首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Melatonin secreted by the pineal gland acts as a free radical scavenger besides its role as a hormonal signaling agent. It detoxifies a variety of free radicals and reactive oxygen intermediates including hydroxyl radical, peroxynitrite anion and singlet oxygen. Ascorbic acid (Vitamin C), a water soluble vitamin, is a naturally occurring antioxidant and cofactor in various enzymes. Protein carbonyls are formed as a consequence of the oxidative modification of proteins by reactive oxygen species. Oxidative modification alters the function of protein and is thought to play an important role in the decline of cellular functions during aging. In the present study, the effect of melatonin and ascorbic acid on age-related carbonyl content of cerebral hemispheres in mice was investigated. Protein carbonyls of cerebral hemispheres have been found to be significantly higher in 18-month-old mice as compared to 1-month old mice. Administration of a single dose of melatonin (10 mg/kg body weight) and ascorbic acid (10 mg/kg body weight) intraperitoneally for three consecutive days decreases the carbonyl content in 1- and 18-month-old mice significantly. The present study thus suggests that the formation of protein carbonyls in the cerebral hemispheres of the aging mice can be prevented by the antioxidative effects of melatonin and ascorbic acid that could in turn be beneficial in having health benefits from age-related neurodegenerative diseases.  相似文献   

2.
Oxidative stress is an important factor in causing aging and age-related diseases. It is caused by an imbalance between oxidants such as reactive oxygen species (ROS) and antioxidants. Protein oxidation elicited by free radicals may cause protein function disruptions. Protein carbonylation, an irreversible process resulting in loss of function of the modified proteins, is a widely used marker for oxidative stress. In the present study, we have evaluated the levels of protein carbonyls, ROS, and catalase in the cerebral hemispheres of young and aged mice. When aged mice were subjected to a dietary restriction (DR) regimen (alternate days feeding) of 3 months, a significant reduction in the endogenous levels of protein carbonylation as well as ROS and elevation of catalase was observed in their cerebral hemispheres. The present study, thus, demonstrated the antioxidative effects of late-onset DR regimen in the cerebral hemispheres of aged mice which may act as a powerful modulator of age-related neurodegenerative diseases.  相似文献   

3.
Curcumin (diferuloylmethane), a biologically active ingredient derived from rhizome of the plant Curcuma longa, has potent anticancer properties as demonstrated in a plethora of human cancer cell lines/animal carcinogenesis model and also acts as a biological response modifier in various disorders. We have reported previously that dietary supplementation of curcumin suppresses renal ornithine decarboxylase (Okazaki et al. Biochim Biophys Acta 1740:357–366, 2005) and enhances activities of antioxidant and phase II metabolizing enzymes in mice (Iqbal et al. Pharmacol Toxicol 92:33–38, 2003) and also inhibits Fe-NTA-induced oxidative injury of lipids and DNA in vitro (Iqbal et al. Teratog Carcinog Mutagen 1:151–160, 2003). This study was designed to examine whether curcumin possess the potential to suppress the oxidative damage caused by kidney-specific carcinogen, Fe-NTA, in animals. In accord with previous report, at 1 h after Fe-NTA treatment (9.0 mg Fe/kg body weight intraperitoneally), a substantial increased formation of 4-hydroxy-2-nonenal (HNE)-modified protein adducts in renal proximal tubules of animals was observed. Likewise, the levels of 8-hydroxy-2′-deoxyguanosine (8-OHdG) and protein reactive carbonyl, an indicator of protein oxidation, were also increased at 1 h after Fe-NTA treatment in the kidneys of animals. The prophylactic feeding of animals with 1.0% curcumin in diet for 4 weeks completely abolished the formation of (i) HNE-modified protein adducts, (ii) 8-OHdG, and (iii) protein reactive carbonyl in the kidneys of Fe-NTA-treated animals. Taken together, our results suggest that curcumin may afford substantial protection against oxidative damage caused by Fe-NTA, and these protective effects may be mediated via its antioxidant properties. These properties of curcumin strongly suggest that it could be used as a cancer chemopreventive agent.  相似文献   

4.
Although studies performed in vitro and with transfected cells in culture suggest a role for liver fatty acid binding protein (L-FABP) in regulating fatty acid oxidation and fat deposition, the physiological significance of this possibility is not completely clear. To begin to address this question, the effect of L-FABP gene ablation on phenotype of standard rodent chow-fed male mice was examined with increasing age up to 18 months. While young (2–3 months old) L-FABP null mice displayed no visually obvious phenotype, with increasing age >9 months the L-FABP null mice were visibly larger, exhibiting increased body weight due to increased fat and lean tissue mass. Liver lipid concentrations were unaffected by L-FABP gene ablation with the exception of triacylglycerol, which was decreased by 74% in the livers of 3-month-old mice. Likewise, serum lipid levels were not altered in L-FABP null mice with the exception of triacylglycerol, which was increased in the serum of 18-month-old mice. Increased body weight, fat tissue mass, and lean tissue mass in 18-month-old L-FABP null mice were accompanied by increased hepatic levels of low-density lipoprotein (LDL) receptor, peroxisome proliferator-activated receptor (PPAR) α, and PPARα-regulated proteins such as fatty acid transport protein (FATP), fatty acid translocase (FAT/CD36), carnitine palmitoyl transferase I (CPT I), and lipoprotein lipase (LPL). A key enzyme in cholesterol biosynthesis, 3-hydroxy-3-methylglutaryl Coenzyme A (HMG-CoA) reductase, was down-regulated in L-FABP null mice. These findings were consistent with a proposed role for L-FABP as an important physiological regulator of PPARα.  相似文献   

5.
Cadmium (Cd) a highly toxic metal is considered to be a multitarget toxicant, and it accumulates principally in the liver and kidney after absorption. In vivo studies of mouse and rat liver have shown that apoptosis plays a primary role in Cd-induced hepatotoxicity. However, the detailed mechanisms by which toxic metals such as Cd produce their effects are still largely unknown. The present study aimed at investigating the consequences of exposure to Cd, alpha-tocopherol and their combination on stress biochemical parameters (lipoperoxidation and protein carbonyls levels). Male albino Wistar rats (1 month old) were treated intravenously with cadmium (2 mg CdCl(2)/kg body weight/day), and alpha-tocopherol (100 mg/kg body weight/day), or with alpha-tocopherol+Cd (100 mg Vit E/kg body weight, 2 mg CdCl(2)/kg). The lipoperoxidation was measured by the thiobarbituric acid reactive substances (TBARS) method and oxidatively generated damage to proteins by determining carbonyl (DNPH) levels. Among the hematological parameters measured the haematocrit value and haemoglobin concentration were significantly decreased in the blood of Cd-treated rats. A significant increase was observed in the level of malondialdehyde (MDA) and protein carbonyls in the cadmium exposed group compared to control group (p<0.001), and these values were decreased after administration of alpha-tocopherol (group 4). The activity of lactate dehydrogenase in rat liver and brain showed a significant increase as compared to that found in the control group and significant decrease of catalase and superoxide dismutase activities. In the liver of the Cd-treated group the contents of reduced glutathione were decreased. Our results suggest that cadmium induces an oxidation of cellular lipids and proteins and that administration of alpha-tocopherol can reduce Cd-induced oxidative stress and improve the glutathione level together with other biochemical parameters.  相似文献   

6.
ABSTRACT

Photoperiodic treatments have been of practical interest in controlling seasonal reproduction in sheep, goats and horses. Melatonin is the principal mediator of the environmental photoperiodic message. To investigate the intra- and inter-subject variability of melatonin 24 h rhythm, ten female Italian Saddle horses (8–10 yrs old, mean body weight 525 ± 30 kg), ten female Sarda breed sheep (2–3 yrs old, mean body weight 40.5 ± 2.8 kg) and ten female Sarda breed goats (3–4 yrs old, mean body weight 38.9 ± 4.1 kg), housed individually in a 4 × 4 m soundproof box equipped with 50 × 100 cm opening windows, were subjected to a natural photoperiod of the vernal equinox (sunrise 06:00 h; sunset 18:00 h). Blood samples were collected from each animal, every 3 h over a 48 h period starting at 00:00 h of day 1 and ending at 00:00 h of day 3. Plasma melatonin concentrations were determined by direct radioimmunoassay (MelatoninDirect RIA, Labor Diagnostika Nord GmbH, Nordhorn, Germany). The application of single cosinor method substantiated a circadian rhythm of melatonin with a nocturnal peak in all studied species. The application of two-way ANOVA on the rhythmic parameters indicated statistically significant differences between the three species in all of the cosinor analysis-derived parameters of MESOR, amplitude, acrophase and robustness of rhythm. Analyses of intra- and inter-subject variability indicate that organization of the melatonin 24 h rhythm is characterized by great accuracy of control within and between the individuals of a breed. In conclusion, features of the 24 h rhythm of melatonin among species; however, the 24 h rhythmicity of melatonin each species showed high stability within the various subjects and within the same subject. These findings must be taken into consideration when applying photoperiod and melatonin treatments for breeding purposes.  相似文献   

7.
Vanadium compounds maintain euglycemic effects in diabetic rats long after drug withdrawal and bis(α-furancarboxylato)oxovanadium(IV) (BFOV) possesses potent antidiabetic effects in diabetic rats. Here, we investigated the treatment and posttreatment effects of BFOV in diabetic Kuo Kondo [1, 2] with Ay gene (KKAy) mice, and whether these effects were associated with changes in matrix metalloproteinases (MMPs). KKAy mice received normal saline or BFOV initially at 70 μmol/kg/day for 1 month, which was tapered to 17 μmol/kg/day in the next 2 months and discontinued thereafter. Compared to diabetic controls, fasting plasma glucose (FPG) was reduced by 46 and 19 % in KKAy mice after 70 μmol/kg BFOV for 1 month and 3 months after BFOV withdrawal, respectively. OGTT and ITT showed improved glucose tolerance and a better response of FPG to insulin with a significant decrease in HOMA-IR and a marked rise in the insulin sensitivity index after 70 μmol/kg BFOV for 1 month and 4 months after BFOV withdrawal (P <0.05 in all vs. diabetic controls). BFOV treatment resulted in a moderate but significant reduction in body weight and systolic blood pressure (SBP) at 1 month of treatment and 4 months following BFOV withdrawal (P <0.05 in all vs. diabetic controls). Gelatin zymography showed that serum MMP2 activity was significantly reduced and immunoblotting assays further showed that MMP2 expression was markedly downregulated in the liver after 1 month of treatment with 70 μmol/kg and 4 months after BFOV withdrawal (P <0.05 in all vs. diabetic controls). These results suggested that BFOV possessed potent treatment and posttreatment effects in KKAy mice with improved metabolic profile and reduced body weight and SBP. Furthermore, these effects were associated with decreased MMP2 expression and activity in diabetic KKAy mice.  相似文献   

8.
The hypouricemic actions of exopolysaccharide produced by Cordyceps militaris (EPCM) in potassium oxonate-induced hyperuricemia in mice were examined. Hyperuricemic mice were administered intragastrically with EPCM (200, 400 and 800 mg/kg body weight) or allopurinol (5 mg/kg body weight) once daily. Serum uric acid, blood urea nitrogen and liver xanthine oxidase (XOD) activities of each treatment were measured after administration for 7 days. EPCM showed dose-dependent uric acid-lowering actions. EPCM at a dose of 400 mg/kg body weight and allopurinol showed the same effect in serum uric acid, blood urea nitrogen and liver XOD activities in hyperuricemic mice. An increase in liver XOD activities was observed in hyperuricemic mice due to administration of EPCM at a dose of 200 mg/kg body weight. EPCM at a dose of 800 mg/kg body weight did not show significant effects on serum uric acid and XOD activities. We conclude that EPCM has a hypouricemic effect caused by decreases in urate production and the inhibition of XOD activities in hyperuricemic mice, and this natural product exhibited more potential efficacy than allopurinol in renal protection.  相似文献   

9.
The infusion tea extracted from the leaves of the plant Camellia sinensis can be used in the prevention of cancer, cardiovascular and neurodegenerative diseases, and aging, while adriamycin (ADR) is an anticancer drug that increases oxidative stress in cells. The present study evaluated the protective effect of the long-term consumption of white tea used at two different doses against the oxidative stress produced by aging and acute oxidation caused ADR treatment. At wearing, rats received distilled water (control), or 0.15 (dose 1) or 0.45 mg (dose 2) of solid tea extract/kilogram body weight in their drink. At 12 months, about half of the rats of each group were injected with a bolus of ADR, and six rats of the control group with an injection of saline solution and sacrificed. The rest of the animals continued in their cages until 24 months of age, when they were sacrificed. Lipid and protein oxidation of liver and brain microsomes was analyzed by measuring hydroperoxide and carbonyl levels. White tea consumption for 12 months at a non-pharmacological dose was seen to reverse the oxidative damage caused by ADR in both liver and brain, while the consumption of white tea for 20 months at a non-pharmacological dose had no effect on carbonyl or hydroperoxides in these tissues. The long-term ingestion of white tea protected tissues from acute oxidative stress but did not affect chronic oxidative agents such aging.  相似文献   

10.
Oxidative damage affects protein structure and function. Progressive accumulation of oxidized proteins is considered a putative mechanism of aging; however, empirical evidence supporting their role in aging is inconsistent. This inconsistency may reflect a failure to distinguish damage to particular cellular compartments. We found a significant reduction of protein carbonyls in the insoluble, but not in the soluble, fraction of liver tissues of long-lived compared with their short-lived counterpart. Of cellular components analyzed, only nuclear protein carbonyl level was uniformly reduced in long-lived compared with short-lived animals. This observation suggests that attenuated accumulation of protein carbonyls in the nucleus, where they can affect multiple aspects of gene expression and DNA repair, might contribute to the longevity in mammalian species.  相似文献   

11.
Currently, one of the most disputed hypotheses regarding breast cancer (BC) development is exposure to short wavelength artificial light at night (ALAN) as multiple studies suggest a possible link between them. This link is suggested to be mediated by nocturnal melatonin suppression that plays an integral role in circadian regulations including cell division. The objective of the research was to evaluate effects of 1 × 30 min/midnight ALAN (134 µ Wcm?2, 460 nm) with or without nocturnal melatonin supplement on tumor development and epigenetic responses in 4T1 tumor-bearing BALB/c mice. Mice were monitored for body mass (Wb) and tumor volume for 3 weeks and thereafter urine samples were collected at regular intervals for determining daily rhythms of 6-sulfatoxymelatonin (6-SMT). Finally, mice were sacrificed and the tumor, lungs, liver, and spleen were excised for analyzing the total activity of DNA methyltransferases (DNMT) and global DNA methylation (GDM) levels. Mice exposed to ALAN significantly reduced 6-SMT levels and increased Wb, tumor volume, and lung metastasis compared with controls. These effects were diminished by melatonin. The DNMT activity and GDM levels showed tissue-specific response. The enzymatic activity and GDM levels were lower in tumor and liver and higher in spleen and lungs under ALAN compared with controls. Our results suggest that ALAN disrupts the melatonin rhythm and potentially leading to increased BC burden by affecting DNMT activity and GDM levels. These data may also be applicable to early detection and management of BC by monitoring melatonin and GDM levels as early biomarker of ALAN circadian disruption.  相似文献   

12.
Previous studies have demonstrated that melatonin administration improves spatial learning and memory and hippocampal long-term potentiation in the adult Ts65Dn (TS) mouse, a model of Down syndrome (DS). This functional benefit of melatonin was accompanied by protection from cholinergic neurodegeneration and the attenuation of several hippocampal neuromorphological alterations in TS mice. Because oxidative stress contributes to the progression of cognitive deficits and neurodegeneration in DS, this study evaluates the antioxidant effects of melatonin in the brains of TS mice. Melatonin was administered to TS and control mice from 6 to 12 months of age and its effects on the oxidative state and levels of cellular senescence were evaluated. Melatonin treatment induced antioxidant and antiaging effects in the hippocampus of adult TS mice. Although melatonin administration did not regulate the activities of the main antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glutathione S-transferase) in the cortex or hippocampus, melatonin decreased protein and lipid oxidative damage by reducing the thiobarbituric acid reactive substances (TBARS) and protein carbonyls (PC) levels in the TS hippocampus due to its ability to act as a free radical scavenger. Consistent with this reduction in oxidative stress, melatonin also decreased hippocampal senescence in TS animals by normalizing the density of senescence-associated β-galactosidase positive cells in the hippocampus. These results showed that this treatment attenuated the oxidative damage and cellular senescence in the brain of TS mice and support the use of melatonin as a potential therapeutic agent for age-related cognitive deficits and neurodegeneration in adults with DS.  相似文献   

13.
Objective: To investigate the effect of Potentilla fulgens extract on lipid peroxidation and antioxidant status in male mice as a function of age.

Methods: Eighteen-month-old Swiss albino male mice were administered the dichloromethane-methanol extract of P. fulgens (250?mg/kg b.w.) on alternate days via intraperitoneal route for a period of 14 days. Lipid peroxidation and activities of catalase (CAT) and glutathione peroxidase (GPx1) in liver and kidney were measured and serum oxygen radical absorbance capacity (ORAC) assay was estimated. Phytochemical analysis of P. fulgens extract using high performance thin layer chromatography (HPTLC) was carried out with gallic acid, quercetin, catechin, and epicatechin as markers.

Results: Significant increase in level of thiobarbituric acid-reactive substances (TBARS), decreased GPx1, and CAT activities as well as reduction in ORAC were observed in 18-month-old mice as compared to that of 2-month-old mice. Treatment with P. fulgens extract significantly lowered TBARS level, ameliorated CAT, and GPx1 activities in liver and kidney and improved serum ORAC in aging mice. HPTLC studies revealed well resolved bands of P. fulgens extract containing epicatechin and catechin.

Discussion: This study showed that P. fulgens is a potent antioxidative agent, which can emerge as a promising candidate in alleviating the age-associated oxidative stress and related diseases.  相似文献   

14.
In this work, a curcumin-diglutaric acid (CurDG) prodrug was synthesized by conjugation of curcumin with glutaric acid via an ester linkage. The water solubility, partition coefficient, release characteristics, and antinociceptive activity of CurDG were compared to those of curcumin. The aqueous solubility of CurDG (7.48 μg/mL) is significantly greater than that of curcumin (0.068 μg/mL). A study in human plasma showed that the CurDG completely releases curcumin within 2 h, suggesting the ability of CurDG to serve as a prodrug of curcumin. A hot plate test in mice showed the highest antinociceptive effect dose of curcumin at 200 mg/kg p.o., whereas CurDG showed the same effect at an effective dose of 100 mg/kg p.o., indicating that CurDG significantly enhanced the antinociceptive effect compared to curcumin. The enhanced antinociceptive effect of CurDG may be due to improved water solubility and increased oral bioavailability compared to curcumin.  相似文献   

15.
The aging is associated with alterations in the hypothalamic-pituitary-thyroidal axis which can lead to hypothyreosis. Our previous investigations has shown that polyphenol curcumin can enhance the manifestation of hypothyreosis in rats simultaneous treated with propylthiouracil. The aim of the study was to investigate the relationship between age-related changes and curcumin action in the thyroid of old rats. To this end, morphometric and radioimmunological methods were used. The study was conducted on 3- and 18-month-old male Wistar rats. The experimental rats were treated daily for 30 days by gavage with 100 mg/kg b.w. of curcumin. There were observed age-related changes in morphology and endocrine function of the thyroid. It was increase in the percentages of large follicles and significant decrease in FT3 level in 18-month-old rats in comparison to 3-month ones. Curcumin treatment lead to significant increase in FT3 and FT4 levels in 3-month-old experimental rats, but the level of FT3 significantly decreased in 18-month-old rats after curcumin administration. Our results show that curcumin activity depends on the functional condition of the rat thyroid which changes with age. This compound exerts stimulatory influence on the secretory function of the thyroid gland in young rats, but has rather weak antithyroid activity in old animals.  相似文献   

16.
The purpose of this study was to understand the nature of the causes underlying the senescence-related decline in skeletal muscle mass and performance. Protein and lipid oxidative damage to upper hindlimb skeletal muscle mitochondria was compared between mice fed ad libitum and those restricted to 40% fewer calories—a regimen that increases life span by 30–40% and attenuates the senescence-associated decrement in skeletal muscle mass and function. Oxidative damage to mitochondrial proteins, measured as amounts of protein carbonyls and loss of protein sulfhydryl content, and to mitochondrial lipids, determined as concentration of thiobarbituric acid reactive substances, significantly increased with age in the ad libitum-fed (AL) C57BL/6 mice. The rate of superoxide anion radical generation by submitochondrial particles increased whereas the activities of antioxidative enzymes superoxide dismutase, catalase, and glutathione peroxidase in muscle homogenates remained unaltered with age in the AL group. In calorically-restricted (CR) mice there was no age-associated increase in mitochondrial protein or lipid oxidative damage, or in superoxide anion radical generation. Crossover studies, involving the transfer of 18- to 22-month-old mice fed on the AL regimen to the CR regimen, and vice versa, indicated that the mitochondrial oxidative damage could not be reversed by CR or induced by AL feeding within a time frame of 6 weeks. Results of this study indicate that mitochondria in skeletal muscles accumulate significant amounts of oxidative damage during aging. Although such damage is largely irreversible, it can be prevented by restriction of caloric intake.  相似文献   

17.
Trans-cinnamaldehyde (CNM) has recently drawn attention due to its potent anti-inflammatory and antioxidant properties. The current study explored the memory enhancing effects of CNM against lipopolysaccharide (LPS)-induced neuroinflammation in mice. CNM and curcumin (a reference antioxidant) were administered at a dose of 50 mg/kg i.p. 3 h after a single LPS injection (0.8 mg/kg, i.p.) and continued daily for 7 days. Our results displayed that CNM and curcumin significantly ameliorated the LPS-induced impairment of learning and memory, neuroinflammation, oxidative stress and neuronal apoptosis. Memory functions and locomotor activity were assessed by Morris water maze, object recognition test and open field test. Both CNM and curcumin activated the nuclear factor erythroid 2 related factor 2 (Nrf2) and restored levels of downstream antioxidant enzymes superoxide dismutase and glutathione-S-transferase (GST) in the hippocampus. They also attenuated LPS-induced increase in hippocampal contents of interleukin-1β (IL-1β), malondialdehyde and caspase-3. Immunohistochemistry results showed that both CNM and curcumin reduced Aβ1–42 protein accumulation in brain of mice. Remarkably CNM’s effect on IL-1β was less pronounced than curcumin; however it showed higher GST activity and more potent anti-apoptotic and anti-amylodogenic effect. We conclude that, CNM produces its memory enhancing effects through modulation of Nrf2 antioxidant defense in hippocampus, inhibition of neuroinflammation, apoptosis and amyloid protein burden.  相似文献   

18.
Agomelatine is a novel antidepressant drug with melatonin receptor agonist and 5-HT(2C) receptor antagonist properties. We analyzed whether agomelatine has antioxidant properties. Antioxidant activity of agomelatine (25, 50, or 75 mg/kg, i.p.) or melatonin (50 mg/kg) was investigated by measuring lipid peroxidation levels, nitrite content, and catalase activities in the prefrontal cortex, striatum, and hippocampus of Swiss mice pentylenetetrazole (PTZ) (85 mg/kg, i.p.), pilocarpine (400 mg/kg, i.p.), picrotoxin (PTX) (7 mg/kg, i.p.), or strychnine (75 mg/kg, i.p.) induced seizure models. In the pilocarpine-induced seizure model, all dosages of agomelatine or melatonin showed a significant decrease in TBARS levels and nitrite content in all brain areas when compared to controls. In the strychnine-induced seizure model, all dosages of agomelatine and melatonin decreased TBARS levels in all brain areas, and agomelatine at low doses (25 or 50 mg/kg) and melatonin decreased nitrite contents, but only agomelatine at 25 or 50 mg/kg showed a significant increase in catalase activity in three brain areas when compared to controls. Neither melatonin nor agomelatine at any dose have shown no antioxidant effects on parameters of oxidative stress produced by PTX- or PTZ-induced seizure models when compared to controls. Our results suggest that agomelatine has antioxidant activity as shown in strychnine- or pilocarpine-induced seizure models.  相似文献   

19.
Knowing that curcumin has low bioavailability when administered orally, and that piperine has bioenhancer activity by inhibition of hepatic and intestinal biotransformation processes, the aim of this study was to investigate the antidiabetic and antioxidant activities of curcumin (90 mg/kg) and piperine (20 or 40 mg/kg), alone or co-administered, incorporated in yoghurt, in streptozotocin (STZ)-diabetic rats. The treatment for 45 days of STZ-diabetic rats with curcumin-enriched yoghurt improved all parameters altered in this experimental model of diabetes: the body weight was increased in association with the weight of skeletal muscles and white adipose tissues; the progressive increase in the glycemia levels was avoided, as well as in the glycosuria, urinary urea, dyslipidemia, and markers of liver (alanine and aspartate aminotransferases and alkaline phosphatase) and kidney (urinary protein) dysfunction; the hepatic oxidative stress was decreased, since the activities of the antioxidant enzymes superoxide dismutase, catalase and gluthatione peroxidase were increased, and the levels of malondialdehyde and protein carbonyl groups were reduced. The dose of 20 mg/kg piperine also showed antidiabetic and antioxidant activities. The treatment of STZ-diabetic rats with both curcumin and 20 mg/kg piperine in yoghurt did not change the antidiabetic and antioxidant activities of curcumin; notably, the treatment with both curcumin and 40 mg/kg piperine abrogated the beneficial effects of curcumin. In addition, the alanine aminotransferase levels were further increased in diabetic rats treated with curcumin and 40 mg/kg piperine in comparison with untreated diabetic rats. These findings support that the co-administration of curcumin with a bioenhancer did not bring any advantage to the curcumin effects, at least about the antidiabetic and antioxidant activities, which could be related to changes on its biotransformation.  相似文献   

20.
Protein carbonylation is an irreversible oxidative process leading to a loss of function of the modified proteins, and in a variety of model systems, including worms, flies, and mammals, carbonyl levels gradually increase with age. In contrast, we report here that in Arabidopsis thaliana an initial increase in protein oxidation during the first 20 days of the life cycle of the plant is followed by a drastic reduction in protein carbonyls prior to bolting and flower development. Protein carbonylation prior to the transition to flowering targets specific proteins such as Hsp70, ATP synthases, the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), and proteins involved in light harvesting/energy transfer and the C2 oxidative photosynthetic carbon cycle. The precipitous fall in protein carbonyl levels is due to the specific reduction in the levels of oxidized proteins rather than an overall loss of chlorophyll and Rubisco associated with the senescence syndrome. The results are discussed in light of contemporary theories of aging in animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号