首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The survival of wild-type and repair-deficient Escherichia coli treated with cis-Pt(NH3)2Cl2, trans-Pt(NH3)2Cl2 and [Pt(dien)Cl]Cl (dien = H2NCH2CH2NHCH2CH2NH2) was inversely correlated with the ability of these compounds to inhibit DNA synthesis in different bacterial strains. The relative amounts of these 3 compounds covalently bound to DNA immediately after treatment with the same dose were, respectively, 1:?2:1, their relative abilities to inhibit DNA synthesis were 6:1:0 and their relative toxicities toward the wild-type and uvrA strains were 3–5:1:0. More repair synthesis, as measured by density-gradient centrifugation techniques, was observed in wild-type bacteria after treatment with the cis than with the trans isomer whereas no repair synthesis was detected after exposure to [Pt(dien)Cl]Cl.These results are consistent with the hypothesis that cis-Pt(NH3)Cl2 binds to DNA and inhibits DNA synthesis thereby killing the cell. The lower toxicity of this compound toward wild-type bacteria compared with repair-deficient strains is in part a consequence of DNA repair. trans-Pt(NH3)2Cl2 and [Pt(dien)Cl]Cl are less toxic than the cis isomer; this lesser toxicity is not a consequence of low levels of DNA binding or enhanced repair of the lesions but appears to reflect a weaker inhibition of DNA synthesis by these Pt-DNA adducts.  相似文献   

2.
The reaction products of adenosine with [Pt(NH3)3Cl]Cl or cis-Pt(NH3)2Cl2 have been studied using high performance liquid chromatography and uv spectroscopy. The reaction of [Pt(NH3)3Cl]Cl with adenosine (pH = 7.0, Pt/base = 0.5) gives four products. Two of them, mononuclear complexes in which platinum is bound to adenosine through N(7) or N(1), comprise more than 90% of all the products. The N(1) and N(7) sites on adenosine indicate almost equal binding affinity for [Pt(NH3)3Cl]Cl. The reaction of cis-Pt(NH3)2Cl2 with adenosine has been studied in the presence of a large excess of adenosine (Pt/base ? 0.05). The reaction gives four products. One is the monomeric 2:1 complex with cis-Pt(NH3)22+ bound to two adenosine molecules through the N(7) site and the N(1) site, and another is the monomeric 2:1 complex with cis-Pt(NH3)22+ bound to two adenosine molecules through the N(7) sites. cis-Pt(NH3)2Cl2 is stronger affinity to the N(7) site than of adenosine to the N(1) site.  相似文献   

3.
Reaction products of 9-methyladenine (mAde) with [Pt(dien)Cl]Cl and cis-Pt(NH3)2Cl2 have been separated using CM-Sephadex C25 cation exchange chromatography. NMR and UV characteristics are presented; the platinum binding sites were established by studying the pH dependence of the 1H-NMR chemical shifts and of UV difference absorption. It is shown that the N 1 atom of the ligand can be protonated in Pt(mAde-N7) adducts, while the N7 atom can be protonated in Pt(mAde-N1).  相似文献   

4.
Interaction between the sodium salt of a DNA extracted from salmon sperm (41% GC) with [Pt(NH3)4]Cl2, [Pt(NH2? (CH2)2? NH? (CH2)2? NH2Cl]Cl, cis-Pt(NH2? (CH2)2? NH2)Cl2, cis-Pt(NH3)2Cl2, trans-Pt(NH3)2Cl2, K[Pt(C2H4)Cl3], and K2[PtCl4) indicates at least three types of complexation. A correlation is found between the change of pH and the number of platinum atoms fixed per (AT + GC) unit. The first binding site is located on the G-C pairs (guanine–cytosine), most likely the N-7(G) site, as it was shown in a previous study of the guanosine-platinum salts. The fixation of the second platinum atom by the pair (AT + GC) takes place with liberation of protons. In the case of the complexes cis-Pt(NH2? (CH2)2? NH2)Cl2, cis-Pt(NH3)2Cl2, and trans-Pt(NH3)2Cl2 the second interaction seems to involve simultaneously the N-7(A) and the N-1(G) and N-3(C) sites. This latter intercrosslink between guanine and cytosine obviously liberates protons and the decrease of pH is related in this case to the trans effect of the platinum compounds. The first two platinum atoms in the reaction of K2PtCl4] or the Zeise salt, K[Pt(C2H4)Cl3] with DNA are fixed on the G-C pairs. A maximum of six platinum atoms per (AT + GC) unit were fixed in this case. Preliminary experiments with a DNA extracted from bacteria Micrococcus lysodeikticus (72% GC) give similar results.  相似文献   

5.
This paper reports further studies on the separation of DNAs with the antitumor drug cis-Pt(NH3)2Cl2. cis-Pt(NH3)2Cl2 permits resolution of the three DNA components from whole Saccharomyces cerevisiae in CsCl gradients, avoids pelleting of mitochondrial (β) DNA and does not require a critical molar ratio of platinum drug to DNA-P. However, the difficulty in removing all of the DNA-bound platinum may limit its preparative use. The linear relationship between the increase in buoyant density of platinized double-stranded DNA and its G + C content is employed to calculate a G + C content of 41.2% and 45.8% for α and γ DNA, respectively, using a value of 20% G + C for β DNA. In parallel experiments, we find that poly(dG)·poly(dC), which contains sequential guanine bases, exhibits an unexpectedly large buoyant density increase with cis-Pt(NH3)2 Cl2, while the buoyant density increase of poly[d(G-C)]is markedly retarded, indicating an effect of nucleotide base sequence on DNA separation. The trans platinum compound, which has no antitumor properties, separates DNAs on the basis of G + C content in a similar fashion, but does not preferentially increase the buoyant density of poly(dG)·poly(dC).  相似文献   

6.
The interactions of cis- and trans-diammineplatinum compounds with 5′-GMP and 5′-dGMP in dilute aqueous solution at neutral pH were investigated by 1H nmr. In addition to the 1:2 Pt nucleotide complexes cis- and trans-Pt(NH3)2(GMP)2, it was possible to study the formation of the 1:1 Pt-nucleotide complexes with either one coordinated water or chloride ion. At 5°C GMP reacts with a stoichiometric amount of cis-diaquodiammine-platinum to yield cis-Pt(NH3)2(GMP) (H2O) as a sole reaction product. From the present results it is concluded that such a complex may play an important role as the initial reaction product between antitumor compounds like cis-Pt(NH3)2Cl2 and guanine in DNA in living organisms. The coupling constant 3J(H(1′)-H(2′)) of the H(1′) sugar proton in cis-Pt(NH3)2(GMP)2 is temperature dependent, indicating a conformational change in the sugar moiety.  相似文献   

7.
Complexes formed in aqueous solution between cisplatin or hydrolysis species and 5′ adenosine monophosphate (AMP) or 5′ adenosine triphosphate (ATP), the latter with and without chloride ions, have been determined using 195Pt, 31P, 13C and 1H NMR. The present results lead to the conclusion that the only monodentate complexes with AMP are cis-Pt(NH3)2(AMP-N7)Cl at acid pH and cis-Pt(NH3)2(AMP-N7)OH at neutral and basic pH. Other bidentate complexes were identified as cis-Pt(NH3)2(AMP-N7)2 and cis-Pt(NH3)2(AMP-N7)(AMP-PO). Also discussed herein are the binding of platinum to the phosphate group Pγ with ATP and at acid pH, and the formation of the [cis-Pt(NH3)2(ATP-N7)H2O]+ complex. In neutral and basic pH ranges, the phosphate moiety of ATP is the most reactive site. In the presence of an excess of chloride ions, the complexation rates between the ATP and the cisplatin are decreased. Furthermore, in the experimental conditions used neither the ATP nor the AMP have shown binding to N1.  相似文献   

8.
The Tb3+ fluorescence is greatly enhanced, as a result of binding of various platinum coordination complexes to DNA, as compared to native DNA. The largest enhancement is observed for cis-Pt(NH3)2Cl2 but the fluorescence intensity does not however reach the level attained for thermally denatured DNA. Diethylenetriamine-Pt(II) produces very little increase of Tb3+ fluorescence. The electric dichroism in the DNA absorption band drastically decreases upon binding of the various Pt compounds investigated except diethylenetriamine-Pt. The results are discussed in terms of the various modes of binding of Pt derivatives to DNA, particularly in relation to the level of denaturation of the double helix.  相似文献   

9.
Oligonucleotides modified by clinically ineffective trans-diamminedichloridoplatinum(II) (transplatin) have been shown to be effective modulators of gene expression. This is so because in some nucleotide sequences the 1,3-GNG intrastrand adducts formed by transplatin in double-helical DNA readily rearrange into interstrand cross-links so that they can cross-link the oligonucleotides to their targets. On the other hand, in a number of other sequences these intrastrand adducts are relatively stable, which represents the major difficulty in the clinical use of the antisense transplatin-modified oligonucleotides. Therefore, we examined in this study, the stability of 1,3-GNG intrastrand adducts in double-helical DNA formed by a new antitumor derivative of transplatin, trans-[Pt(CH3NH2)2Cl2], in the sequence contexts in which transplatin formed relatively stable intrastrand cross-links which did not readily rearranged into interstrand cross-links. We have found that 1,3-GNG intrastrand adducts in double-helical DNA formed by trans-[Pt(CH3NH2)2Cl2] even in such sequences readily rearrange into interstrand cross-links. This work also suggests that an enhanced frequency of intrastrand cross-links yielded by trans-[Pt(CH3NH2)2Cl2] is a consequence of the fact that these DNA lesions considerably distort double-helical DNA in far more sequence contexts than parent transplatin. Our results suggest that trans-[Pt(CH3NH2)2Cl2]-modified oligonucleotides represent promising candidates for new agents in antisense or antigene approach.  相似文献   

10.
A Pt(II) complex containing three 1-methylcytosine ligands (C), [Pt(NH3)C3] (CIO4)2· H2], has been prepared starting with cis-Pt(NH3)2Cl2, and its crystal structure has been determined. The title compound represents a model of a hypothetical interaction of cis.Pt(II) with three biomolecules which proceeds via an intermediate monochloro complex, cis-[Pt(NH3)2CCl]Cl, and loss of ammonia from this compound. [Pt(NH3)C3](ClO4)2·H2O crystallizes in space group P21/c (No. 14) with a = 15.296(3), b = 4.666(3), c = 14.025(2) Å, β = 122.61(1)° and has 4 formula units in the unit cell. Data were collected with use of a Syntex P21 diffractometer and MoKα radiation. The crystal structure was determined by standard methods and refined to R1 = 0.043 and R2 = 0.056 based on 2925 independent reflections. The compound contains the three 1-methylcytosine ligands bound through N(3) with the three ligands almost perpendicular to the Pt coordination plane. The two C ligands trans to each other have identical orientations with respect to the platinum square plane whereas the cytosine trans to NH3 has the opposite orientation. Bond lengths and angles are normal.  相似文献   

11.
We have reacted [Pt(dien)Cl]Cl, [Pt(en)(D2O)2]2+, and [Pt(Me4en)(D2O)2]2+ [Me4en = N,N,N′,N′-tetramethylethylenediamine] with selenomethionine (SeMet). When [Pt(dien)Cl]Cl is reacted with SeMet, [Pt(dien)(SeMet-Se)]2+ is formed; two Se-CH3 resonances are observed due to the different chiralities at the Se atom upon platination. In a reaction of [Pt(dien)Cl]Cl with an equimolar mixture of SeMet and Met, the SeMet product forms more quickly though a slow equilibrium with approximately equal amounts of both products is reached. [Pt(Me4en)(D2O)2]2+ reacts with SeMet to form [Pt(Me4en)(SeMet-Se)(D2O)]2+ initially but forms [Pt(Me4en)(SeMet-Se,N)]+ ultimately. One stereoisomer of the chelate, assigned to the R chirality at the Se atom, dominates within the first few minutes of reaction. [Pt(en)(D2O)2]2+ forms a variety of products depending on reaction stoichiometry; when one equivalent or less of SeMet is added, the dominant product is [Pt(en)(SeMet-Se,N)]+. In the presence of excess SeMet, [Pt(en)(SeMet-Se)2]2+ is the dominant initially, but displacement of the en ligand occurs leading to [Pt(SeMet-Se,N)2] as the eventual product. Displacement of the en ligand from [Pt(en)(SeMet-Se,N)]+ does not occur. In reactions of K2PtCl4 with two equivalents of SeMet, [Pt(SeMet-Se,N)2] is formed, and three sets of resonances are observed due to different chiralities at the Se atoms. Only the cis geometric isomers are observed by 1H and 195Pt NMR spectroscopy.  相似文献   

12.
  • 1.1. DNA damage induced by carboplatin [cis-diammine-(1,1-cyclobutanedi-carboxylato)platinum(II)] was studied in vitro in comparison with cisplatin [cis-diammine-dichloroplatinum(II)]. The drug-induced DNA damage monitored by conformational change of pUC18 plasmid DNA showed that carboplatin required 10 times higher drug concentration and 7.5 times longer incubation time than those of cisplatin to induce the same degree of conformational change on plasmid DNA.
  • 2.2. The carboplatin-induced DNA damage was promoted by the increase of pH of the reaction mixture for platinum-DNA adduct formation.
  • 3.3. Sequence gel analysis of carboplatin-damaged DNA indicated that carboplatin attacked preferentially the sequence of GG > AG > GA > GNG in the order, similarly to the case of cisplatin.
  • 4.4. DNA adducts formed by carboplatin were analyzed by HPLC after a sequential digestion of carboplatin-treated DNA with deoxyribonuclease I and S1 nuclease. A single peak having the same retention time as that of bifunctional adduct of (dGMP)2Pt(NH3)2 appeared by treating DNA with carboplatin. The adduct was assigned to be d(pGpG) > Pt(NH3)2.
  • 5.5. These results suggested that carboplatin induces the same platinum-DNA adducts as those induced by cisplatin, and that the difference in efficiency or kinetics of DNA damage between carboplatin and cisplatin is due to difference of aquation rate between them.
  相似文献   

13.
This study contributes to the investigation related to guest–host interactions between the chemotherapeutic agent cisplatin and a functionalised silica matrix in order to improve and find new materials such as drug carriers. The adsorption of cisplatin and its complexes, cis-[PtCl(NH3)2]+ and cis-[Pt(NH3)2]2+, on a SH-functionalised SiO2(111) surface has been studied by the atom superposition and electron delocalisation method. The adiabatic energy curves for the adsorption of the drug and its products on the delivery system were considered. The electronic structure and bonding analysis were also performed. The molecule and their complex are adsorbed on the functionalised surface resulting in a major absorption of the cis-[Pt(NH3)2]2+ complex. The molecule–surface interactions are formed via –SH group. The molecule/complexes SH electron-donating effect plays an important role in the catalytic reaction. The more important drug–carrier interactions occur through the Cl–H bond for the adsorption of cis-[PtCl2(NH3)2] and cis-[PtCl(NH3)2]+, and through the Pt–S and Pt–H interactions for cis-[Pt(NH3)2]2+ adsorption. When the new interactions are formed, the functionalised carrier maintains their matrix properties while the molecule is the most affected after adsorption. The Pt atomic orbitals present the most important changes during adsorption.  相似文献   

14.
[Pt(COD)Cl2] (COD=1,5-cyclooctadiene) is a versatile starting material for the synthesis of Pt(II) compounds. The preparations of the new compounds [Pt(COD)Cl(NO3)], [Pt(COD)(NO3)2] and [Pt(PPh3)3(NO3)](NO3) and also of the known compounds cis[Pt(PPh3)2Cl2], cis [Pt(PPh3)2Cl(NO3)], cis[Pt(PPh3)2(NO3)2] and [Pt(PPh3)3Cl](NO3)are reported. The compounds are characterized by elemental analysis, 31P{1H} NMR spectroscopy and IR spectroscopy.  相似文献   

15.
The reactions of PtCl2en or cis-Pt(NH3)2Cl2 and their aqua species with adenine and adenosine were studied by means of ion-pair HPLC. From the chromatograms, it was found that the first binding site of Pt(II) was the N(7) site of adenine under both acidic and neutral conditions. The rates of Pt(II) binding at the (N7) site of adenosine and deoxyadenosine were measured. The rate constants, k1, were obtained for the reactions of PtCl2en or cis-Pt(NH3)2Cl2 with adenosine and deoxyadenosine at pH 3 and 7 over the temperature range 9–25 °C. The k1 values were 6.8–7.7 × 10−4 dm3 mol−1 s−1 at 25 °C. For the aqua species, the rate of [cis-Pt(NH3)2ClH2O]+ with adenosine N(7) was measured. The rate constants, k2 which were found to be smaller than those of hydrolysis, kh, were calculated at pH 3 over the temperature range 25–40 °C. The k2 value obtained at 25 °C was 1.1 × 10−2 dm3 mol−1 s−1, 15 time larger than k1. The activation parameters were also calculated.  相似文献   

16.
The multinuclear (1H, 15N, 31P and 195Pt) NMR spectroscopies, ES-MS and HPLC have been employed to investigate the structure-activity relationship for the reactions between guanosine 5′-monophosphate (5′-GMP) and the platinum(II)-triamine complexes of the general formulation cis-[Pt(NH3)2(Am)Cl]NO3 (where Am represents a substituted pyridine). The order of reaction rate of the reactions was found to be: 3-phpy > 4-phpy > py > 4-mepy > 3-mepy > 2-mepy. The two basic factors, steric and electronic, were attributed to the order of the binding rate constants. A possible mechanism of the reaction of cis-[Pt(NH3)2(Am)Cl]+ with 5′-GMP suggested that the reactions proceed via direct nucleophilic attack and no loss of ammonia. cis-[Pt(NH3)2(Am)Cl]+ binds to the N7 nitrogen of the guanine residue of 5′-GMP to form a coordinate bond with the Pt metal centre. This mechanism is apparently different from that of cisplatin. The pKa value of cis-[Pt(NH3)2(4-mepy)(H2O)](NO3)2 (5.63) has been determined at 298 K by the use of distortionless enhancement by polarization transfer (DEPT) 15N NMR spectroscopy and compared to the pKa value of cis-[PtCl(H2O)(NH3)2]+.  相似文献   

17.
Platinum(IV) [Pt(IV)] complex, satraplatin, is currently in clinical trials for the treatment of various cancers. As a key step of the anti-cancer effect exertion, satraplatin is supposed to be reduced by endogenous reductants to platinum(II) [Pt(II)] complex. In this study, we investigated the interaction of DNA, Pt(IV), and the endogenous reductants such as ascorbic acid (AsA) and glutathione (GSH). As a model Pt(IV) compound, cis-diammine-tetrachloro-Pt(IV) [cis-Pt(IV)], which is a prodrug of cisplatin [cis-diammine-dichloro-Pt(II), cis-Pt(II)], was incubated with calf thymus DNA in the presence of AsA or GSH. In the presence of AsA, cis-Pt(IV) induced oxidative DNA damage. Hydroxyl radical scavengers suppressed the AsA-associated oxidative damage, thereby suggesting that hydroxyl radicals are involved in the DNA oxidation. cis-Pt(II)-like CD spectral change and crosslink formation in calf thymus DNA were also observed during this DNA oxidation, suggesting cis-Pt(IV) reduction by AsA and DNA conformational change induced by the newly formed cis-Pt(II) binding to DNA. GSH did not induce oxidative DNA damage likely due to its own hydroxyl radical scavenging ability. Further, GSH suppressed the Pt(II)-mediated DNA conformational change and crosslink formation, suggesting that GSH sequesters the cis-Pt(II) away from DNA by GSH-cis-Pt(II) complex formation.  相似文献   

18.
Mixed-ligand complexes of the type cis- and trans-Pt(Ypy)(pm)Cl2 where Ypy = pyridine derivative and pm = pyrimidine were synthesized and characterized by IR spectroscopy and by multinuclear (195Pt, 1H and 13C) magnetic resonance spectroscopy. The cis compounds were prepared from the reaction of K[Pt(Ypy)Cl3] with pyrimidine (1:1 proportion) in water, while most of the trans isomers were synthesized from the isomerization of the cis compounds. The cis isomers could not be isolated with the Ypy ligands containing two -CH3 groups in ortho positions. When the aqueous reaction of K[Pt(Ypy)Cl3] with pyrimidine was performed in a Pt:pm ratio = 2:1, the pyrimidine-bridged dinuclear species were formed. Only the most stable trans-trans isomers could be isolated pure. In IR spectroscopy, the cis monomers showed two ν(Pt-Cl) bands, while the trans monomers and dimers showed only one ν(Pt-Cl) band. The 195Pt NMR signals of the cis monomers were found at slightly higher fields than those of the corresponding trans isomers. The δ(195Pt) of the dimers were found close to those of the trans monomers. The NMR results were interpreted in relation to the solvent effect, which seems important in these complexes. The coupling constants J(195Pt-1H) and J(195Pt-13C) are larger in the cis geometry. The crystal structures of the compounds cis-Pt(2,4-lut)(pm)Cl2, trans-Pt(2,6-lut)(pm)Cl2 and trans,trans-Cl2(2,6-lut)Pt(μ-pm)Pt(Ypy)Cl2 were studied by X-ray diffraction methods and the results have confirmed the configurations suggested by IR and NMR spectroscopies.  相似文献   

19.
The crystal structures of two Pt(cyclopentylamine)2I2 compounds were determined by X-ray diffraction methods. Both crystals contain disordered cyclopentylamine ligands. Crystal I contains two independent trans-Pt(cyclopentylamine)2I2 molecules and all the C atoms are disordered on two positions. The second crystal (II) is most interesting since it contains both cis- and trans-Pt(cyclopentylamine)2I2 isomers in the same unit cell. It was prepared from the recrystallization of the cis isomer in acetone. The C atoms of the trans molecule in crystal II are disordered on two positions, while only one position was determined in the cis molecule, although some of the C thermal factors are quite high. The reactions of cis-Pt(amine)2X2 and cis-Pt(NH3)(amine)X2 (amine = cyclobutylamine and cyclopentylamine) with guanosine in water were studied in different Pt:guanosine proportions by multinuclear (1H, 195Pt and 15N) magnetic resonance spectroscopy. The presence of several species in solution was observed. For the mixed-cyclobutylamine compound, 15N NMR has shown that some of the NH3 ligands have been displaced from the coordination sphere in the presence of an excess of guanosine. The reactions of the two mixed-ligand complexes cis-Pt(NH3)(amine)Cl2 with 9-methylguanine, inosine and 9-methylhypoxanthine were also studied in water and the results are discussed.  相似文献   

20.
Reaction of benzisothiazolinone (Bit), a well-known biocide, with the Pd(II) and Pt(II) am(m)ine precursors cis-[Pd(en)(H2O)2](NO3)2 and cis-[Pt(NH3)2(H2O)2](NO3)2 yielded cis-Pd(en)(Bit−1H)2 and cis-Pt(NH3)2(Bit−1H)2, respectively. Bit is bound to the metal centres in both cases through the deprotonated isothiazolinone N. The crystal structures of a Bit/BitO co-crystal and cis-Pd(en)(Bit−1H)2·H2O are also described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号