首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
穿透支原体LAMPs诱导NF-kB激活介导小鼠巨噬细胞凋亡   总被引:1,自引:0,他引:1  
研究穿透支原体(Mpe)脂质相关膜蛋白(LAMPs)能否诱导小鼠巨噬细胞凋亡,并阐明其可能的分子机制,以了解Mpe潜在的致病性.用Annexin-V-FITC凋亡检测试剂盒和DNA Ladder方法检测Mpe LAMPs诱导体外培养的小鼠巨噬细胞系Raw264.7细胞的凋亡.以间接免疫荧光和Western blotting方法检测经Mpe LAMPs处理的小鼠巨噬细胞NF-κB的激活和NF-kB抑制剂吡咯啉烷二甲基硫脲(PDTC)对细胞凋亡的影响.结果表明:Mpe LAMPs能诱导小鼠巨噬细胞发生早期或晚期凋亡;Mpe LAMPs能诱导激活小鼠巨噬细胞的NF-κB,使其从细胞浆中转位到细胞核内;PDTC能显著地抑制经处理的小鼠巨噬细胞的NF-κB的激活,且能抑制Mpe LAMPs诱导的巨噬细胞发生凋亡.因此,Mpe LAMPs诱导小鼠巨噬细胞凋亡可能与NF-kB的激活有关,因而Mpe可能是一个重要的致病因素.  相似文献   

2.
中子属于高传能线密度电离辐射,能产生比κ射线更为严重的放射损伤,肠上皮对中子辐射高度敏感,迄今未见有关中子辐射致肠上皮细胞损伤中PI3K对NF-κB信号通路调控的研究报道.本研究旨在探讨中子照射后肠上皮细胞中PI3K对NF-κB信号通路的调控及其在中子辐射致肠上皮细胞损伤中的作用.选取肠上皮细胞系-6(intestinal epithelial cell No.6,IEC-6)进行传代培养,随机分为对照组、4Gy中子照射组和4Gy中子照射+LY294002处理组,照射组和LY294002处理组细胞采用4Gy中子均匀照射,LY294002处理组细胞在照前24h给予终浓度为10κmol/L的LY294002,各组于照射后6和24h采用MTT比色法、流式细胞术和免疫印迹(Western blot)方法检测IEC-6细胞增殖活力、凋亡与坏死率以及NF-κB信号通路相关分子NF-κB(p65),IKKκ和IκBκ的表达变化.研究发现,4Gy中子照射后6和24h,IEC-6细胞增殖活力下降,凋亡和坏死率增加;应用LY294002后IEC-6细胞增殖活力较照射组明显下降,IEC-6细胞凋亡和坏死率较照射组增加.4Gy中子照射后6和24h,IEC-6细胞NF-κB(p65)和IKKκ表达升高,IκBκ表达降低;应用LY294002后NF-κB(p65)和IKKκ表达降低,IκBκ表达升高,表明4Gy中子照射可引起IEC-6细胞增殖活力下降,凋亡和坏死率增加;PI3K可激活NF-κB信号通路,对中子辐射IEC-6细胞损伤发挥保护作用.  相似文献   

3.
谷胱甘肽(GSH)是细胞内主要的抗氧剂和氧化还原、细胞信号调节器,它能还原过氧化氢、清除活性氧(ROS)和含氮自由基使细胞免受氧化应激损伤。不管细胞内是否存在ROS氧化细胞蛋白,谷胱甘肽均能诱导氧化还原反应发生转变,进一步使信号传导功能及转录因子分子功能发生改变。大量实验表明,ROS和GSH在多条细胞信号调节通路中发挥着重要作用。主要阐述了Fas、TNF-α和NF-κB信号通路及线粒体凋亡途径及GSH在这些通路中的作用。尤其是线粒体GSH耗竭能诱导线粒体内ROS显著增加,从而损害细胞生物能量和诱导线粒体通透性转换孔开启。根据线粒体损害程度,NF-κB信号通路可被抑制,肝细胞也可能经历不同的死亡模式(凋亡或坏死)并对刺激细胞死亡信号(如TNF-α)也更敏感。这些过程涉及许多肝脏疾病的发病机理。  相似文献   

4.
目的:研究黄芩苷对脂多糖(LPS)诱导小鼠巨噬细胞核因子κB(NF-κB)及肿瘤坏死因子α(TNF-α)、白介素6(IL-6)表达的影响.方法:分别用LPS(终浓度1μgomL-1)和LPs+黄芩苷(终浓度10,50,100μmol moloL-1)处理生长良好的小鼠巨噬细胞RAW264.7,用RT-PCR法和Elisa法检测细胞及其上清液中TNF-α、IL-6 mRNA和蛋白的表达变化,用Western Blot法检测细胞核内NF-κB p65蛋白含量变化.结果:LPS刺激RAW264.7细胞可导致NF-κB激活,上调TNF-α、IL-6表达;黄芩苷预处理能降低LPS诱导的NF-κB出活化和TNF-α、IL-6表达.结论:黄芩苷可通过抑制NF-κB活化,下调LPS诱导的巨噬细胞TNF-α、IL-6的生成,发挥抗炎作用.这可能是其抗动脉粥样硬化的作用机制之一.  相似文献   

5.
目的:研究LRP16在电离辐射激活核转录因子NF-κB信号转导通路中的作用。方法:在HeLa细胞中,分别运用双萤光素酶分析和Western印迹检测LRP16对κB-Luc报告基因及NF-κB下游靶基因表达的影响。结果:双萤光素酶实验证实LRP16过表达促进电离辐射诱导的κB-Luc活性,而抑制LRP16则降低电离辐射诱导的κB-Luc活性;Western印迹结果显示,LRP16过表达促进电离辐射诱导NF-κB的下游抗凋亡基因XIAP的表达,与之相对应的是,抑制LRP16降低电离辐射诱导NF-κB下游抗凋亡基因XIAP的表达。结论:LRP16可以调节电离辐射诱导NF-κB的转录活性,并且调控NF-κB下游抗凋亡基因XIAP的表达,为进一步阐明电离辐射激活NF-κB转录活性的分子机制奠定了基础。  相似文献   

6.
生物体衰老是一个非常复杂的过程。研究发现核转录因子(NF-κB)在细胞衰老中具有重要作用,对于细胞衰老的研究具有重要意义。本文综述了近几年来NF-κB与细胞衰老的相关研究,包括NF-κB作用机制、衰老相关信号通路与NF-κB的串流(crosstalk),深入探讨NF-κB与衰老的关系可为阐明衰老的分子机制及延缓衰老提供新的思路。  相似文献   

7.
核因子κB(NF-κB)是细胞内重要的转录因子,其介导的细胞信号转导通路在细胞凋亡中的作用是国内外研究的热点.为了筛选NF-κB通路相关新基因,建立了基于细胞水平的报告基因高通量筛选模型.利用双荧光素酶报告系统检测报告基因荧光素酶活性,通过对构建的439个人类未知功能基因的筛选,获得了一批激活NF-κB信号通路的功能基因,其中基因TMEM9B可以明显激活NF-κB通路.进一步实验显示TMEM9B激活NF-κB通路呈明显剂量依赖性,Western blot及EMSA实验证实,TMEM9B能够促进胞质内NF-κB的抑制分子IκBα的降解,并促使NF-κB由胞质向胞核转移,同时流式细胞术实验发现TMEM9B可引起293T和HeLa细胞的凋亡.总之,所建立的基于细胞水平的NF-κB通路筛选模型稳定高效,筛选并验证TMEM9B可明显激活NF-κB信号转导通路,并从而引起细胞凋亡.  相似文献   

8.
通过抑制微血管内皮细胞血管细胞黏附分子(VCAM)-1的表达,木犀草素可阻遏中性粒细胞与微血管内皮细胞的黏附,起到抗炎作用。木犀草素调节VCAM-1表达与三条信号通路有关:丝裂原活化蛋白激酶(MAPK)、核因子kappa B (NF-κB)/IκB和磷脂酰肌醇3激酶(PI3K)/Akt通路。其中,MAPK和NF-κB/IκB通路参与VCAM-1正向调节,PI3K/Akt通路参与VCAM-1负向调节。本文研究了木犀草素对微血管内皮细胞该三条通路中的关键蛋白p38 MAPK、p65 NF-κB、p85 PI3K磷酸化。结果表明:木犀草素在反应的30s和1min促进p38 MAPK磷酸化,在30 s、1 min和5 min促进p85 PI3K磷酸化,而在30 s、1 min、5 min和30 min抑制p65 NF-κB磷酸化。阻抑p38 MAPK通路导致VCAM-1表达下调,而p38 MAPK抑制剂SB203580可通过抑制p38 MAPK磷酸化也下调VCAM-1,提示木犀草素对微血管内皮细胞VCAM-1的调节作用独立于p38 MAPK磷酸化。由此可知,木犀草素通过抑制p65 NF-κB磷酸化或促进p85 PI3K磷酸化调节微血管内皮细胞VCAM-1表达。本文为木犀草素抗炎作用的分子机制研究提供了新的线索。  相似文献   

9.
通过抑制微血管内皮细胞血管细胞黏附分子(VCAM)-1的表达,木犀草素可阻遏中性粒细胞与微血管内皮细胞的黏附,起到抗炎作用.木犀草素调节VCAM-1表达与三条信号通路有关:丝裂原活化蛋白激酶(MAPK)、核因子kappa B(NF-κB)/IκB和磷脂酰肌醇3激酶(PI3K)/Akt通路.其中,MAPK和NF-κB/IκB通路参与VCAM-1正向调节,PI3K/Akt通路参与VCAM-1负向调节.本文研究了木犀草素对微血管内皮细胞该三条通路中的关键蛋白p38 MAPK、p65 NF-κB、p85 PI3K磷酸化.结果表明:木犀草素在反应的30 s和1 min促进p38 MAPK磷酸化,在30 s、1 min和5 min促进p85 PI3K磷酸化,而在30 s、1 min、5 min和30 min抑制p65 NF-κB磷酸化.阻抑p38 MAPK通路导致VCAM-1表达下调,而p38 MAPK抑制剂SB203580可通过抑制p38 MAPK磷酸化也下调VCAM-1,提示木犀草素对微血管内皮细胞VCAM-1的调节作用独立于p38 MAPK磷酸化.由此可知,木犀草素通过抑制p65 NF-κB...  相似文献   

10.
目的:观察胰岛素对巨噬细胞破泡沫化过程中Toll样受体4(TLR4)表达及IL-6、TNF-α分泌的影响.方法:采用体外培养小鼠巨噬细胞系RAW264.7,氧化低密度脂蛋白(ox-LDL)诱导建立泡沫细胞模型,分为对照组、ox-LDL组、用胰岛素组、PI3K-AKT抑制剂组.油红O染色观察泡沫细胞模型的建立,取细胞上清用ELISA法检测白介素-6(IL-6)和肿瘤坏死因子-α(TNF-α)的水平;流式细胞术检测膜蛋白TLR4表达量,Western-blot检测TLR4、核因子-κB (NF-κB)的表达水平.结果:与对照组相比,ox-LDL处理过的巨噬细胞可向泡沫细胞转换,同时TLR4、NF-κB蛋白表达水平以及IL-6、TNF-α水平显著增加(P<0.05);而使用胰岛素干预后ox-LDL的作用显著减弱,TLR4、NF-κB蛋白表达水平以及IL-6、TNF-α水平显著降低(P <0.05 vs ox-LDLgroup);而使用PI3K-AKT抑制剂干预后,抑制剂显著降低胰岛素的作用,TLR4、NF-κB蛋白表达水平以及IL-6、TNF-α水平显著升高(P <0.05 vs ox-LDL+ insulin).结论:ox-LDL可诱导巨噬细胞向泡沫细胞转化,同时上调TLR4及NF-κB蛋白表达,增加炎性因子分泌,促进了AS进程,而胰岛素可使ox-LDL的作用显减弱,减少TLR4、NF-κB蛋白表达及炎性因子分泌,从而减轻AS进程,其机制可能与胰岛素通过PI3K-AKT抑制TLR4-NF-κB通路有关.  相似文献   

11.
生物体衰老是一个非常复杂的过程。研究发现核转录因子(NF-κB)在细胞衰老中具有重要作用,对于细胞衰老的研究具有重要意义。本文综述了近几年来NF-κB与细胞衰老的相关研究,包括NF-κB作用机制、衰老相关信号通路与NF-κB的串流(crosstalk),深入探讨NF-κB与衰老的关系可为阐明衰老的分子机制及延缓衰老提供新的思路。  相似文献   

12.
罗滢  王苏华  林雪波 《病毒学报》2022,(6):1297-1304
B3型柯萨奇病毒(Coxsackie virus B3,CVB3)与1型糖尿病发病、胰岛功能破坏有关,但CVB3对胰岛β细胞凋亡的影响及机制尚不清楚。本研究的目的是观察CVB3上调NF-κB p-p65引起胰岛β细胞凋亡的作用及机制,进而初步探究CVB3感染引起胰岛β细胞损伤的分子机制。本研究培养了人胰岛β细胞株,分为对照组、CVB3组、阴性对照(NC)质粒组、NF-κB p65质粒组、si-NC组、si-NC+CVB3组、si-NF-κB p65+CVB3组,检测细胞活力A490水平、细胞凋亡率及细胞中cleaved caspase-3、NF-κB p-p65、IκB α的表达水平。结果显示与对照组比较,CVB3组的A490水平及细胞中IκB α的表达水平降低,细胞凋亡率及细胞中cleaved caspase-3、NF-κB p-p65的表达水平增加(P<0.05);与NC质粒组比较,NF-κB p65质粒组的A490水平降低,细胞凋亡率及细胞中cleaved caspase-3、NF-κB p-p65的表达水平增加(P<0.05);与si-NC+CVB3组比较,si-N...  相似文献   

13.
肿瘤坏死因子受体相关因子2(tumor necrosis factor receptor-associated factor 2,TRAF2)是一种重要的胞内信号接头蛋白,参与激活NF-κB和MAPK信号通路,在免疫防御、炎症反应和细胞凋亡等过程发挥关键作用.为了探索杂交鳢(Channa maculate ♀ x Ch...  相似文献   

14.
在慢性炎症部位有易发肿瘤的倾向,大约有20%的恶性肿瘤发生与慢性炎症相关,肝细胞癌是世界第三大癌症死亡病因,其患者多数有慢性炎症病史,当炎症慢性迁延,肝细胞癌发生率明显增加.但慢性炎症与肿瘤发生与发展的细胞和分子机制仍然不清楚.利用人肝细胞株L-02细胞,研究肿瘤坏死因子α(TNF-α)对细胞周期的影响及其机制,并探讨核因子κB(NF-κB)和ERK1/2活化对细胞周期的影响,以期能更确切地阐明炎症介质TNF-α在肝细胞癌发生发展中的作用.发现TNF-α能促进肝细胞从G0/G1期向S期转换.蛋白质印迹检测表明,TNF-α能以剂量依赖方式诱导cyclinD1表达,而对cyclinE的表达无明显影响.同时TNF-α能激活NF-κB,ERK1/2,抑制NF-κB活化降低了TNF-α诱导的cyclinD1表达,导致细胞周期阻滞于G0/G1期.抑制ERK1/2活化则对细胞周期和cyclinD1表达无显著影响.结果提示,TNF-α通过活化NF-κB信号通路,诱导cyclinD1表达,加快细胞周期进程,这可能是促进肿瘤的发生发展重要机制.针对TNF-α和NF-κB的治疗可能延长慢性炎症相关性肿瘤的潜伏期和抑制肿瘤的发展.  相似文献   

15.
目的探讨大肠杆菌(E.coli)感染与人巨噬细胞系U937细胞凋亡的关系及核转录因子(nuclear factorkappa B,NF-κB)表达的变化。方法以Annexin V FITC/PI双染流式细胞仪检测及Hoechst 33258荧光染色观察为指标,研究E.coli感染对人巨噬细胞系U937细胞凋亡的诱导作用;用Western blot方法检测NF-ΚB的表达。结果Ho-echst 33258荧光染色结果表明当细胞与细菌浓度比较低时(1:10)可引起部分细胞凋亡,Annexin V FITC/PI双染流式细胞仪结果表明,当细胞与细菌浓度比为1:20,1:50及1:100时,细胞凋亡率与对照组相比明显增高,有显著性差异(P<0.001)。NF-κB的表达随着E.coli浓度的增加而逐渐降低。结论E.coli以剂量依赖的方式诱导U937细胞凋亡,在此过程中NF-κB的表达逐渐降低。  相似文献   

16.
真核细胞转录因子NF-κB通过调节多种靶基因表达,参与炎症、免疫反应、程序性细胞死亡、细胞增殖和分化的调控。RelA是NF-κB家族一个重要的成员,其翻译后修饰可精准调控NF-κB的转录活性,在调节炎症、肿瘤、代谢以及免疫应答等重要的生命活动及相关疾病的发生发展过程中起重要作用。现总结相关领域最新研究进展,综述RelA翻译后修饰的种类、调控机制,对NF-κB通路功能的影响,及其在NF-κB介导的炎症、癌症等多种疾病中的功能。  相似文献   

17.
核因子-κB(nuclear factor-κB,NF-κB)是一种重要的转录因子,它广泛存在于各类细胞,参与多种生理、病理过程的基因调控。NF-κB系统由NF-κB家族及其抑制物核因子-κB抑制子(nuclear factor-κB inhibitor,IκB)家族共同组成。NF-κB的抗凋亡机制可诱发肾肿瘤、前列腺癌、胃癌、大肠癌、胰腺癌和乳腺癌的发生。通过抑制IκB的降解来抑制NF-κB的激活可以导致肿瘤细胞的大量凋亡。因此通过基因治疗来抑制NF-κB的活性,再辅以常规的化疗将有望成为一种有效的肿瘤治疗方法。本文就国内外最新研究成果,对NF-κB在恶性肿瘤中的作用进行了综合评述,并对其未来研究方向进行了展望。  相似文献   

18.
探讨齐墩果酸(Oleanolic acid,OA)对肿瘤坏死因子-α(TNF-α)诱导成纤维细胞样滑膜细胞的炎症因子表达的影响及其机制。首先复苏培养人成纤维细胞样滑膜细胞(FLS),通过RT-PCR检测细胞IL-6及IL-1βmRNA表达,采用Western blot方法检测p38MAPK及NF-κB蛋白表达变化,通过ELISA法检测细胞上清液中IL-6及IL-1β浓度。与对照组比较,TNF-α明显诱导FLS细胞IL-6及IL-1βmRNA的表达及上清液中IL-6及IL-1β的分泌(P0.05),同时磷酸化p38蛋白和核NF-κB明显增加(P0.05),且p38MAPK阻断剂SB203580能抑制TNF-α诱导的核NF-κB增加。OA呈浓度依赖性抑制TNF-α诱导的FLS细胞p38蛋白磷酸化和核NF-κB增加(P0.05)。且OA、p38MAPK通路抑制剂SB203580或NF-κB阻断剂BAY 11-7082均能抑制TNF-α诱导的IL-6及IL-1β分泌增加(P0.05)。综上所述,OA能抑制TNF-α诱导的FLS细胞炎症因子IL-6及IL-1β的产生,其机制可能与抑制p38MAPK/NF-κB信号通路有关。  相似文献   

19.
骨骼肌萎缩发生于多种生理和疾病状态下,如废用、衰老和慢性病。核因子-κB(NFκB)信号通路包括NF-κB、抑制蛋白-κB(IκB)和IκB激酶(IKK),它们在肌萎缩中起着重要作用,能够引起肌肉蛋白质降解、诱导炎症、阻断损伤/萎缩后肌纤维的再生。NF-κB转录靶包括MuRF-1、YY1和MMP-9,还可通过转录后机制调节MyoD。而且,应用遗传操作小鼠模型已证明NF-κB还是防止骨骼肌萎缩的重要分子靶标。该文将综述NF-κB在骨骼肌萎缩中的作用,为开发新的方法治疗肌萎缩提供参考。  相似文献   

20.
克罗恩病的发病率近年来有增高的趋势。核因子-kappaB(nuclear factor-kappa B,NF-κB)参与免疫反应的调控、炎症反应的发生和肠道稳态的维持,其异常激活是诱发或加重克罗恩病的重要危险因素。异常激活的NF-κB改变免疫细胞和肠道上皮细胞的功能状态,进而诱发慢性持续性肠道炎症和导致肠黏膜屏障受损。了解NF-κB和克罗恩病之间的关系可以为克罗恩病的预防及治疗提供有价值的思路。本文就NF-κB及其激活途径,NF-κB通过调节肠上皮细胞的功能、T辅助细胞分化、巨噬细胞极化、中性粒细胞凋亡和树突状细胞的成熟诱导克罗恩病的机制以及NF-κB在溃疡性结肠炎中的作用展开综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号