首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A recent study of a pair of sympatric species of cichlids in Lake Apoyo in Nicaragua is viewed as providing probably one of the most convincing examples of sympatric speciation to date. Here, we describe and study a stochastic, individual-based, explicit genetic model tailored for this cichlid system. Our results show that relatively rapid (<20,000 generations) colonization of a new ecological niche and (sympatric or parapatric) speciation via local adaptation and divergence in habitat and mating preferences are theoretically plausible if: (i) the number of loci underlying the traits controlling local adaptation, and habitat and mating preferences is small; (ii) the strength of selection for local adaptation is intermediate; (iii) the carrying capacity of the population is intermediate; and (iv) the effects of the loci influencing nonrandom mating are strong. We discuss patterns and timescales of ecological speciation identified by our model, and we highlight important parameters and features that need to be studied empirically to provide information that can be used to improve the biological realism and power of mathematical models of ecological speciation.  相似文献   

2.
Niche variation owing to individual differences in ecology has been hypothesized to be an early stage of sympatric speciation. Yet to date, no study has tracked niche width over more than a few generations. In this study, we show the presence of isotopic niche variation over millennial timescales and investigate the evolutionary outcomes. Isotopic ratios were measured from tissue samples of sympatric killer whale Orcinus orca lineages from the North Sea, spanning over 10 000 years. Isotopic ratios spanned a range similar to the difference in isotopic values of two known prey items, herring Clupea harengus and harbour seal Phoca vitulina. Two proxies of the stage of speciation, lineage sorting of mitogenomes and genotypic clustering, were both weak to intermediate indicating that speciation has made little progress. Thus, our study confirms that even with the necessary ecological conditions, i.e. among-individual variation in ecology, it is difficult for sympatric speciation to progress in the face of gene flow. In contrast to some theoretical models, our empirical results suggest that sympatric speciation driven by among-individual differences in ecological niche is a slow process and may not reach completion. We argue that sympatric speciation is constrained in this system owing to the plastic nature of the behavioural traits under selection when hunting either mammals or fish.  相似文献   

3.
Ecological speciation requires divergent selection, reproductive isolation and a genetic mechanism to link the two. We examined the role of gene expression and coding sequence evolution in this process using two species of Howea palms that have diverged sympatrically on Lord Howe Island, Australia. These palms are associated with distinct soil types and have displaced flowering times, representing an ideal candidate for ecological speciation. We generated large amounts of RNA‐Seq data from multiple individuals and tissue types collected on the island from each of the two species. We found that differentially expressed loci as well as those with divergent coding sequences between Howea species were associated with known ecological and phenotypic differences, including response to salinity, drought, pH and flowering time. From these loci, we identified potential ‘ecological speciation genes’ and further validate their effect on flowering time by knocking out orthologous loci in a model plant species. Finally, we put forward six plausible ecological speciation loci, providing support for the hypothesis that pleiotropy could help to overcome the antagonism between selection and recombination during speciation with gene flow.  相似文献   

4.
The exact nature of the relationship among species range sizes, speciation, and extinction events is not well understood. The factors that promote larger ranges, such as broad niche widths and high dispersal abilities, could increase the likelihood of encountering new habitats but also prevent local adaptation due to high gene flow. Similarly, low dispersal abilities or narrower niche widths could cause populations to be isolated, but such populations may lack advantageous mutations due to low population sizes. Here we present a large-scale, spatially explicit, individual-based model addressing the relationships between species ranges, speciation, and extinction. We followed the evolutionary dynamics of hundreds of thousands of diploid individuals for 200,000 generations. Individuals adapted to multiple resources and formed ecological species in a multidimensional trait space. These species varied in niche widths, and we observed the coexistence of generalists and specialists on a few resources. Our model shows that species ranges correlate with dispersal abilities but do not change with the strength of fitness trade-offs; however, high dispersal abilities and low resource utilization costs, which favored broad niche widths, have a strong negative effect on speciation rates. An unexpected result of our model is the strong effect of underlying resource distributions on speciation: in highly fragmented landscapes, speciation rates are reduced.  相似文献   

5.
According to theory, sympatric speciation in sexual eukaryotes is favored when relatively few loci in the genome are sufficient for reproductive isolation and adaptation to different niches. Here we show a similar result for clonally reproducing bacteria, but which comes about for different reasons. In simulated microbial populations, there is an evolutionary tradeoff between early and late stages of niche adaptation, which is resolved when relatively few loci are required for adaptation. At early stages, recombination accelerates adaptation to new niches (ecological speciation) by combining multiple adaptive alleles into a single genome. Later on, without assortative mating or other barriers to gene flow, recombination generates unfit intermediate genotypes and homogenizes incipient species. The solution to this tradeoff may be simply to reduce the number of loci required for speciation, or to reduce recombination between species over time. Both solutions appear to be relevant in natural microbial populations, allowing them to diverge into ecological species under similar constraints as sexual eukaryotes, despite differences in their life histories.  相似文献   

6.
Understanding the role of geography and ecology in species divergence is central to the study of evolutionary diversification. We used climatic, geographic, and biological data from nine wild Andean tomato species to describe each species' ecological niche and to evaluate the likely ecological and geographical modes of speciation in this clade. Using data from >1000 wild accessions and publicly available data derived from geographic information systems for various environmental variables, we found most species pairs were significantly differentiated for one or more environmental variables. By comparing species' predicted niches generated by species distribution modeling (SDM), we found significant niche differentiation among three of four sister-species pairs, suggesting ecological divergence is consistently associated with recent divergence. In comparison, based on age-range correlation (ARC) analysis, there was no evidence for a predominant geographical (allopatric vs. sympatric) context for speciation in this group. Overall, our results suggest an important role for environmentally mediated differentiation, rather than simply geographical isolation, in species divergence.  相似文献   

7.
Climate may play important roles in speciation, such as causing the range fragmentation that underlies allopatric speciation (through niche conservatism) or driving divergence of parapatric populations along climatic gradients (through niche divergence). Here, we developed new methods to test the frequency of climate niche conservatism and divergence in speciation, and applied it to species pairs of squamate reptiles (lizards and snakes). We used a large‐scale phylogeny to identify 242 sister species pairs for analysis. From these, we selected all terrestrial allopatric pairs with sufficient occurrence records (= 49 pairs) and inferred whether each originated via climatic niche conservatism or climatic niche divergence. Among the 242 pairs, allopatric pairs were most common (41.3%), rather than parapatric (19.4%), partially sympatric (17.7%), or fully sympatric species pairs (21.5%). Among the 49 selected allopatric pairs, most appeared to have originated via climatic niche divergence (61–76%, depending on the details of the methods). Surprisingly, we found greater climatic niche divergence between allopatric sister species than between parapatric pairs, even after correcting for geographic distance. We also found that niche divergence did not increase with time, further implicating niche divergence in driving lineage splitting. Overall, our results suggest that climatic niche divergence may often play an important role in allopatric speciation, and the methodology developed here can be used to address the generality of these findings in other organisms.  相似文献   

8.
Ecological factors may contribute to reproductive isolation if differential local adaptation causes immigrant or hybrid fitness reduction. Because local adaptation results from the interaction between natural selection and adaptive traits, it is crucial to investigate both to understand ecological speciation. Previously, we used niche modelling to identify local water availability as an environmental correlate of incipient ecological speciation between two subspecies in Boechera stricta, a close relative of Arabidopsis. Here, we performed several large‐scale glasshouse experiments to investigate the divergence of various physiological, phenological and morphological traits. Although we found no significant difference in physiological traits, the Western subspecies has significantly faster growth rate, larger leaf area, less succulent leaves, delayed reproductive time and longer flowering duration. These trait differences are concordant with previous results that habitats of the Western genotypes have more consistent water availability, while Eastern genotypes inhabit locations with more ephemeral water supplies. In addition, by comparing univariate and multivariate divergence of complex traits (QST) to the genomewide distribution of SNP FST, we conclude that the aspects of phenology and morphology (but not physiology) are under divergent selection. In addition, we also identified several highly diverged traits without obvious water‐related functions.  相似文献   

9.
A theoretical model is studied to investigate the possibility of sympatric speciation driven by sexual selection and ecological diversification. In particular we focus on the rock-dwelling haplochromine cichlid species in Lake Victoria. The high speciation rate in these cichlids has been explained by their apparent ability to specialize rapidly to a large diversity of feeding niches. Seehausen and colleagues however, demonstrated the importance of sexual selection in maintaining reproductive barriers between species. Our individual-orientated model integrates both niche differentiation and a Fisherian runaway process, which is limited by visibility constraints. The model shows rapid sympatric speciation or extinction of species, depending on the strength of sexual selection.  相似文献   

10.
Polyploid speciation entails substantial and rapid postzygotic reproductive isolation of nascent species that are initially sympatric with one or both parents. Despite strong postzygotic isolation, ecological niche differentiation has long been thought to be important for polyploid success. Using biogeographic data from across vascular plants, we tested whether the climatic niches of polyploid species are more differentiated than their diploid relatives and if the climatic niches of polyploid species differentiated faster than those of related diploids. We found that polyploids are often more climatically differentiated from their diploid parents than the diploids are from each other. Consistent with this pattern, we estimated that polyploid species generally have higher rates of multivariate niche differentiation than their diploid relatives. In contrast to recent analyses, our results confirm that ecological niche differentiation is an important component of polyploid speciation and that niche differentiation is often significantly faster in polyploids.  相似文献   

11.
The ecological niche and mate preferences have independently been shown to be important for the process of speciation. Here, we articulate a novel mechanism by which ecological niche use and mate preference can be linked to promote speciation. The degree to which individual niches are narrow and clustered affects the strength of divergent natural selection and population splitting. Similarly, the degree to which individual mate preferences are narrow and clustered affects the strength of divergent sexual selection and assortative mating between diverging forms. This novel perspective is inspired by the literature on ecological niches; it also explores mate preferences and how they may contribute to speciation. Unlike much comparative work, we do not search for evolutionary patterns using proxies for adaptation and sexual selection, but rather we elucidate how ideas from niche theory relate to mate preference, and how this relationship can foster speciation. Recognizing that individual and population niches are conceptually and ecologically linked to individual and population mate preference functions will significantly increase our understanding of rapid evolutionary diversification in nature. It has potential to help solve the difficult challenge of testing the role of sexual selection in the speciation process. We also identify ecological factors that are likely to affect individual niche and individual mate preference in synergistic ways and as a consequence to promote speciation. The ecological niche an individual occupies can directly affect its mate preference. Clusters of individuals with narrow, differentiated niches are likely to have narrow, differentiated mate preference functions. Our approach integrates ecological and sexual selection research to further our understanding of diversification processes. Such integration may be necessary for progress because these processes seem inextricably linked in the natural world.  相似文献   

12.
The significance of sympatric speciation is one of the most controversial topics in evolutionary biology. Theory suggests that different factors can lead to speciation in full geographical contact, including selection and nonrandom mating. Strict criteria have been established for assessing sympatric speciation, which have been met in only a very few cases. Here, we investigate differentiation among sympatric morphospecies and color morphs of "roundfin" sailfin silversides (Telmatherinidae), small freshwater fish endemic to ancient Lake Matano in Central Sulawesi (Indonesia). Morphospecies are distinct according to body shape (geometric morphometrics), population structure (population-level amplified fragment length polymorphism [AFLP] markers), ecology, and mating behavior (habitat transects, stomach contents). Explorative genome scans based on AFLPs indicate that divergent selection affects only 1.3-4.2% of the analyzed loci, suggesting an early stage of speciation. Transect data demonstrate strong assortative mating and adaptive niche differentiation. However, we find no restrictions in gene flow among the conspicuous male color morphs. In summary, our data are consistent with a sympatric mode of divergence among three morphospecies under conditions effectively ruling out allopatric scenarios. Substantial, but incomplete, reproductive isolation suggests an early stage of speciation, most likely due to ecological selection pressure.  相似文献   

13.
Species level phylogenetic hypotheses can be used to explore patterns of divergence and speciation. In the tropics, speciation is commonly attributed to either vicariance, perhaps within climate-induced forest refugia, or ecological speciation caused by niche adaptation. Mimetic butterflies have been used to identify forest refugia as well as in studies of ecological speciation, so they are ideal for discriminating between these two models. The genus Ithomia contains 24 species of warningly colored mimetic butterflies found in South and Central America, and here we use a phylogenetic hypothesis based on seven genes for 23 species to investigate speciation in this group. The history of wing color pattern evolution in the genus was reconstructed using both parsimony and likelihood. The ancestral pattern for the group was almost certainly a transparent butterfly, and there is strong evidence for convergent evolution due to mimicry. A punctuationist model of pattern evolution was a significantly better fit to the data than a gradualist model, demonstrating that pattern changes above the species level were associated with cladogenesis and supporting a model of ecological speciation driven by mimicry adaptation. However, there was only one case of sister species unambiguously differing in pattern, suggesting that some recent speciation events have occurred without pattern shifts. The pattern of geographic overlap between clades over time shows that closely related species are mostly sympatric or, in one case, parapatric. This is consistent with modes of speciation with ongoing gene flow, although rapid range changes following allopatric speciation could give a similar pattern. Patterns of lineage accumulation through time differed significantly from that expected at random, and show that most of the extant species were present by the beginning of the Pleistocene at the latest. Hence Pleistocene refugia are unlikely to have played a major role in Ithomia diversification.  相似文献   

14.
The frequent occurrence of sympatric series of closely related plant species in tropical rainforests has evoked claims for and against the application of the competitive exclusion principle in these ecosystems. Narrow niche limits defined by biotic as well as abiotic specialization have been reported for sympatric species of the same genus or family. In Amazonian lowland rainforests this question deserves renewed attention because: (1) the existence of edaphically defined community types has recently been well established, and (2) spatio-ecological niche segregation of congeneric species may help explain not only the maintenance of the high Amazonian alpha-diversity, but also its origin through sympatric ecological speciation. In this study, the morphology, ecology, and distribution patterns of two species,Clidemia epiphytica andC. longifolia (Melastomataceae), from western Amazonia, were analyzed. The aims were to find out whether they really are two distinct taxonomic species and if so, whether they also can be considered biological species; if the species are sympatric; and if they are ecologically specialized. The results showed that the morphological variation of the species seems continuous, but that they exhibit opposite morphological responses to variation in soil cation concentration, which suggests that they also are separate biological species. Furthermore, the species occur sympatrically but in different habitats. It is suggested that a part of the enigma of sympatric congeners in rainforests may be explainable by spatial segregation stemming from ecological specialization in relation to subtle environmental variation. It is hypothesized that the studied species are a good candidate case of sympatric speciation driven by ecological specialization.  相似文献   

15.
Organisms commonly experience significant spatiotemporal variation in their environments. In response to such heterogeneity, different mechanisms may act that enhance ecological performance locally. However, depending on the nature of the mechanism involved, the consequences for populations may differ greatly. Building on a previous model that investigated the conditions under which different adaptive mechanisms (co)evolve, this study compares the ecological and evolutionary population consequences of three very different responses to environmental heterogeneity: matching habitat choice (directed gene flow), adaptive plasticity (associated with random gene flow), and divergent natural selection. Using individual‐based simulations, we show that matching habitat choice can have a greater adaptive potential than plasticity or natural selection: it allows for local adaptation while protecting genetic polymorphism despite global mating or strong environmental changes. Our simulations further reveal that increasing environmental fluctuations and unpredictability generally favor the emergence of specialist genotypes but that matching habitat choice is better at preventing local maladaptation by individuals. This confirms that matching habitat choice can speed up the genetic divergence among populations, cause indirect assortative mating via spatial clustering, and hence even facilitate sympatric speciation. This study highlights the potential importance of directed dispersal in local adaptation and speciation, stresses the difficulty of deriving its operation from nonexperimental observational data alone, and helps define a set of ecological conditions which should favor its emergence and subsequent detection in nature.  相似文献   

16.
We build a spatial individual-based multilocus model of homoploid hybrid speciation tailored for a tentative case of hybrid origin of Heliconius heurippa from H. melpomene and H. cydno in South America. Our model attempts to account for empirical patterns and data on genetic incompatibility, mating preferences and selection by predation (both based on coloration patterns), habitat preference, and local adaptation for all three Heliconius species. Using this model, we study the likelihood of recombinational speciation and identify the effects of various ecological and genetic parameters on the dynamics, patterns, and consequences of hybrid ecological speciation. Overall, our model supports the possibility of hybrid origin of H. heurippa under certain conditions. The most plausible scenario would include hybridization between H. melpomene and H. cydno in an area geographically isolated from the rest of both parental species with subsequent long-lasting geographic isolation of the new hybrid species, followed by changes in the species ranges, the secondary contact, and disappearance of H. melpomene -type ecomorph in the hybrid species. However, much more work (both empirical and theoretical) is necessary to be able to make more definite conclusions on the importance of homoploid hybrid speciation in animals.  相似文献   

17.
The Galician sympatric ecotypes of Littorina saxatilis have been proposed as a model system for studying parallel ecological speciation. Such a model system makes a clear prediction: candidate loci (for divergent adaptation) should present a higher level of geographical differentiation than noncandidate (neutral) loci. We used 2356 amplified fragment length polymorphisms (AFLPs) and four microsatellite loci to identify candidate loci for ecological adaptation using the F ST outlier method. Three per cent of the studied AFLP loci were identified as candidate loci associated with adaptation, after multitest adjustments, thus contributing to ecotype differentiation (candidate loci were not detected within ecotypes). Candidate and noncandidate loci were analysed separately at four different F ST partitions: differences between ecotypes (overall and local), differences between localities and micro-geographical differences within ecotypes. The magnitude of F ST differed between candidate and noncandidate loci for all partitions except in the case of microgeographical differentiation within ecotypes, and the microsatellites (putatively neutral) showed an identical pattern to noncandidate loci. Thus, variation in candidate loci is determined partially independent by divergent natural selection (in addition to stochastic forces) at each locality, while noncandidate loci are exclusively driven by stochastic forces. These results support the evolutionary history described for these particular populations, considered to be a clear example of incomplete sympatric ecological speciation.  相似文献   

18.
Microenvironmental heterogeneity is important in the ecology and diversification of the rich palm flora that inhabits neotropical rain forests. At small-0.1-102 m-scales, neotropical rain forests exhibit high heterogeneity in numerous environmental factors: canopy conditions, conspecifics, other plants, litter, soil factors, topography, and animal mutualists and pests. These aspects of microenvironmental heterogeneity affect the performance and the small-scale distribution of palms in numerous ways, often affecting different species differently. Notably, even subtle environmental variation can be of crucial ecological importance. Microenvironmental heterogeneity promotes the local coexistence of palm species by niche differences among the species and probably also by mass effects and negative density dependence. Sympatric species of the same growth form often differ in terms of light requirements, edaphic-topographic preferences, and possibly also in seed-dispersal patterns, whereas mass effects are likely to account for the local occurrence of a share of the rare species. Density dependence seems to be frequent among large-seeded palms, but its importance needs to be assessed. Microenvironmental heterogeneity is proposed to be an important diversity-generating factor in the neotropical palm flora through the process of parapatric speciation. This hypothesis is based on the observation that, in species-rich palm genera and species complexes, sympatric species or morphs often differ in edaphic-topographic preferences or in characteristics that confer differing light requirements and in traits that favor reproductive isolation.  相似文献   

19.
Closely related species (e.g., sister taxa) often occupy very different ecological niches and can exhibit large differences in geographic distributions despite their shared evolutionary history. Budding speciation is one process that may partially explain how differences in niche and distribution characteristics may rapidly evolve. Budding speciation is the process through which new species form as initially small colonizing populations that acquire reproductive isolation. This mode of species formation predicts that, at the time of speciation, sister species should have highly asymmetrical distributions. We tested this hypothesis in North American monkeyflowers, a diverse clade with a robust phylogeny, using data on geographical ranges, climate, and plant community attributes. We found that recently diverged sister pairs have highly asymmetrical ranges and niche breadths, relative to older sister pairs. Additionally, we found that sister species occupy distinct environmental niche positions, and that 80% of sister species have completely or partially overlapping distributions (i.e., are broadly sympatric). Together, these results suggest that budding speciation has occurred frequently in Mimulus, that it has likely taken place both inside the range and on the range periphery, and that observed divergences in habitat and resource use could be associated with speciation in small populations.  相似文献   

20.
The emergence of new frameworks combining evolutionary and ecological dynamics in communities opens new perspectives on the study of speciation. By acknowledging the relative contribution of local and regional dynamics in shaping the complexity of ecological communities, metacommunity theory sheds a new light on the mechanisms underlying the emergence of species. Three integrative frameworks have been proposed, involving neutral dynamics, niche theory, and life history trade‐offs respectively. Here, we review these frameworks of metacommunity theory to emphasise that: (1) studies on speciation and community ecology have converged towards similar general principles by acknowledging the central role of dispersal in metacommunities dynamics, (2) considering the conditions of emergence and maintenance of new species in communities has given rise to new models of speciation embedded in the metacommunity theory, (3) studies of diversification have shifted from relating phylogenetic patterns to landscapes spatial and ecological characteristics towards integrative approaches that explicitly consider speciation in a mechanistic ecological framework. We highlight several challenges, in particular the need for a better integration of the eco‐evolutionary consequences of dispersal and the need to increase our understanding on the relative rates of evolutionary and ecological changes in communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号