共查询到20条相似文献,搜索用时 15 毫秒
1.
We previously demonstrated that a balance of K+ and Ca2+-activated Cl- channel activity maintained the basal tone of circular smooth muscle of opossum lower esophageal sphincter (LES). In the current studies, the contribution of major K+ channels to the LES basal tone was investigated in circular smooth muscle of opossum LES in vitro. K+ channel activity was recorded in dispersed single cells at room temperature using patch-clamp recordings. Whole-cell patch-clamp recordings displayed an outward current beginning to activate at -60 mV by step test pulses lasting 400 ms (-120 mV to +100 mV) with increments of 20 mV from holding potential of -80 mV ([K+]I = 150 mM, [K+]o = 2.5 mM). However, no inward rectification was observed. The outward current peaked within 50 ms and showed little or no inactivation. It was significantly decreased by bath application of nifedipine, tetraethylammonium (TEA), 4-aminopyridine (4-AP), and iberiotoxin (IBTN). Further combination of TEA with 4-AP, nifedipine with 4-AP, and IBTN with TEA, or vice versa, blocked more than 90% of the outward current. Ca2+-sensitive single channels were recorded at asymetrical K+ gradients in cell-attached patch-clamp configurations (100.8+/-3.2 pS, n = 8). Open probability of the single channels recorded in inside-out patch-clamp configurations were greatly decreased by bath application of IBTN (100 nM) (Vh = -14.4+/-4.8 mV in control vs. 27.3+/-0.1 mV, n = 3, P < 0.05). These data suggest that large conductance Ca2+-activated K+ and delayed rectifier K+ channels contribute to the membrane potential, and thereby regulate the basal tone of opossum LES circular smooth muscle. 相似文献
2.
Zhang Y Paterson WG 《American journal of physiology. Gastrointestinal and liver physiology》2007,292(6):G1600-G1606
Na(+) reduction induces contraction of opossum lower esophageal sphincter (LES) circular smooth muscle strips in vitro; however, the mechanism(s) by which this occurs is unknown. The purpose of the present study was to investigate the electrophysiological effects of low Na(+) on opossum LES circular smooth muscle. In the presence of atropine, quanethidine, nifedipine, and substance P, conventional intracellular electrodes recorded a resting membrane potential (RMP) of -37.5 +/- 0.9 mV (n = 4). Decreasing [Na(+)] from 144.1 to 26.1 mM by substitution of equimolar NaCl with choline Cl depolarized the RMP by 7.1 +/- 1.1 mV. Whole cell patch-clamp recordings revealed outward K(+) currents that began to activate at -60 mV using 400-ms stepped test pulses (-120 to +100 mV) with increments of 20 mV from holding potential of -80 mV. Reduction of [Na(+)] in the bath solution inhibited K(+) currents in a concentration-dependent manner. Single channels with conductance of 49-60 pS were recorded using cell-attached patch-clamp configurations. The channel open probability was significantly decreased by substitution of bath Na(+) with equimolar choline. A 10-fold increase of [K(+)] in the pipette shifted the reversal potential of the single channels to the positive by -50 mV. These data suggest that Na(+)-activated K(+) channels exist in the circular smooth muscle of the opossum LES. 相似文献
3.
4.
5.
Electrical and mechanical properties of the distal canine lower esophageal sphincter were studied in vitro to investigate possible means of inducing pacemaker activity. Both direct excitation and block of potassium conductance were investigated. The acetylcholine analog, carbachol, induced tissue depolarization and increase in tone but no electrical slow waves. Tetraethylammonium (TEA) chloride induced depolarization and evoked continuous spiking activity and increase in tone. BaCl did not depolarize the tissue but low amplitude spiking activity developed and increased tone. The putative potassium channel blocker, aminacrine at 2 X 10(-4) M, induced electrical slow wave activity in the distal lower esophageal sphincter, with or without superimposed spikes, accompanied by phasic contractile activity. This activity closely resembled the spontaneous pacemaker activity observed previously in the proximal lower esophageal sphincter. The aminacrine-induced activity was abolished by calcium influx blockers. Aminacrine, but not TEA or BaCl, abolished the nonadrenergic nerve-mediated inhibitory junction potentials. In conclusion, block of inhibitory innervation, and induction of electrical slow waves as a control mechanism for phasic contractile activity, seems to require blockade of an aminacrine- but not TEA-sensitive potassium conductance. 相似文献
6.
7.
8.
Cao W Cheng L Behar J Biancani P Harnett KM 《American journal of physiology. Gastrointestinal and liver physiology》2006,291(4):G672-G680
In a cat model of acute experimental esophagitis, resting in vivo lower esophageal sphincter (LES) pressure and in vitro tone are lower than in normal LES, and the LES circular smooth muscle layer contains elevated levels of IL-1beta that decrease the LES tone of normal cats. We now examined the mechanisms of IL-1beta-induced reduction in LES tone. IL-1beta significantly reduced acetylcholine-induced Ca(2+) release in Ca(2+)-free medium, and this effect was partially reversed by catalase, demonstrating a role of H(2)O(2) in these changes. IL-1beta significantly increased the production of H(2)O(2), and the increase was blocked by the p38 MAPK inhibitor SB-203580, by the cytosolic phospholipase A(2) (cPLA(2)) inhibitor AACOCF3, and by the NADPH oxidase inhibitor apocynin, but not by the MEK1 inhibitor PD-98059. IL-1beta significantly increased the phosphorylation of p38 MAPK and cPLA(2). IL-1beta-induced cPLA(2) phosphorylation was blocked by SB-203580 but not by AACOCF3, suggesting sequential activation of p38 MAPK-phosphorylating cPLA(2). The IL-1beta-induced reduction in LES tone was partially reversed by AACOCF3 and by the Ca(2+)-insensitive PLA(2) inhibitor bromoenol lactone (BEL). IL-1beta significantly increased cyclooxygenase (COX)-2 and PGE(2) levels. The increase in PGE(2) was blocked by SB-203580, AACOCF3, BEL, and the COX-2 inhibitor NS-398 but not by PD-98059 or the COX-1 inhibitor valeryl salicylate. The data suggested that IL-1beta reduces LES tone by producing H(2)O(2), which may affect Ca(2+)-release mechanisms and increase the synthesis of COX-2 and PGE(2). Both H(2)O(2) and PGE(2) production depend on sequential activation of p38 MAPK and cPLA(2). cPLA(2) activates NADPH oxidases, producing H(2)O(2), and may produce arachidonic acid, converted to PGE(2) via COX-2. 相似文献
9.
Dogan I Bhargava V Liu J Mittal RK 《American journal of physiology. Gastrointestinal and liver physiology》2007,292(1):G329-G334
Swallow and esophageal distension-induced relaxations of the lower esophageal sphincter (LES) are associated with an orad movement of the LES because of a concurrent esophageal longitudinal muscle contraction. We hypothesized that the esophageal longitudinal muscle contraction induces a cranially directed mechanical stretch on the LES and therefore studied the effects of a mechanical stretch on the LES pressure. In adult opossums, a silicon tube was placed via mouth into the esophagus and laparotomy was performed. Two needles with silk sutures were passed, 90 degrees apart, through the esophageal walls and silicon tube, 2 cm above the LES. The tube was withdrawn, and one end of each of the four sutures was anchored to the esophageal wall and the other end exited through the mouth to exert graded cranially directed stretch on the LES by using pulley and weights. A cranially directed stretch caused LES relaxation, and with the cessation of stretch there was recovery of the LES pressure. The degree an d duration of LES relaxation increased with the weight and the duration of stretch, respectively. The mean LES relaxation in all animals was 77.7 +/- 4.7%. The required weight to induce maximal LES relaxation differed in animals (714 +/- 348 g). N(G)-nitro-L-arginine, a nitric oxide inhibitor, blocked the axial stretch-induced LES relaxation almost completely (from 78 to 19%). Our data support the presence of an axial stretch-activated inhibitory mechanism in the LES. The role of axial stretch in the LES relaxation induced by swallow and esophageal distension requires further investigation. 相似文献
10.
Shepherd KL Holloway RH Hillman DR Eastwood PR 《American journal of physiology. Gastrointestinal and liver physiology》2007,292(5):G1200-G1205
The lower esophageal sphincter (LES) is the primary barrier to gastroesophageal reflux. Reflux is associated with periods of LES relaxation, as occurs during swallowing. Continuous positive airway pressure (CPAP) has been shown to reduce reflux in individuals with and without sleep apnea, by an unknown mechanism. The aim of this study was to determine the effect of CPAP on swallow-induced LES relaxation. Measurements were made in 10 healthy, awake, supine individuals. Esophageal (Pes), LES (Ples), gastric (Pg), and barrier pressure to reflux (Pb = Ples - Pg) were recorded using a sleeve catheter during five swallows of 5 ml of water. This was repeated at four levels of CPAP (0, 5, 10, and 15 cmH(2)O). Pressures were measured during quiet breathing and during the LES relaxation associated with a swallow. Duration of LES relaxation was also recorded. During quiet breathing, CPAP significantly increased end-expiratory Pes, Ples, Pg, and Pb (P < 0.05). The increase in Pb was due to a disproportionate increase in Ples compared with Pg (P < 0.05). During a swallow, CPAP increased nadir Ples, Pg, and Pb and decreased the duration of LES relaxation (4.1 s with 0-cmH(2)O CPAP to 1.6 s on 15-cmH(2)O CPAP, P < 0.001). Pb increased with CPAP by virtue of a disproportionate increase in Ples compared with Pg. This may be due to either reflex activation of LES smooth muscle, or nonspecific transmission of pressure to the LES. The findings suggest CPAP may make the LES less susceptible to reflux by increasing Pb and decreasing the duration of LES relaxation. 相似文献
11.
Cao W Sohn UD Bitar KN Behar J Biancani P Harnett KM 《American journal of physiology. Gastrointestinal and liver physiology》2003,285(1):G86-G95
Esophageal (ESO) circular muscle contraction and lower esophageal sphincter (LES) tone are PKC dependent. Because MAPKs may be involved in PKC-dependent contraction, we examined ERK1/ERK2 and p38 MAPKs in ESO and LES. In permeabilized LES muscle cells, ERK1/2 antibodies reduced 1,2-dioctanoylglycerol (DG)- and threshold ACh-induced contraction, which are PKC dependent, but not maximal ACh, which is calmodulin dependent. LES tone was reduced by the ERK1/2 kinase inhibitor PD-98059 and by the p38 MAPK inhibitor SB-203580. In permeable ESO cells, ACh contraction was reduced by ERK1/ERK2 and p38 MAPK antibodies and by PD-98059 and SB-203580. ACh increased MAPK activity and phosphorylation of MAPK and of p38 MAPK. The 27-kDa heat shock protein (HSP27) antibodies reduced ACh contraction. HSP27 and p38 MAPK antibodies together caused no greater inhibition than either one alone. p38 MAPK and HSP27 coprecipitated after ACh stimulation, suggesting that HSP27 is linked to p38 MAPK. These data suggest that PKC-dependent contraction in ESO and LES is mediated by the following two distinct MAPK pathways: ERK1/2 and HSP27-linked p38 MAPK. 相似文献
12.
Localization and inhibitory actions of galanin at the feline lower esophageal sphincter 总被引:3,自引:0,他引:3
Gary R. Lichtenstein James C. Reynolds Carrie P. Ogorek Henry P. Parkman 《Regulatory peptides》1994,50(3):213-222
Intrinsic reflexes of the lower esophageal sphincter (LES) are mediated by specific arrangements of excitatory and inhibitory nerves. We have previously described an excitatory reflex at the feline LES mediated by a bombesin-like peptide (BN) which causes release of substance P (SP) to directly contract the LES. Galanin is a neurotransmitter in the enteric nervous system which colocalizes in neurons containing vasoactive intestinal peptide (VIP). The aims of this study were to determine: (1) the distribution of galanin at the feline LES; (2) the effect of galanin on basal LES tone; (3) the effect of galanin on agonist-induced LES contractions by BN, SP and bethanechol; and (4) the effect of galanin on LES relaxation induced by esophageal distension and exogenous VIP. Galanin-like immunoreactivity (galanin-LI) was localized in neurons that were widely distributed throughout the LES and adjacent organs. Galanin-LI was most abundant in the circular muscle, muscularis mucosa and myenteric plexus of the LES. In anesthetized cats, intra-arterial galanin had no effect on basal LES pressure in a dose range of 10−11 to 10−6 g/kg. Galanin (510−7 g/kg) reduced the LES contractile response to SP by 65 ± 8% (P = 0.0001). This galanin-mediated inhibition of SP was not blocked by tetrodotoxin. Galanin similarly decreased the LES contractile response to BN (63 ± 7%, P = 0.005) and bethanechol (55 ± 17%, P = 0.012). Galanin had no effect on the LES relaxation induced by esophageal distension or exogenous VIP. We conclude: (1) galanin-LI is present in neurons at the feline LES; (2) galanin has no effect on basal sphincter tone, but inhibits contractions of the LES by both direct and indirect agonists; and (3) galanin does not effect the LES relaxation induced by esophageal distension or VIP. 相似文献
13.
The presence of well developed appendices in some animals when compared to humans has led to speculation that appendix is a vestigial organ. Increasing number of studies have revealed that the appendix serves as an important organ in humans. The function of animal appendix, and the differences between species remain poorly understood. In this study we examined human myenteric plexus and compared them with animal studies. Appendices were obtained from five young adults in which the appendix was found to be normal after removal. Fixed appendix cryosections were examined by immunofluorescence methods using neuronal marker antibodies to neurofilaments and beta III tubulin. Both antibodies stained myenteric ganglia which were arranged in an apparently irregular pattern in human appendix wall. We observed unexpected localization of myenteric ganglia in the subserosa often accompanied by rarely occurring ganglia in the longitudinal muscle layer. These ganglia were of different sizes and shapes and unequally distributed under a thin layer of serosa. Our findings raise many questions about the possible role of irregular and atypical myenteric ganglia localization in relation to altered motility and subsequent pathogenesis of the appendix in inflammatory disease in humans. On the other hand, studies of the literature have revealed simplicity in the organization of myenteric plexus, e.g., in well-developed rabbit appendix. In addition, appendicitis in animals is restricted to in apes with similarly shaped appendix to humans. 相似文献
14.
Zhang Q Horowitz M Rigda R Rayner C Worynski A Holloway RH 《American journal of physiology. Gastrointestinal and liver physiology》2004,286(5):G797-G803
Acute changes in blood glucose concentration have major effects on gastrointestinal motor function. Patients with diabetes mellitus have an increased prevalence of gastroesophageal reflux. Transient lower esophageal sphincter (LES) relaxation (TLESR) is the most common sphincter mechanism underlying reflux. The aim of this study was to investigate the effect of acute hyperglycemia on triggering TLESRs evoked by gastric distension in healthy volunteers. TLESRs were stimulated by pressure-controlled and volume-controlled (500 ml) gastric distension using an electronic barostat and performed on separate days. On each day, esophageal manometry was performed in the sitting position during gastric distension for 1 h under euglycemia (5 mM), and either marked hyperglycemia (15 mM) or physiological hyperglycemia (8 mM) in randomized order was maintained by a glucose clamp. Marked hyperglycemia doubled the rate of TLESRs in response to both pressure-controlled [5 (3-10.5, median or interquartile range) to 10 (9.5-14.5) per hour, P < 0.02] and volume-controlled [4 (2.5-7.5) to 10.5 (7-12.5) per hour, P < 0.02] gastric distension but had no effect on basal LES pressure. Physiological hyperglycemia had no effect on the triggering of TLESRs or basal LES pressure. In healthy human subjects, marked hyperglycemia increases the rate of TLESRs. Increase in the rate of TLESRs is independent of proximal gastric wall tension. Mechanisms underlying the effect remain to be determined. Hyperglycemia may be an important factor contributing to the increased esophageal acid exposure in patients with diabetes mellitus. 相似文献
15.
The effect of bombesin on the tone and the responses of strips from the lower esophageal sphincter (LES) to field electrical stimulation (FES) (2 Hz, 0.2 ms, supramaximal current intensity, 20 s duration) was studied. Bombesin dose-dependently increased the LES tone. The threshold for this effect was 10(-14) M and was particularly pronounced with a concentration of 10(-8) M. The response reached maximum between the 3rd and the 5th min after application, persisted for 15-20 min, and was followed by a slight time-dependent decrease. Bombesin increased FES-produced relaxation of LES by 39% as compared to the control. The potentiating effect of bombesin on the LES relaxation was also observed after cholinergic and adrenergic receptor blockade. It is concluded that bombesin may modulate the release of cholinergic, adrenergic and noncholinergic, nonadrenergic inhibitory neurotransmitters. 相似文献
16.
Salapatek AM Ji J Muinuddin A Diamant NE 《Canadian journal of physiology and pharmacology》2004,82(11):1006-1017
We hypothesized that regional differences in electrophysiological properties exist within the musculature of the feline lower esophageal sphincter (LES) and that they may potentially contribute to functional asymmetry within the LES. Freshly isolated esophageal smooth muscle cells (SMCs) from the circular muscle and sling regions within the LES were studied under a patch clamp. The resting membrane potential (RMP) of the circular SMCs was significantly more depolarized than was the RMP of the sling SMCs, resulting from a higher Na+ and Cl- permeability in circular muscle than in sling muscle. Large conductance Ca2+-activated K+ (BKCa) set the RMP at both levels, since specific BKCa inhibitors caused depolarization; however, BKCa density was greatest in the circular region. A significant portion of the outward current was due to non-BKCa, especially in sling muscle, and likely delayed rectifier K+ channels (KDR). There was a large reduction in outward current with 4-aminopyridine (4-AP) in sling muscle, while BKCa blockers had a limited effect on the voltage-activated outward current in sling muscle. Differences in BKCa:KDR channel ratios were also manifest by a leftward shift in the voltage-dependent activation curve in circular cells compared to sling cells. The electrophysiological differences seen between the circular and sling muscles provide a basis for their different contributions to LES activities such as resting tone and neurotransmitter responsiveness, and in turn could impart asymmetric drug responses and provide specific therapeutic targets. 相似文献
17.
van Wijk MP Blackshaw LA Dent J Benninga MA Davidson GP Omari TI 《American journal of physiology. Gastrointestinal and liver physiology》2011,301(4):G713-G718
Patients with gastroesophageal reflux disease show an increase in esophagogastric junction (EGJ) distensibility and in frequency of transient lower esophageal sphincter relaxations (TLESR) induced by gastric distension. The objective was to study the effect of localized EGJ distension on triggering of TLESR in healthy volunteers. An esophageal manometric catheter incorporating an 8-cm internal balloon adjacent to a sleeve sensor was developed to enable continuous recording of EGJ pressure during distension of the EGJ. Inflation of the balloon doubled the cross-section of the trans-sphincteric portion of the catheter from 5 mm OD (round) to 5 × 11 mm (oval). Ten healthy subjects were included. After catheter placement and a 30-min adaptation period, the EGJ was randomly distended or not, followed by a 45-min baseline recording. Subjects consumed a refluxogenic meal, and recordings were made for 3 h postprandially. A repeat study was performed on another day with EGJ distension status reversed. Additionally, in one subject MRI was performed to establish the exact position of the balloon in the inflated state. The number of TLESR increased during periods of EGJ distension with the effect being greater after a meal [baseline: 2.0(0.0-4.0) vs. 4.0(1.0-11.0), P=0.04; postprandial: 15.5(10.0-33.0) vs. 22.0(17.0-58.0), P=0.007 for undistended and distended, respectively]. EGJ distension augments meal-induced triggering of TLESR in healthy volunteers. Our data suggest the existence of a population of vagal afferents located at sites in/around the EGJ that may influence triggering of TLESR. 相似文献
18.
Active tension is produced by the lower esophageal sphincter (LES) of North American opossum in vitro by a myogenic mechanism. Strips of LES, but not those from the esophageal body, contracted to prostaglandin (PG)F2 alpha, stable expoxymethano derivatives of PGH2 and to thromboxane B2. Stable endoperoxides were more than 500 times more potent than PGF2 alpha. PGI2 and 6-keto PGF1 alpha were weak relaxants of LES strips. LES strips transformed arachidonic acid into contractile substances. This transformation was prevented by agents which interfere with PG synthesis by inhibiting cyclo-oxygenase [indomethacin (IDM), 5,8,11,14-eicosatetraynoic acid (ETA) or thromboxane synthetase [imidazole]. Tranylcypromine 500 microgram/ml also inhibited contractions to arachidonic acid. These agents also reduced muscle tone, so that endogenous PG formation may contribute to active tension in the LES. ETA and IDM increased tone before inhibiting it, and this effect was prevented by prior treatment with ETA or imidazole. There may also be an endogenous PG which inhibits LES tone. The possibility that this may be PGI2 is discussed. 相似文献
19.
Demonstration of mucous mechanoreceptors in the lower esophageal sphincter. Comparison with muscle mechanoreceptors 总被引:1,自引:0,他引:1
N Clerc N Mei 《Comptes rendus des séances de la Société de biologie et de ses filiales》1981,175(3):352-356
In anaesthetized cats, vagal unitary discharges originating from the Lower Oesophageal Sphincter (L.O.S.) were recorded in nodose ganglia by means of glass microelectrodes. Numerous mechanoreceptors located both in mucosa and muscular layers were found in L.O.S. The mucus mechanoreceptors (high threshold receptors) were activated by strong compressions and distensions, by rapid passage of liquid through the oesophagus and by striking the mucosa. The muscular mechanoreceptors (low threshold receptors) responded to contraction and distension of L.O.S. Both receptors were connected to nonmyelinated fibres (conduction velocity: 0.9-1.4 m/sec). 相似文献
20.
Muinuddin A Neshatian L Gaisano HY Diamant NE 《American journal of physiology. Gastrointestinal and liver physiology》2004,286(2):G271-G277
Within muscular equivalents of cat lower esophageal sphincter (LES), the circular muscle develops greater spontaneous tone, whereas the sling muscle is more responsive to cholinergic stimulation. Smooth muscle contraction involves a combination of calcium release from stores and of calcium entry via several pathways. We hypothesized that there are differences in the sources of Ca(2+) used for contraction in sling and circular muscles and that these differences could contribute to functional asymmetry observed within LES. Contraction of muscle strips from circular and sling regions of LES was assessed in the presence of TTX. In Ca(2+)-free Krebs, tone was inhibited to a greater degree in circular than sling muscle. L-type Ca(2+) channel blockade with nifedipine or verapamil inhibited tone in LES circular but not sling muscle. Sarcoplasmic reticulum (SR) Ca(2+)-ATPase inhibitor cyclopiazonic acid (CPA) caused greater increase in tone in sling than in circular muscle. The phospholipase C inhibitor U-73122 and the SR inositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)] receptor blocker 2-aminoethoxydiphenyl borate (2-APB) inhibited tone in circular and sling muscles, demonstrating that continuous release of Ca(2+) from Ins(1,4,5)P(3)-sensitive stores is important in tone generation in both muscles. In Ca(2+)-free Krebs, ACh-induced contractions (AChC) were inhibited to a greater degree in sling than circular muscles. However, nifedipine and verapamil greatly inhibited AChC in the circular but not sling muscle. Depletion of SR Ca(2+) stores with CPA or inhibition of Ins(1,4,5)P(3)-mediated store release with either U-73122 or 2-APB inhibited AChC in both muscles. We demonstrate that LES circular and sling muscles 1) use intracellular and extracellular Ca(2+) sources to different degrees in the generation of spontaneous tone and AChC and 2) use different Ca(2+) entry pathways. These differences hold the potential for selective modulation of LES tone in health and disease. 相似文献