首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The incorporation of pyrimidine nucleotide precursors into Helicobacter pylori and the activities of enzymes involved in their synthetic pathways were investigated by radioactive tracer analysis and 31P nuclear magnetic resonance spectroscopy. The bacterium was found to take up aspartate and bicarbonate and to incorporate carbon atoms from these precursors into its genomic DNA. Orotate, an intermediate of de novo pyrimidine biosynthesis, and uracil and uridine, precursors for pyrimidine pathways, were also incorporated by the micro-organism. Radiolabelled substrates were used to assess the activities of aspartate transcarbamoylase, orotate phosphoribosyltransferase, orotidylate decarboxylase, CTP synthetase, uracil phosphoribosyltransferase, thymidine kinase and deoxycytidine kinase in bacterial lysates. The study provided evidence for the presence in H. pylori of an operational de novo pathway, and a less active salvage pathway for the biosynthesis of pyrimidine nucleotides.  相似文献   

2.
1. It has been reported that the rate of purine nucleotide synthesis de novo in the immature rat uterus is doubled at 6h after administration of oestradiol-17beta. The present work confirms an increased incorporation of glycine and adenine into uterine nucleotides between 2 and 6h after hormone treatment and investigates the mechanism of this response. 2. Activation of regulatory enzymes is unlikely to promote increased nucleotide synthesis: the activities of 5-phosphoribosyl 1-pyrophosphate amidotransferase (EC 2.4.2.14) and adenine phosphoribosyltransferase (EC 2.4.2.7) are the same in uterine extracts from control and oestrogen-treated rats. 3. Therefore it was proposed that oestradiol might promote an increased supply of a rate-limiting substrate. The low oestrogen-sensitive rate of AMP synthesis from adenine and endogenous 5-phosphoribosyl 1-pyrophosphate in the intact uterus compared with the high, oestrogen-insensitive rate in uterine extracts supplemented with 5-phosphoribosyl 1-pyrophosphate is evidence that the supply of 5-phosphoribosyl 1-pyrophosphate limits purine nucleotide formation and may increase after hormone treatment. This proposal is supported by the decrease in AMP synthesis in the whole tissue in the presence of guanine and 7-amino-3-(beta-d-ribofuranosyl)pyrazolo[3,4-d]pyrimidine (formycin). These compounds do not inhibit adenine uptake or adenine phosphoribosyltransferase activity, but they both decrease the availability of 5-phosphoribosyl 1-pyrophosphate, the former by promoting its utilization by hypoxanthine/guanine phosphoribosyltransferase (EC 2.4.2.8) and the latter by inhibiting its synthesis from ribose 5-phosphate and ATP by ribose 5-phosphate pyrophosphokinase (EC 2.7.6.1). 4. It is unlikely that the increased availability of 5-phosphoribosyl 1-pyrophosphate results from hormonal stimulation of ribose 5-phosphate formation. Methylene Blue and phenazine methosulphate both increase ribose 5-phosphate without altering the supply of 5-phosphoribosyl 1-pyrophosphate. 5. The activity of ribose 5-phosphate pyrophosphokinase is low in uterine extracts and increases rapidly in response to oestradiol. Therefore the hormonal activation of the routes of purine nucleotide synthesis both de novo and from preformed precursors may be due, at least in part, to an increased availability of the common rate-limiting substrate 5-phosphoribosyl 1-pyrophosphate, mediated by activation of ribose 5-phosphate pyrophosphokinase.  相似文献   

3.
Katahira R  Ashihara H 《Planta》2002,215(5):821-828
In order to obtain general metabolic profiles of pyrimidine ribo- and deoxyribonucleotides in potato (Solanum tuberosum L.) plants, the in situ metabolic fate of various (14)C-labelled precursors in disks from growing potato tubers was investigated. The activities of key enzymes in potato tuber extracts were also studied. The following results were obtained. Of the intermediates in de novo pyrimidine biosynthesis, [(14)C]carbamoylaspartate was converted to orotic acid and [2-(14)C]orotic acid was metabolized to nucleotides and RNA. UMP synthase, a bifunctional enzyme with activities of orotate phosphoribosyltransferase (EC 2.4.2.10) and orotidine 5'-monophosphate decarboxylase (EC 4.1.1.23), exhibited high activity. The rates of uptake of pyrimidine ribo- and deoxyribonucleosides by the disks were high, in the range 2.0-2.8 nmol (g FW)(-1) h(-1). The pyrimidine ribonucleosides, uridine and cytidine, were salvaged exclusively to nucleotides, by uridine/cytidine kinase (EC 2.7.1.48) and non-specific nucleoside phosphotransferase (EC 2.7.1.77). Cytidine was also salvaged after conversion to uridine by cytidine deaminase (EC 3.5.4.5) and the presence of this enzyme was demonstrated in cell-free tuber extracts. Deoxycytidine, a deoxyribonucleoside, was efficiently salvaged. Since deoxycytidine kinase (EC 2.7.1.74) activity was extremely low, non-specific nucleoside phosphotransferase (EC 2.7.1.77) probably participates in deoxycytidine salvage. Thymidine, which is another pyrimidine deoxyribonucleoside, was degraded and was not a good precursor for nucleotide synthesis. Virtually all the thymidine 5'-monophosphate synthesis from thymidine appeared to be catalyzed by phosphotransferase activity, since little thymidine kinase (EC 2.7.1.21) activity was detected. Of the pyrimidine bases, uracil, but not cytosine, was salvaged for nucleotide synthesis. Since uridine phosphorylase (EC 2.4.2.3) activity was not detected, uracil phosphoribosyltransferase (EC 2.4.2.9) seems to play the major role in uracil salvage. Uracil was degraded by the reductive pathway via beta-ureidopropionate, but cytosine was not degraded. The activities of the cytosine-metabolizing enzymes observed in other organisms, pyrimidine nucleoside phosphorylase (EC 2.4.2.2) and cytosine deaminase (EC 3.5.4.1), were not detected in potato tuber extracts. Operation of the de novo synthesis of deoxyribonucleotides via ribonucleotide reductase and of the salvage pathway of deoxycytidine was demonstrated via the incorporation of radioactivity from both [2-(14)C]cytidine and [2-(14)C]deoxycytidine into DNA. A novel pathway converting deoxycytidine to uracil nucleotides was found and deoxycytidine deaminase (EC 3.5.4.14), an enzyme that may participate in this pathway, was detected in the tuber extracts.  相似文献   

4.
K. LI AND T.P. WEST. 1995. Two uracil auxotrophs of the phytopathogen Burkholderia cepacia ATCC 25416, which is known to be involved in food spoilage, were isolated by a combination of ethylmethane sulphonate and D-cycloserine counterselection. One mutant exhibited depressed orotate phosphoribosyltransferase activity while the other mutant lacked orotidine 5'-monophosphate decarboxylase activity. Pyrimidine limitation of either auxotroph elevated aspartate transcarbamoylase and dihydroorotase activities by at least 1.5-fold indicating that these pathway enzymes may be repressible by a uracil-related compound in B. cepacia . Overall, regulation of de novo pyrimidine synthesis in the uracil auxotrophs of B. cepacia ATCC 25416 was observed.  相似文献   

5.
Regulation of pyrimidine nucleotide biosynthesis in Pseudomonas synxantha ATCC 9890 was investigated and the pyrimidine biosynthetic pathway enzyme activities were affected by pyrimidine supplementation in cells grown on glucose or succinate as a carbon source. In pyrimidine-grown ATCC 9890 cells, the activities of four de novo enzymes could be depressed which indicated possible repression of enzyme synthesis. To learn whether the pathway was repressible, pyrimidine limitation experiments were conducted using an orotate phosphoribosyltransferase (pyrE) mutant strain identified in this study. Compared to excess uracil growth conditions for the succinate-grown mutant strain cells, pyrimidine limitation of this strain caused dihydroorotase activity to increase about 3-fold while dihydroorotate dehydrogenase and orotidine 5'-monophosphate decarboxylase activities rose about 2-fold. Regulation of de novo pathway enzyme synthesis by pyrimidines appeared to be occurring. At the level of enzyme activity, aspartate transcarbamoylase activity in P. synxantha ATCC 9890 was strongly inhibited in vitro by pyrophosphate, UTP, ADP, ATP, CTP and GTP under saturating substrate concentrations.  相似文献   

6.
Giardia lamblia, an aerotolerant anaerobe, respires in the presence of oxygen by a flavin, iron-sulfur protein-mediated electron transport system. Glucose appears to be the only sugar catabolized by the Embden-Meyerhof-Parnas and hexose monophosphate pathways, and energy is produced by substrate level phosphorylation. Substrates are incompletely oxidized to CO2, ethanol and acetate by nonsedimentable enzymes. The lack of incorporation of inosine, hypoxanthine, xanthine, formate or glycine into nucleotides indicates an absence of de novo purine synthesis. Only adenine, adenosine, guanine and guanosine are salvaged, and no interconversion of these purines was detected. Salvage of these purines and their nucleosides is accomplished by adenine phosphoribosyltransferase, adenosine hydrolase, guanosine phosphoribosyltransferase and guanine hydrolase. The absence of de novo pyrimidine synthesis was confirmed by the lack of incorporation of bicarbonate, orotate and aspartate into nucleotides, and by the lack of detectable levels of the enzymes of de novo pyrimidine synthesis. Salvage appears to be accomplished by the action of uracil phosphoribosyltransferase, uridine hydrolase, uridine phosphotransferase, cytidine deaminase, cytidine hydrolase, cytosine phosphoribosyltransferase and thymidine phosphotransferase. Nucleotides of uracil may be converted to nucleotides of cytosine by cytidine triphosphate synthetase, but thymidylate synthetase and dihydrofolate reductase activities were not detected. Uptake of pyrmidine nucleosides, and perhaps pyrimidines, appears to be accomplished by carrier-mediated transport, and the common site for uptake of uridine and cytidine is distinct from the site for thymidine. Thymine does not appear to be incorporated into nucleotide pools. Giardia trophozoites appear to rely on preformed lipids rather than synthesizing them de novo.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
1. 5-Phosphoribosyl 1-methylenediphosphonate was isolated after reaction of ribose 5-phosphate and O-adenylyl methylenediphosphonate with 5-phosphoribosyl pyrophosphate synthetase from Ehrlich ascites-tumour cells. 2. The analogue reacted with adenine phosphoribosyltransferase, hypoxanthine phosphoribosyltransferase and nicotinamide phosphoribosyltransferase [K(m) (analogue)/K(m) (5-phosphoribosyl pyrophosphate) 0.17, 0.19 and 6.3 respectively; V(max.) (analogue)/V(max.) (5-phosphoribosyl pyrophosphate) 0.011, 0.26 and 1.1 respectively]. 3. The analogue was not a substrate for 5-phosphoribosyl pyrophosphate amidotransferase or orotate phosphoribosyltransferase. 4. Ribose 5-phosphorothioate was synthesized by allowing ribose to react with thiophosphoryl chloride in triethyl phosphate. The analogue was a substrate for 5-phosphoribosyl pyrophosphate synthetase from Ehrlich ascites-tumour cells. When this reaction was coupled to either adenine phosphoribosyltransferase or hypoxanthine phosphoribosyltransferase, adenosine 5'-phosphorothioate or inosine 5'-phosphorothioate was formed respectively.  相似文献   

8.
Witz S  Jung B  Fürst S  Möhlmann T 《The Plant cell》2012,24(4):1549-1559
Nucleotide de novo synthesis is highly conserved among organisms and represents an essential biochemical pathway. In plants, the two initial enzymatic reactions of de novo pyrimidine synthesis occur in the plastids. By use of green fluorescent protein fusions, clear support is provided for a localization of the remaining reactions in the cytosol and mitochondria. This implies that carbamoyl aspartate, an intermediate of this pathway, must be exported and precursors of pyrimidine salvage (i.e., nucleobases or nucleosides) are imported into plastids. A corresponding uracil transport activity could be measured in intact plastids isolated from cauliflower (Brassica oleracea) buds. PLUTO (for plastidic nucleobase transporter) was identified as a member of the Nucleobase:Cation-Symporter1 protein family from Arabidopsis thaliana, capable of transporting purine and pyrimidine nucleobases. A PLUTO green fluorescent protein fusion was shown to reside in the plastid envelope after expression in Arabidopsis protoplasts. Heterologous expression of PLUTO in an Escherichia coli mutant lacking the bacterial uracil permease uraA allowed a detailed biochemical characterization. PLUTO transports uracil, adenine, and guanine with apparent affinities of 16.4, 0.4, and 6.3 μM, respectively. Transport was markedly inhibited by low concentrations of a proton uncoupler, indicating that PLUTO functions as a proton-substrate symporter. Thus, a protein for the absolutely required import of pyrimidine nucleobases into plastids was identified.  相似文献   

9.
NUCLEOTIDE METABOLISM IN RAT BRAIN   总被引:15,自引:7,他引:8  
Abstract— The uptake, the conversion to nucleotides, and their incorporation into RNA for labelled glycine, aspartate, the free bases and nucleosides of purines and pyrimidines were investigated with cortical slices of rat cerebrum. At the end of a 1-hr incubation time the slice-to-medium ratio of the radioactivities for labelled aspartate, glycine, adenine and adenosine were 34, 26, 20 and 5, respectively, while the slice-to-medium ratios for hypoxanthine, inosine, guanine, guanosine, xanthine, orotate, cytidine, cytosine, uridine, and uracil ranged from 1.3:1 to 2:1. Over 99 per cent of the total radioactivity taken up by the cortical slices was present in the TCA supernatant and 86, 82, 65, 50, 34, 23, 20 and 1.6 per cent of this radioactivity was in the form of nucleotides at the end of a 1-hr incubation with labelled adenine, adenosine, hypoxanthine, inosine, uridine, orotate, cytidine, and glycine, respectively. The incorporation of various radioactive precursors into RNA of cortical slices suggests that nucleotides originating from either de novo synthesis or preformed purine derivatives enter the same nucleotide pool utilized for RNA synthesis. The supernatant fraction from homogenized cerebrum was investigated for the presence of various anabolic and catabolic enzymes associated with nucleotide metabolism. These results were correlated with the data from the RNA incorporation studies, and a possible role for AMP: pyrophosphate phosphoribosyltransferase (adenine phosphoribosyltransferase, I.U.B. 2.4.2.7) to achieve intercellular transfer of AMP is discussed.  相似文献   

10.
The first two steps of urea synthesis in liver of marine elasmobranchs involve formation of glutamine from ammonia and of carbamoyl phosphate from glutamine, catalysed by glutamine synthetase and carbamoyl-phosphate synthetase, respectively [Anderson & Casey (1984) J. Biol. Chem. 259, 456-462]; both of these enzymes are localized exclusively in the mitochondrial matrix. The objective of this study was to establish the enzymology of carbamoyl phosphate formation and utilization for pyrimidine nucleotide biosynthesis in Squalus acanthias (spiny dogfish), a representative elasmobranch. Aspartate carbamoyltransferase could not be detected in liver of dogfish. Spleen extracts, however, had glutamine-dependent carbamoyl-phosphate synthetase, aspartate carbamoyltransferase, dihydro-orotase, and glutamine synthetase activities, all localized in the cytosol; dihydro-orotate dehydrogenase, orotate phosphoribosyltransferase, and orotidine-5'-decarboxylase activities were also present. Except for glutamine synthetase, the levels of all activities were very low. The carbamoyl-phosphate synthetase activity is inhibited by UTP and is activated by 5-phosphoribosyl 1-pyrophosphate. The first three enzyme activities of the pyrimidine pathway were eluted in distinctly different positions during gel filtration chromatography under a number of different conditions; although complete proteolysis of inter-domain regions of a multifunctional complex during extraction cannot be excluded, the evidence suggests that in dogfish, in contrast to mammalian species, these three enzymes of the pyrimidine pathway exist as individual polypeptide chains. These results: (1) establish that dogfish express two different glutamine-dependent carbamoyl-phosphate synthetase activities, (2) confirm the report [Smith, Ritter & Campbell (1987) J. Biol. Chem. 262, 198-202] that dogfish express two different glutamine synthetases, and (3) provide indirect evidence that glutamine may not be available in liver for biosynthetic reactions other than urea formation.  相似文献   

11.
Changes in the pattern of pyrimidine nucleotide metabolism were investigated in Pinus radiata cotyledons cultured under shoot-forming (SF; +N(6)-benzyladenine) and non-shoot-forming (NSF, -N(6)-benzyladenine) conditions, as well as in cotyledons unresponsive (OLD) to N(6)-benzyladenine. This was carried out by following the metabolic fate of externally supplied (14)C-labeled orotic acid, intermediate of the de novo pathway, and (14)C-labeled uridine and uracil, substrates of the salvage pathway. Nucleic acid synthesis was also investigated by following the metabolic fate of (14)C-labeled thymidine during shoot bud formation and development. The de novo synthesis of pyrimidine nucleotides was operative under both SF and NSF conditions, and the activity of orotate phosphoribosyltransferase (OPRT), a key enzyme of the de novo pathway, was higher in SF tissue. Utilization of both uridine and uracil for nucleotide and nucleic acid synthesis clearly indicated that the salvage pathway of pyrimidine metabolism is also operative during shoot organogenesis. In general, uridine was a better substrate for the synthesis of salvage products than uracil, possibly due to the higher activity of uridine kinase (UK), compared to uracil phosphoribosyltransferase (UPRT). Incorporation of uridine into the nucleic acid fraction of OLD cotyledons was lower than that observed for their responsive (day 0) counterparts. Similarly, uracil utilization for nucleic acid synthesis was lower in NSF cotyledons, compared to that observed for SF tissue after 10 days in culture. This difference was ascribed to higher UPRT activity measured in the latter. Thus, there was an apparent difference in the utilization of nucleotides derived from uracil and uridine for nucleotide synthesis. The increased ability to produce pyrimidine nucleotides via the salvage pathway during shoot bud formation may be required in support of nucleic acid synthesis occurring during the process. Studies on thymidine metabolism confirmed this notion.  相似文献   

12.
The site of feedback inhibition of the biosynthesis of pyrimidine nucleotides de novo was investigated in the isolated perfused rat liver. Hepatic uridine phosphate contents were specifically depleted by use of D-galactosamine. The effective activities of enzymes involved in the synthetic pathway were deduced from the rats of incorporation of labeled precursors into the acid-soluble uracil nucleotide pool and into some intermediates of the pathway. The labeling of hepatic urea was also monitored. When the uridine phosphate contents were less than 20% of controls, the incorporation of [14-C]-bicarbonate was stimulated about 20-fold. Label from [U-14C]oxaloacetate used as permeable precursor of intrace-lular aspartate was introduced into the uridylates to the same extent in normal and UTP-depleted livers. Similar results were obtained with labeled carbamoyl phosphate although the uptake of this compound by the liver was rather low. The lack of labeling of urea from exogenous carbamoyl phosphate does not indicate a free exchange of extra- and intramitochondrial carbamoyl phosphate. [ureido-14C]Ureidosuccinate produced in normal and D-galactosamine-treated livers almost identical labeling patterns of dihydroorotate, orotate and orotidine 5'-phosphate. The steady state concentrations of these intermediates were all below 15 nmol/g liver wet weight.  相似文献   

13.
14.
15.
Pyrimidine metabolism was investigated at various stages ofsomatic embryo development of white spruce (Picea glauca). The contribution of thede novo and the salvage pathways of pyrimidine biosynthesis to nucleotide and nucleic acid formation and the catabolism of pyrimidine was estimated by the exogenously supplied [6-14C]orotic acid, an intermediate of thede novo pathway, and with [2-14C]uridine and [2-14C]uracil, substrates of the salvage pathways. Thede novo pathway was very active throughout embryo development. More than 80 percnt; of [6-14C]orotic acid taken up by the tissue was utilized for nucleotide and nucleic acid synthesis in all stages of this process. The salvage pathways of uridine and uracil were also operative. Relatively high nucleic acid biosynthesis from uridine was observed, whereas the contribution of uracil salvage to the pyrimidine nucleotide and nucleic acid synthesis was extremely limited. A large proportion of uracil was degraded as 14CO2, probably via β-ureidopropionate. Among the enzymes of pyrimidine metabolism, orotate phosphoribosyltransferase was high during the initial phases of embryo development, after which it gradually declined. Uridine kinase, responsible for the salvage of uridine, showed an opposite pattern, since its activity increased as embryos developed. Low activities of uracil phosphoribosyltransferase and non-specific nucleoside phosphotransferase were also detected throughout the developmental period. These results suggest that the flux of thede novo and salvage pathways of pyrimidine nucleotide biosynthesisin vivo is roughly controlled by the amount of these enzymes. However, changing patterns of enzyme activity during embryo development that were measuredin vitro did not exactly correlate with the flux estimated by the radioactive precursors. Therefore, other fine control mechanisms, such as the fluctuation of levels of substrates and/or effectors may also participate to the real control of pyrimidine metabolism during white spruce somatic embryo development.  相似文献   

16.
Activities of five enzymes of the pyrimidine biosynthetic pathway and one enzyme involved in arginine synthesis were measured during batch culture of Salmonella typhimurium. Aspartate carbamoyltransferase, dihydroorotase, and the arginine pathway enzyme, ornithine carbamoyltransferase, remained constant during the growth cycle but showed a sharp decrease in activity after entering the stationary phase. Dihydroorotate dehydrogenase, orotate phosphoribosyltransferase and orotidine-5'-monophosphate (OMP) decarboxylase showed peaks of activity corresponding to the mid-point of the exponential phase of growth while remaining comparatively stable in the stationary phase. Derepression studies carried out by starving individual pyrimidine (Pyr-) deletion mutants for uracil showed that the extent of derepression obtained for aspartate carbamoyltransferase, dihydroorotase and dihydroorotate dehydrogenase depended on the location of the pyr gene mutation. Orotate phosphoribosyltransferase and OMP decarboxylase derepression levels were independent of the location of the pyr mutation. Aspartate carbamoyltransferase showed the greatest degree of derepression of the six enzymes studied, with pyrA strains (blocked in the first step of the pathway) showing about twice as much derepression as pyrF strains (blocked in the sixth step of the pathway). A study of the kinetics of repression on derepressed levels of the pyrimidine enzymes produced data that were compatible with dilution of specific activity by cell division when repressive amounts of uracil were added to the derepression medium.  相似文献   

17.
18.
A pyrimidine phosphoribosyltransferase, previously shown to utilize 5-fluorouracil and possibly also uracil and orotate (Reyes, P. (1969) Biochemistry 8, 2057-2062), has been purified about 100-fold from murine leukemia P1534J. Roughly 20% of the original activity was recovered to yield an enzyme preparation with a specific activity of 7.4 mumol of 5-fluorouracil utilized/hour/mg of protein. Disc gel electrophoresis of this preparation revealed the presence of a major band of protein accompanied by several trace contaminants. Emphasis was placed on a study of the substrate specificity of this enzyme. 5-Fluorouracil, uracil, and orotate phosphoribosyltransferase activities purified in parallel during fractionation with ammonium sulfate and protamine sulfate and eluted together from columns of Sephadex tG-150 and DEAE-cellulose. The three phosphoribosyltransferase activities eluted from the Sephadex columns with an apparent molecular weight of 55,000 to 60,000. In spite of this coordinate fractionation, preferential losses of orotate activity were experienced during DEAE-cellulose chromatography. Orotate activity continued to behave in a unique manner under other conditions, such as during proteolytic digestion. In the latter case, however, all three activities responded in parallel when digestion took place in the presence of 5mM UMP. The following results provided additional evidence to support the view that all three phosphoribosyltransferase activities may be catalyzed by the same enzyme: (a) the apparent Km for 5-phosphoribosyl 1-pyrophosphate (PP-ribose-P) did not change significantly when enzyme activity was measured with either 5-fluorouracil, uracil, or orotate; (b) 5-fluorouracil and uracil were found to be mutually competitive inhibitors; the effect of 5-fluorouracil on orotate activity was likewise competitive in nature; (c) in the absence of UMP, orotate was a noncompetitive inhibitor of 5-fluorouracil and uracil activities, but in the presence of 5mM UMP it became a competitive inhibitor of both of these activities; (d) 5-fluorouracil and orotate activities co-sedimented in 5 to 20% sucrose gradients (uracil activity was not examined); and (e) a wide variety of normal mouse tissues displayed virtually the same 5-fluorouracil to uracil to orotate activity ratio as found in P1534J enzyme preparations. The apparent Km and Ki values reported in this study indicate that the preferred pyrimidine substrate is orotate. It seems likely, therefore, that this enzyme functions in vivo as an orotate phosphoribosyltransferase. Orotate phosphoribosyltransferase and orotidine 5'-monophosphate (OMP) decarboxylase activities (a) eluted together during gel filtration on Sephadex G-150, (b) co-sedimented in 5 to 20% sucrose gradients, (c) remained associated during fractionation with ammonium sulfate and protamine sulfate, and (d) separated into a phosphoribosyltransferase and decarboxylase component when enzyme preparations previously subjected to limited proteolysis by elastase were sedimented in sucrose gradients...  相似文献   

19.
The major pathways of ribonucleotide biosynthesis in Mycoplasma mycoides subsp. mycoides have been proposed from studies on its use of radioactive purines and pyrimidines. To interpret more fully the observed pattern of pyrimidine usage, cell extracts of this organism have been assayed for several enzymes associated with the salvage synthesis of pyrimidine nucleotides. M. mycoides possessed uracil phosphoribosyltransferase, uridine phosphorylase, uridine (cytidine) kinase, uridine 5'-monophosphate kinase, and cytidine 5'-triphosphate synthetase. No activity for phosphorolysis of cytidine was detected, and no in vitro conditions were found to give measurable deamination of cytidine. Of the two potential pathways for incorporation of uridine, our data suggest that this precursor would largely undergo initial phosphorolysis to uracil and ribose-1-phosphate. Conversely, cytidine is phosphorylated directly to cytidine 5'-monophosphate in its major utilization, although conversion of cytidine to uracil, uridine, and uridine nucleotide has been observed in vivo, at least when uracil is provided in the growth medium. Measurements of intracellular nucleotide contents and their changes on additions of pyrimidine precursors have allowed suggestions as to the operation of regulatory mechanisms on pyrimidine nucleotide biosynthesis in M. mycoides in vivo. With uracil alone or uracil plus uridine as precursors of pyrimidine ribonucleotides, the regulation of uracil phosphoribosyltransferase and cytidine 5'-triphosphate synthetase is probably most important in determining the rate of pyrimidine nucleotide synthesis. When cytidine supplements uracil in the growth medium, control of cytidine kinase activity would also be important in this regard.  相似文献   

20.
Control of pyrimidine biosynthesis was examined in Pseudomonas mucidolens ATCC 4685 and the five de novo pyrimidine biosynthetic enzyme activities unique to this pathway were influenced by pyrimidine supplementation in cells grown on glucose or succinate as a carbon source. When uracil was supplemented to glucose-grown ATCC 4685 cells, activities of four de novo enzymes were depressed which indicated possible repression of enzyme synthesis. To learn whether the pathway was repressible, pyrimidine limitation experiments were conducted using an orotate phosphoribosyltransferase (pyrE) mutant strain identified in this study. Compared to excess uracil growth conditions for the glucose-grown mutant strain cells, pyrimidine limitation of this strain caused aspartate transcarbamoylase, dihydroorotase and dihydroorotate dehydrogenase activities to increase by more than 3-fold while OMP decarboxylase activity increased by 2.7-fold. The syntheses of the de novo enzymes appeared to be regulated by pyrimidines. At the level of enzyme activity, aspartate transcarbamoylase activity in P. mucidolens ATCC 4685 was subject to inhibition at saturating substrate concentrations. Transcarbamoylase activity was strongly inhibited by UTP, ADP, ATP, GTP and pyrophosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号