodes the GFP gene under the control of the PGK promoter. RESULTS: We demonstrated that a variety of Ad5-refractory malignant myeloid and B lymphoid cell lines were highly permissive to the Ad5F35-GFP vector infection. Importantly, primary chronic myeloid leukemic (CML) cells and chronic lymphocytic leukemia (CLL) B cells were superiorly transduced by the Ad5F35-GFP vector at a multiplicity of infection (MOI) of 100 compared with the Ad5-GFP vector. CONCLUSIONS: Our study will facilitate the generation of fiber-retargeted adenoviral vectors and enable transient genetic manipulation of primary malignant hematopoietic cells.  相似文献   

19.
Preexisting immunity to adenovirus serotype 5 (Ad5) has been shown to suppress the immunogenicity of recombinant Ad5 (rAd5) vector-based vaccines for human immunodeficiency virus type 1 (HIV-1) in both preclinical studies and clinical trials. A potential solution to this problem is to utilize rAd vectors derived from rare Ad serotypes, such as Ad35. However, rAd35 vectors have appeared less immunogenic than rAd5 vectors in preclinical studies to date. In this study, we explore the hypothesis that the differences in immunogenicity between rAd5 and rAd35 vectors may be due in part to differences between the fiber proteins of these viruses. We constructed capsid chimeric rAd35 vectors containing the Ad5 fiber knob (rAd35k5) and compared the immunogenicities of rAd5, rAd35k5, and rAd35 vectors expressing simian immunodeficiency virus Gag and HIV-1 Env in mice and rhesus monkeys. In vitro studies demonstrated that rAd35k5 vectors utilized the Ad5 receptor CAR rather than the Ad35 receptor CD46. In vivo studies showed that rAd35k5 vectors were more immunogenic than rAd35 vectors in both mice and rhesus monkeys. These data suggest that the Ad5 fiber knob contributes substantially to the immunogenicity of rAd vectors. Moreover, these studies demonstrate that capsid chimeric rAd vectors can be constructed to combine beneficial immunologic and serologic properties of different Ad serotypes.  相似文献   

20.
In central nervous system (CNS)-directed gene therapy, efficient targeting of brain parenchyma through the vascular route is prevented by the endothelium and the epithelium of the blood-brain and the blood-cerebrospinal fluid barriers, respectively. In this study, we evaluated the feasibility of the combined genetic and chemical adenovirus capsid modification technology to enable transcellular delivery of targeted adenovirus (Ad) vectors across the blood-brain barrier (BBB) in vitro models. As a proof-of-principle ligand, maleimide-activated full-length human transferrin (hTf) was covalently attached to cysteine-modified Ad serotype 5 vectors either to its fiber or hexon protein. In transcytosis experiments, hTf-coupled vectors were shown to be redirected across the BBB models, the transcytosis activity of the vectors being dependent on the location of the capsid modification and the in vitro model used. The transduction efficiency of hTf-targeted vectors decreased significantly in confluent, polarized cells, indicating that the intracellular route of the vectors differed between unpolarized and polarized cells. After transcellular delivery the majority of the hTf-modified vectors remained intact and partly capable of gene transfer. Altogether, our results demonstrate that i) covalent attachment of a ligand to Ad capsid can mediate transcellular targeting across the cerebral endothelium in vitro, ii) the attachment site of the ligand influences its transcytosis efficiency and iii) combined genetic/chemical modification of Ad vector can be used as a versatile platform for the development of Ad vectors for transcellular targeting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号