共查询到20条相似文献,搜索用时 15 毫秒
1.
Kejnovsky E Kubat Z Hobza R Lengerova M Sato S Tabata S Fukui K Matsunaga S Vyskot B 《Genetica》2006,128(1-3):167-175
Silene latifolia is a model dioecious plant with heteromorphic sex chromosomes. The Y chromosome is the largest in this species. Theoretical
models propose an accumulation of repetitive DNA sequences in non-recombining parts of the Y chromosome. In this study, we
isolated a BAC7H5 clone preferentially hybridizing to the Y chromosome of S. latifolia. Sequence analysis revealed that this BAC7H5 contains part of the chloroplast genome, indicating that these chloroplast sequences
have accumulated on the Y chromosome and also may contribute to its large size. We constructed Y chromosome- and X chromosome-specific
libraries and screened them to find Y- and/or X-linked copies of chloroplast sequences. Sequence analysis revealed higher
divergence of a non-genic region of the chloroplast sequences located on the Y chromosome while genic regions tested showed
only very low (max 0.9%) divergence from their chloroplast homologues. 相似文献
2.
Zluvova J Lengerova M Markova M Hobza R Nicolas M Vyskot B Charlesworth D Negrutiu I Janousek B 《Evolution & development》2005,7(4):327-336
The dioecious plant species Silene latifolia has a sex determination mechanism based on an active Y chromosome. Here, we used inter-specific hybrids in the genus Silene to study the effects of gene complexes on the Y chromosome. If the function of Y-linked genes has been maintained in the same state as in the hermaphrodite progenitor species, it should be possible to substitute such genes by genes coming from a related hermaphrodite species. In the inter-specific hybrid, S. latifolia x S. viscosa, anthers indeed develop far beyond the early bilobal stage characteristic of XX S. latifolia female plants. The S. viscosa genome can thus replace the key sex determination gene whose absence abolishes early stamen development in females (loss of the stamen-promoting function, SPF), so that hybrid plants are morphologically hermaphrodite. However, the hybrids have two anther development defects, loss of adhesion of the tapetum to the endothecium, and precocious endothecium maturation. Both these defects were also found in independent Y-chromosome deletion mutants of S. latifolia. The data support the hypothesis that the evolution of complete gender dimorphism from hermaphroditism involved a major largely recessive male-sterility factor that created females, and the appearance of new, dominant genes on the Y chromosome, including both the well-documented gynoecium-suppressing factor, and two other Y specific genes promoting anther development. 相似文献
3.
We combine data from published marker genotyping of three sets of S. latifolia Y chromosome deletion mutants with changed sex phenotypes and add genotypes for several new genic markers to refine the deletion map of the Y chromosome and compare it with the X chromosome genetic map. We conclude that the Y chromosome of this species has been derived through multiple rearrangements of the ancestral gene arrangement and that none of the rearrangements so far detected was involved in stopping X-Y recombination. Different Y genotypes may also differ in their gene content and possibly arrangements, suggesting that mapping the Y-linked sex-determining genes will be difficult, even if many further genic markers are obtained. Even in determining the map of Y chromosome markers to discover all the rearrangements, physical mapping by FISH or other experiments will be essential. Future deletion mapping work should ensure that markers are studied in the parents of deletion mutants and should probably include additional deletions that were not ascertained by causing mutant sex phenotypes. 相似文献
4.
Here we compare gene orders on the Silene latifolia sex chromosomes. On the basis of the deletion mapping results (11 markers and 23 independent Y chromosome deletion lines used), we conclude that a part of the Y chromosome (covering a region corresponding to at least 23.9 cM on the X chromosome) has been inverted. The gradient in silent-site divergence suggests that this inversion took place after the recombination arrest in this region. Because recombination arrest events followed by Y chromosome rearrangements also have been found in the human Y chromosome, this process seems to be a general evolutionary pathway. 相似文献
5.
Semi-automatic laser beam microdissection of the Y chromosome and analysis of Y chromosome DNA in a dioecious plant, Silene latifolia 总被引:6,自引:0,他引:6
Matsunaga S Kawano S Michimoto T Higashiyama T Nakao S Sakai A Kuroiwa T 《Plant & cell physiology》1999,40(1):60-68
Silene latifolia has heteromorphic sex chromosomes, the X and Y chromosomes. The Y chromosome, which is thought to carry the male determining gene, was isolated by UV laser microdissection and amplified by degenerate oligonucleotide-primed PCR. In situ chromosome suppression of the amplified Y chromosome DNA in the presence of female genomic DNA as a competitor showed that the microdissected Y chromosome DNA did not specifically hybridize to the Y chromosome, but hybridized to all chromosomes. This result suggests that the Y chromosome does not contain Y chromosome-enriched repetitive sequences. A repetitive sequence in the microdissected Y chromosome, RMY1, was isolated while screening repetitive sequences in the amplified Y chromosome. Part of the nucleotide sequence shared a similarity to that of X-43.1, which was isolated from microdissected X chromosomes. Since fluorescence in situ hybridization analysis with RMY1 demonstrated that RMY1 was localized at the ends of the chromosome, RMY1 may be a subtelomeric repetitive sequence. Regarding the sex chromosomes, RMY1 was detected at both ends of the X chromosome and at one end near the pseudoautosomal region of the Y chromosome. The different localization of RMY1 on the sex chromosomes provides a clue to the problem of how the sex chromosomes arose from autosomes. 相似文献
6.
7.
Marais GA Nicolas M Bergero R Chambrier P Kejnovsky E Monéger F Hobza R Widmer A Charlesworth D 《Current biology : CB》2008,18(7):545-549
The human Y--probably because of its nonrecombining nature--has lost 97% of its genes since X and Y chromosomes started to diverge [1, 2]. There are clear signs of degeneration in the Drosophila miranda neoY chromosome (an autosome fused to the Y chromosome), with neoY genes showing faster protein evolution [3-6], accumulation of unpreferred codons [6], more insertions of transposable elements [5, 7], and lower levels of expression [8] than neoX genes. In the many other taxa with sex chromosomes, Y degeneration has hardly been studied. In plants, many genes are expressed in pollen [9], and strong pollen selection may oppose the degeneration of plant Y chromosomes [10]. Silene latifolia is a dioecious plant with young heteromorphic sex chromosomes [11, 12]. Here we test whether the S. latifolia Y chromosome is undergoing genetic degeneration by analyzing seven sex-linked genes. S. latifolia Y-linked genes tend to evolve faster at the protein level than their X-linked homologs, and they have lower expression levels. Several Y gene introns have increased in length, with evidence for transposable-element accumulation. We detect signs of degeneration in most of the Y-linked gene sequences analyzed, similar to those of animal Y-linked and neo-Y chromosome genes. 相似文献
8.
Nine rare (biallelic) mutations and six short tandem repeats (STR) mapping to the nonrecombining portion of the Y chromosome were genotyped in 734 males from different geographical regions inhabited by the contemporary Armenian population. The analysis of molecular variance (AMOVA) showed that 48.9% of total STR genetic variation was explained by the differences between the haplogroups isolated based on biallelic polymorphism, whereas only 1.3% of genetic variation could be attributed to the differences between the geographic groups. 相似文献
9.
Mapping of sex determination loci on the white campion (Silene latifolia) Y chromosome using amplified fragment length polymorphism 总被引:2,自引:0,他引:2
S. latifolia is a dioecious plant with morphologically distinct sex chromosomes. To genetically map the sex determination loci on the male-specific Y chromosome, we identified X-ray-induced sex determination mutants that had lost male traits. We used male-specific AFLP markers to characterize the extent of deletions in the Y chromosomes of the mutants. We then compared overlapping deletions to predict the order of the AFLP markers and to locate the mutated sex-determining genes. We found three regions on the Y chromosome where frequent deletions were significantly associated with loss of male traits. One was associated with hermaphroditic mutants. A second was associated with asexual mutants that lack genes needed for early stamen development and a third was associated with asexual mutants that lack genes for late stages of stamen development. Our observations confirmed a classical genetic prediction that S. latifolia has three dispersed male-determining loci on the Y chromosome, one for carpel suppression, one for early stamen development, and another for late stamen development. This AFLP map provides a framework for locating genes on the Y chromosome and for characterizing deletions on the Y chromosomes of potentially interesting mutants. 相似文献
10.
Alterations in subtelomeric tandem repeats during early stages of allopolyploidy in wheat. 总被引:7,自引:0,他引:7
The genomic content of the subtelomeric repeated sequences Spelt1 and Spelt52 was studied by dot, Southern, and in situ hybridization in 11 newly synthesized amphiploids of Aegilops and Triticum, and data were compared with the parental plants. Spelt1 had reduced copy numbers in the first generation of three synthetic amphiploids, but two others did not change; Spelt52 was amplified in nine amphiploids and did not change in two. In the second allopolyploid generation, Spelt1 copy number did not change, whereas there was amplification of Spelt52 in some allopolyploids and decreases in others. Neither allopolyploidy level nor the direction of the cross affected the patterns of change in the newly synthesized amphiploids. Changes did not result from intergenomic recombination because similar alterations were noticed in allopolyploids with and without Ph1, a gene that suppresses homoeologous pairing. No differences in Spelt1 and Spelt52 tandem organization were found by Southern hybridization. The significance of these data are discussed in relation to the establishment of newly formed allopolyploids. 相似文献
11.
Silene latifolia is a dioecious plant with heteromorphic sex chromosomes that have originated only ~10 million years ago and is a promising model organism to study sex chromosome evolution in plants. Previous work suggests that S. latifolia XY chromosomes have gradually stopped recombining and the Y chromosome is undergoing degeneration as in animal sex chromosomes. However, this work has been limited by the paucity of sex-linked genes available. Here, we used 35 Gb of RNA-seq data from multiple males (XY) and females (XX) of an S. latifolia inbred line to detect sex-linked SNPs and identified more than 1,700 sex-linked contigs (with X-linked and Y-linked alleles). Analyses using known sex-linked and autosomal genes, together with simulations indicate that these newly identified sex-linked contigs are reliable. Using read numbers, we then estimated expression levels of X-linked and Y-linked alleles in males and found an overall trend of reduced expression of Y-linked alleles, consistent with a widespread ongoing degeneration of the S. latifolia Y chromosome. By comparing expression intensities of X-linked alleles in males and females, we found that X-linked allele expression increases as Y-linked allele expression decreases in males, which makes expression of sex-linked contigs similar in both sexes. This phenomenon is known as dosage compensation and has so far only been observed in evolutionary old animal sex chromosome systems. Our results suggest that dosage compensation has evolved in plants and that it can quickly evolve de novo after the origin of sex chromosomes. 相似文献
12.
Moore RC Kozyreva O Lebel-Hardenack S Siroky J Hobza R Vyskot B Grant SR 《Genetics》2003,163(1):321-334
Silene latifolia is a dioecious plant with heteromorphic sex chromosomes. The sex chromosomes of S. latifolia provide an opportunity to study the early events in sex chromosome evolution because of their relatively recent emergence. In this article, we present the genetic and physical mapping, expression analysis, and molecular evolutionary analysis of a sex-linked gene from S. latifolia, DD44 (Differential Display 44). DD44 is homologous to the oligomycin sensitivity-conferring protein, an essential component of the mitochondrial ATP synthase, and is ubiquitously expressed in both sexes. We have been able to genetically map DD44 to a region of the Y chromosome that is genetically linked to the carpel-suppressing locus. Although we have physically mapped DD44 to the distal end of the long arm of the X chromosome using fluorescence in situ hybridization (FISH), DD44 maps to the opposite arm of the Y chromosome as determined by our genetic map. These data suggest that chromosomal rearrangements have occurred on the Y chromosome, which may have contributed to the genetic isolation of the Y chromosome. We discuss the implications of these results with respect to the structural and functional evolution of the S. latifolia Y chromosome. 相似文献
13.
Shunsuke Nakao Sachihiro Matsunaga Atsushi Sakai Tsuneyoshi Kuroiwa Shigeyuki Kawano 《Génome》2002,45(2):413-420
Silene latifolia is a dioecious plant and has heteromorphic sex chromosomes: the X and Y chromosomes. The Y chromosome is the largest, and its genetic control seems to be most strict among dioecious plants. To identify the putative sex-determination elements on the Y chromosome, random amplified polymorphic DNA (RAPD) analysis was used to screen for Y chromosome specific DNA fragments, and 31 clones were successfully produced. Genomic Southern hybridization and FISH (fluorescence in situ hybridization) analyses revealed that one of the clones, #2-2, is a Y chromosome specific fragment that has a single copy on the Y chromosome. Sequence tagged site (STS)-PCR analysis also succeeded in amplifying one fragment in males and no fragments in females. Cloning and sequencing of the #2-2 flanking region using inverse PCR revealed an open reading frame (ORF) corresponding to 285 amino acids in length (ORF285), but no expression of the ORF285 gene was identified. ORF285 may be a clue to the origin of dioecy. 相似文献
14.
Kotaro Ishii Ryuji Sugiyama Megumi Onuki Yusuke Kazama Sachihiro Matsunaga Shigeyuki Kawano 《Génome》2008,51(4):251-260
Sex determination in Silene latifolia uses the XX/XY system. The recent evolution of dioecy in S. latifolia provides a unique opportunity to study the early stages of Y chromosome evolution. However, the current Y chromosome map still contains many large gaps with no available markers. In this study, a sequence tagged site (STS) marker, MS2, was isolated and mapped to the same locus as L8 on the Y chromosome. To investigate the peripheral regions of MS2, a bacterial artificial chromosome (BAC) library was constructed from a male plant, and the BAC clone containing MS2 (MS2-9d12F) was isolated from 32 640 clones with an average insert size of 115 kb. A 109-kb insert of the BAC clone was analyzed. BLASTX analysis showed 11 sequences similar to some known proteins, most of which are retrotransposon-like elements. The ORF Finder predicted 9 ORFs within MS2-9d12F. RT-PCR analyses revealed that only 4 of the 9 predicted ORFs are expressed in both male and female plants. These 4 ORFs are candidates for genes having counterparts on both the X and Y chromosomes. Dot-matrix plot analysis and a BLASTN search revealed LTR-like sequences close to the retrotransposon-like elements and high similarity to 3 known genomic sequences of S. latifolia. These results suggest an accumulation of retrotransposons and segmental duplications in peripheral regions of MS2 during the early stage of sex chromosome evolution. 相似文献
15.
Hobza R Hrusakova P Safar J Bartos J Janousek B Zluvova J Michu E Dolezel J Vyskot B 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2006,113(2):280-287
The aim of this work was to isolate new DNA markers linked to the Silene latifolia Y chromosome. To do this we created a chromosome-specific plasmid library after DOP-PCR amplification of laser-microdissected Y-chromosomes. The library screening led to the isolation of several clones yielding mostly to exclusive male specific hybridization signals. Subsequent PCR confirmed the Y-unique linkage for one of the sequences. This DNA sequence called MK17 has no homology to any known DNA sequence and it is not expressed. Based on PCR and Southern analyses, MK17 is present only in dioecious species of the Elisanthe section of the genus Silene (S. latifolia, S. dioica, and S. diclinis) and it is absent in related gynodioecious and hermaphroditic species. The mapping analysis using a panel of deletion mutants showed that MK17 is closely linked to the region controlling suppression of gynoecium development. Hence MK17 represents a valuable marker to isolate genes controlling the gynoecium development suppression on the Y chromosome of S. latifolia. 相似文献
16.
17.
The satellite DNA (satDNA) on the ends of chromosomes has been isolated and characterized in the dioecious plant Silene latifolia. BAC clones containing large numbers of repeat units of satDNA in a tandem array were isolated to examine the clustering of the repeat units. satDNA repeat units were purified from each isolated BAC clone and sequenced. To investigate pairwise similarities among the repeat units, a phylogenetic tree was constructed using the neighbor-joining algorithm. The repeat units derived from 7 BAC clones were grouped into SacI, KpnI, #11F02, and #16E07 subfamilies. The SacI and KpnI subfamilies have been reported previously. Multicolored fluorescence in situ hybridization (FISH) using SacI or KpnI subfamily probes resulted in different signal intensities and locations at the chromosomal ends, indicating that each chromosomal end has a unique composition of subfamilies of satDNA. For example, the p arm of the X chromosome exhibited signal composition similar to that on the pseudo autosomal region (PAR) of the Y chromosome, but not to that on the q arm of the X chromosome. The satDNA has not been completely homogenized in the S. latifolia genome. Each subfamily is available for a probe of FISH karyotyping. 相似文献
18.
In forensic casework, Y chromosome short tandem repeat markers (Y-STRs) are often used to identify a male donor DNA profile in the presence of excess quantities of female DNA, such as is found in many sexual assault investigations. Commercially available Y-STR multiplexes incorporating 12-17 loci are currently used in forensic casework (Promega's PowerPlex Y and Applied Biosystems' AmpFlSTR Yfiler). Despite the robustness of these commercial multiplex Y-STR systems and the ability to discriminate two male individuals in most cases, the coincidence match probabilities between unrelated males are modest compared with the standard set of autosomal STR markers. Hence there is still a need to develop new multiplex systems to supplement these for those cases where additional discriminatory power is desired or where there is a coincidental Y-STR match between potential male participants. Over 400 Y-STR loci have been identified on the Y chromosome. While these have the potential to increase the discrimination potential afforded by the commercially available kits, many have not been well characterized. In the present work, 91 loci were tested for their relative ability to increase the discrimination potential of the commonly used 'core' Y-STR loci. The result of this extensive evaluation was the development of an ultra high discrimination (UHD) multiplex DNA typing system that allows for the robust co-amplification of 14 non-core Y-STR loci. Population studies with a mixed African American and American Caucasian sample set (n = 572) indicated that the overall discriminatory potential of the UHD multiplex was superior to all commercial kits tested. The combined use of the UHD multiplex and the Applied Biosystems' AmpFlSTR Yfiler kit resulted in 100% discrimination of all individuals within the sample set, which presages its potential to maximally augment currently available forensic casework markers. It could also find applications in human evolutionary genetics and genetic genealogy. 相似文献
19.
Variation in short tandem repeats is deeply structured by genetic background on the human Y chromosome 总被引:10,自引:0,他引:10 下载免费PDF全文
Bosch E Calafell F Santos FR Pérez-Lezaun A Comas D Benchemsi N Tyler-Smith C Bertranpetit J 《American journal of human genetics》1999,65(6):1623-1638
Eleven biallelic polymorphisms and seven short-tandem-repeat (STR) loci mapping on the nonrecombining portion of the human Y chromosome have been typed in men from northwestern Africa. Analysis of the biallelic markers, which represent probable unique events in human evolution, allowed us to characterize the stable backgrounds or haplogroups of Y chromosomes that prevail in this geographic region. Variation in the more rapidly mutating genetic markers (STRs) has been used both to estimate the time to the most recent common ancestor for STR variability within these stable backgrounds and to explore whether STR differentiation among haplogroups still retains information about their phylogeny. When analysis of molecular variance was used to study the apportionment of STR variation among both genetic backgrounds (i.e., those defined by haplogroups) and population backgrounds, we found STR variability to be clearly structured by haplogroups. More than 80% of the genetic variance was found among haplogroups, whereas only 3.72% of the genetic variation could be attributed to differences among populations-that is, genetic variability appears to be much more structured by lineage than by population. This was confirmed when two population samples from the Iberian Peninsula were added to the analysis. The deep structure of the genetic variation in old genealogical units (haplogroups) challenges a population-based perspective in the comprehension of human genome diversity. A population may be better understood as an association of lineages from a deep and population-independent gene genealogy, rather than as a complete evolutionary unit. 相似文献
20.
Nonneutral evolution of tandem repeats in the mitochondrial DNA control region of lagomorphs 总被引:7,自引:0,他引:7
Casane D; Dennebouy N; de Rochambeau H; Mounolou JC; Monnerot M 《Molecular biology and evolution》1997,14(8):779-789
The mitochondrial DNA of the European rabbit (Oryctolagus cuniculus)
contains a tandem array of 153-bp repeats in the vicinity of the
replication origin of the H-stand. Variation among molecules in the number
of these repeats results in inter- and intraindividual length polymorphism
(heteroplasmy). Generally, in an individual, one predominant molecular type
is observed, the others representing a low percentage of the mtDNA content.
At the tissue level, we observe a particular distribution of this
polymorphism in the gonads compared with liver, kidneys, or brain, implying
a relationship between the differentiation status of the cells and the
types of new mtDNA molecules which appear and accumulate during lifetime.
Similar tandem repeats were also found in the mtDNA noncoding region of
European hares (Lepus europaeus), a cottontail (Sylvilagus floridanus), and
a pika (Ochotona rufescens). The lengths and the sequences of these units
evolve rapidly and in a concerted way, but the number of repeats is
maintained in a narrow range, and an internal 20-bp segment is highly
conserved. Constraints restrict the evolution of the primary sequence of
these repeated units, the number of which is probably controlled by a
stabilizing selection.
相似文献