首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
The effects of cyclic AMP (cAMP) on cell proliferation are cell type specific. Although the growth-inhibitory effects of cAMP have been well studied, much less is known regarding how cAMP stimulates proliferation. We report that cAMP stimulates proliferation through both protein kinase A (PKA)-dependent and PKA-independent signaling pathways and that phosphatidylinositol 3-kinase (PI3K) is required for cAMP-stimulated mitogenesis. In cells where cAMP is a mitogen, cAMP-elevating agents stimulate membrane ruffling, Akt phosphorylation, and p70 ribosomal S6 protein kinase (p70s6k) activity. cAMP effects on ruffle formation and Akt were PKA independent but sensitive to wortmannin. In contrast, cAMP-stimulated p70s6k activity was repressed by PKA inhibitors but not by wortmannin or microinjection of the N-terminal SH2 domain of the p85 regulatory subunit of PI3K, indicating that p70s6k and Akt can be regulated independently. Microinjection of highly specific inhibitors of PI3K or Rac1, or treatment with the p70s6k inhibitor rapamycin, impaired cAMP-stimulated DNA synthesis, demonstrating that PKA-dependent and -independent pathways contribute to cAMP-mediated mitogenesis. Direct elevation of PI3K activity through microinjection of an antibody that stimulates PI3K activity or stable expression of membrane-localized p110 was sufficient to confer hormone-independent DNA synthesis when accompanied by elevations in p70s6k activity. These findings indicate that multiple pathways contribute to cAMP-stimulated mitogenesis, only some of which are PKA dependent. Furthermore, they demonstrate that the ability of cAMP to stimulate both p70s6k- and PI3K-dependent pathways is an important facet of cAMP-regulated cell cycle progression.  相似文献   

2.
3.
4.
In mammalian cells, growth factors, oncogenes, and carcinogens stimulate phosphocholine (PCho) synthesis by choline kinase (CK), suggesting that PCho may regulate cell growth. To validate the role of PCho in mitogenesis, we determined the effects of insulin, insulin-like growth factor I (IGF-I), and other growth factors on DNA synthesis in NIH 3T3 fibroblast sublines highly expressing human choline kinase (CK) without increasing phosphatidylcholine synthesis. In serum-starved CK expressor cells, insulin and IGF-I stimulated DNA synthesis, p70 S6 kinase (p70 S6K) activity, phosphatidylinositol 3-kinase (PI3K) activity, and activating phosphorylation of p42/p44 mitogen-activated protein kinases (MAPK) to greater extents than in the corresponding vector control cells. Furthermore, the CK inhibitor hemicholinium-3 (HC-3) inhibited insulin- and IGF-I-induced DNA synthesis in the CK overexpressors, but not in the vector control cells. The results indicate that high cellular levels of PCho potentiate insulin- and IGF-I-induced DNA synthesis by MAPK- and p70 S6K-regulated mechanisms.  相似文献   

5.
6.
We have previously shown that the vasoconstrictive peptide angiotensin II (ANG II) is a hypertrophic agent for human coronary artery smooth muscle cells (cSMCs), which suggests that it plays a role in vascular wall thickening. The present study investigated the intracellular signal transduction pathways involved in the growth response of cSMCs to ANG II. The stimulation of protein synthesis by ANG II in cSMCs was blocked by the immunosuppressant rapamycin, which is an inhibitor of the mammalian target of rapamycin (mTOR) signaling pathway that includes the 70-kDa S6 kinase (p70(S6k)) and plays a key role in cell growth. The inhibitory effect of rapamycin was reversed by a molar excess of FK506; this indicates that both agents act through the common 12-kDa immunophilin FK506-binding protein. ANG II caused a rapid and sustained activation of p70(S6k) activity that paralleled its phosphorylation, and both processes were blocked by rapamycin. In addition, both of the phosphatidylinositol 3-kinase inhibitors wortmannin and LY-294002 abolished the ANG II-induced increase in protein synthesis, and wortmannin also blocked p70(S6k) phosphorylation. Furthermore, ANG II triggered dissociation of the translation initiation factor, eukaryotic initiation factor-4E, from its regulatory binding protein 4E-BP1, which was also inhibited by rapamycin and wortmannin. In conclusion, we have shown that ANG II activates components of the rapamycin-sensitive mTOR signaling pathway in human cSMCs and involves activation of phosphatidylinositol 3-kinase, p70(S6k), and eukaryotic initiation factor-4E, which leads to activation of protein synthesis. These signaling mechanisms may mediate the growth-promoting effect of ANG II in human cSMCs.  相似文献   

7.
Although the cellular functions of TSC2 and its protein product, tuberin, are not known, somatic mutations in the TSC2 tumor suppressor gene are associated with tumor development in lymphangioleiomyomatosis (LAM). We found that ribosomal protein S6 (S6), which exerts translational control of protein synthesis and is required for cell growth, is hyperphosphorylated in the smooth muscle-like cell lesions of LAM patients compared with smooth muscle cells from normal human blood vessels and trachea. Smooth muscle (SM) cells derived from these lesions (LAMD-SM) also exhibited S6 hyperphosphorylation, constitutive activation of p70 S6 kinase (p70S6K), and increased basal DNA synthesis. In parallel, TSC2-/- smooth muscle cells (ELT3) and TSC2-/- epithelial cells (ERC15) also exhibited hyperphosphorylation of S6, constitutive activation of p70S6K, and increased basal DNA synthesis. Re-introduction of wild type tuberin into LAMD-SM, ELT3, and ERC15 cells abolished phosphorylation of S6 and significantly inhibited p70S6K activity and DNA synthesis. Rapamycin, an immunosuppressant, inhibited hyperphosphorylation of S6, p70S6K activation, and DNA synthesis in LAMD-SM cells. Interestingly, the basal levels of phosphatidylinositol 3-kinase, Akt/protein kinase B, and p42/p44 MAPK activation were unchanged in LAMD-SM and ELT3 cells relative to levels in normal human tracheal and vascular SM. These data demonstrate that tuberin negatively regulates the activity of S6 and p70S6K specifically, and suggest a potential mechanism for abnormal cell growth in LAM.  相似文献   

8.
Our data show that in hamster fibroblasts transformed by Rous sarcoma virus (RSV), the phosphoinositide 3'-kinase (PI-3K)/Akt/glycogen synthase kinase 3 antiapoptotic pathway is upregulated and involved in increased protein synthesis through activation of initiation factor eIF2B. Upon inhibition of PI-3K by wortmannin, phosphorylation of 70-kDa ribosomal protein S6 kinase (p70 S6k) and its physiological substrate, ribosomal protein S6, decreased in the non-transformed cells but not in RSV-transformed cells. Thus PI-3K, which is thought to be involved in regulation of p70 S6k, signals to p70 S6k in normal fibroblasts, but it does not appear to be an upstream effector of p70 S6k in fibroblasts transformed by v-src oncogene, suggesting that changes in the PI-3K signalling pathway upstream of p70 S6k are induced by RSV transformation.  相似文献   

9.
We have studied a possible role of extracellular zinc ion in the activation of p70S6k, which plays an important role in the progression of cells from the G(1) to S phase of the cell cycle. Treatment of Swiss 3T3 cells with zinc sulfate led to the activation and phosphorylation of p70S6k in a dose-dependent manner. The activation of p70S6k by zinc treatment was biphasic, the early phase being at 30 min followed by the late phase at 120 min. The zinc-induced activation of p70S6k was partially inhibited by down-regulation of phorbol 12-myristate 13-acetate-responsive protein kinase C (PKC) by chronic treatment with phorbol 12-myristate 13-acetate, but this was not significant. Moreover, Go6976, a specific calcium-dependent PKC inhibitor, did not significantly inhibit the activation of p70S6k by zinc. These results demonstrate that the zinc-induced activation of p70S6k is not related to PKC. Also, extracellular calcium was not involved in the activation of p70S6k by zinc. Further characterization of the zinc-induced activation of p70S6k using specific inhibitors of the p70S6k signaling pathway, namely rapamycin, wortmannin, and LY294002, showed that zinc acted upstream of mTOR/FRAP/RAFT and phosphatidylinositol 3-kinase (PI3K), because these inhibitors caused the inhibition of zinc-induced p70S6k activity. In addition, Akt, the upstream component of p70S6k, was activated by zinc in a biphasic manner, as was p70S6k. Moreover, dominant interfering alleles of Akt and PDK1 blocked the zinc-induced activation of p70S6k, whereas the lipid kinase activity of PI3K was potently activated by zinc. Taken together, our data suggest that zinc activates p70S6k through the PI3K signaling pathway.  相似文献   

10.
Nitric oxide (NO) regulates the expression of p21(Waf1/Cip1) in several cell types. The present study examined the role of both the extracellular signal-regulated kinase (ERK) and p70 S6 kinase (p70(S6k)) in the NO-induced increase in p21 expression that occurred in adventitial fibroblasts during the cell cycle. Both ERK and p70(S6k) were phosphorylated in response to the NO donor S-nitroso-N-acetylpenicillamine (SNAP) and the activation was rapid, transient, and preceded increased p21 expresion under defined conditions where serum was present. Addition of a selective inhibitor of ERK phosphorylation (PD98059) prevented the subsequent phosphorylation of p70(S6k) and the increase in p21 protein. Both cGMP and cAMP activated both ERK and p70(S6k), whereas only selective inhibitors of protein kinase G prevented the activation of the kinases by SNAP. A complex between ERK and p70(S6k) was documented by immunoprecipitation procedures. Rapamycin blocked p70(S6k) phosphorylation induced by NO and also inhibited p53 phosphorylation and p21 expression whereas PD98059 only prevented the NO-induced increase in p21 protein without influencing either p53 activation or p21 mRNA expression. The studies show a unique relationship between NO, ERK, and p70(S6k) and also provide evidence for a novel role of p70(S6k) in the activation of p53.  相似文献   

11.
In this work, we analyzed the role of the PI3K-p70 S6 kinase (S6K) signaling cascade in the stimulation of endothelial cell proliferation. We found that inhibitors of the p42/p44 MAPK pathway (PD98059) and the PI3K-p70 S6K pathway (wortmannin, Ly294002, and rapamycin) all block thymidine incorporation stimulated by fetal calf serum in the resting mouse endothelial cell line 1G11. The action of rapamycin can be generalized, since it completely inhibits the mitogenic effect of fetal calf serum in primary endothelial cell cultures (human umbilical vein endothelial cells) and another established capillary endothelial cell line (LIBE cells). The inhibitory effect of rapamycin is only observed when the inhibitor is added at the early stages of G(0)-G(1) progression, suggesting an inhibitory action early in G(1). Rapamycin completely inhibits growth factor stimulation of protein synthesis, which perfectly correlates with the inhibition of cell proliferation. In accordance with its inhibitory action on protein synthesis, activation of cyclin D1 and p21 proteins by growth factors is also blocked by preincubation with rapamycin. Expression of a p70 S6K mutant partially resistant to rapamycin reverses the inhibitory effect of the drug on DNA synthesis, indicating that rapamycin action is via p70 S6K. Thus, in vascular endothelial cells, activation of protein synthesis via p70 S6K is an essential step for cell cycle progression in response to growth factors.  相似文献   

12.
Hyperinsulinemia has been shown to be associated with diabetic angiopathy. Migration and proliferation of vascular smooth muscle cells (VSMC) are the processes required for the development of atherosclerosis. In this study, we attempted to determine whether insulin affects mitogenic signaling induced by plateletderived growth factor (PDGF) in a rat VSMC cell line (A10 cells). PDGF stimulated DNA synthesis which was totally dependent on Ras, because transfection of dominant negative Ras resulted in complete loss of PDGF-stimulated DNA synthesis. Initiation of DNA synthesis was preceded by activation of Raf-1, MEK and MAP kinases (Erk 1 and Erk2). Treatment of the cells with PD98059, an inhibitor of MAPK kinase (MEK) attenuated but did not abolish PDGF-stimulated DNA synthesis, suggesting that MAPK is required but not essential for DNA synthesis. PDGF also stimulated phosphorylation of protein kinase B (Akt/PKB) and p70 S6Kinase (p70S6K) in a wortmannin-sensitive manner. Rapamycin, an inhibitor of p70S6K, markedly suppressed DNA synthesis. Low concentrations of insulin (1-10 nmol/l) alone showed little mitogenic activity and no significant effect on MAPK activity. However, the presence of insulin enhanced both DNA synthesis and MAPK activation by PDGF. The enhancing effect of insulin was not seen in cells treated with PD98059. Insulin was without effect on PDGF-stimulated activations of protein kinase B (Akt/PKB) and p70S6K. We conclude that insulin, at pathophysiologically relevant concentrations, potentiates the PDGFstimulated DNA synthesis, at least in part, by potentiating activation of the MAPK cascade. These results are consistent with the notion that hyperinsulinemia is a risk factor for the development of atherosclerosis.  相似文献   

13.
Nitric oxide inhibits caspase-3 by S-nitrosation in vivo   总被引:11,自引:0,他引:11  
In cultured human endothelial cells, physiological levels of NO prevent apoptosis and interfere with the activation of the caspase cascade. In vitro data have demonstrated that NO inhibits the activity of caspase-3 by S-nitrosation of the enzyme. Here we present evidence for the in vivo occurrence and functional relevance of this novel antiapoptotic mechanism. To demonstrate that the cysteine residue Cys-163 of caspase-3 is S-nitrosated, cells were transfected with the Myc-tagged p17 subunit of caspase-3. After incubation of the transfected cells with different NO donors, Myc-tagged p17 was immunoprecipitated with anti-Myc antibody. S-Nitrosothiol was detected in the immunoprecipitate by electron spin resonance spectroscopy after liberation and spin trapping of NO by N-methyl-D-glucamine-dithiocarbamate-iron complex. Transfection of cells with a p17 mutant, where the essential Cys-163 was mutated into alanine, completely prevented S-nitrosation of the enzyme. As a functional correlate, in human umbilical vein endothelial cells the NO donors sodium nitroprusside or PAPA NONOate (50 microM) significantly reduced the increase in caspase-3-like activity induced by overexpressing caspase-3 by 75 and 70%, respectively. When human umbilical vein endothelial cells were cotransfected with beta-galactosidase, morphological analysis of stained cells revealed that cell death induction by overexpression of caspase-3 was completely suppressed in the presence of sodium nitroprusside, PAPA NONOate, or S-nitroso-L-cysteine (50 microM). Thus, NO supplied by exogenous NO donors serves in vivo as an antiapoptotic regulator of caspase activity via S-nitrosation of the Cys-163 residue of caspase-3.  相似文献   

14.
Phosphorylation of 40S ribosomal protein S6 is regulated in part by the mitogen-activated p70 S6 kinase (p70s6k). Following the addition of IL-2 to the IL-2 dependent human cell line Kit225, or mitogenic activation of resting human T cells, a rapid phosphorylation of p70s6k was observed by immunoblotting. Rapamycin (RAP), a potent suppressor of T-cell proliferative responses, markedly inhibited the phosphorylation of p70s6k induced by IL-2 in Kit225 cells or by the mitogens added to resting T cells. Other immunosuppressants such as cyclosporin A or an FK506 analogue were without effect. Moreover, the effect of RAP was restricted to p70s6k; it did not inhibit the phosphorylation of p90rsk, another kinase which utilizes the S6 protein as a substrate. These data indicate for the first time that RAP may target the pathway leading to p70s6k phosphorylation during human T-cell proliferation.  相似文献   

15.
16.
Caffeine and human DNA metabolism: the magic and the mystery   总被引:7,自引:0,他引:7  
The ability of caffeine to reverse cell cycle checkpoint function and enhance genotoxicity after DNA damage was examined in telomerase-expressing human fibroblasts. Caffeine reversed the ATM-dependent S and G2 checkpoint responses to DNA damage induced by ionizing radiation (IR), as well as the ATR- and Chk1-dependent S checkpoint response to ultraviolet radiation (UVC). Remarkably, under conditions in which IR-induced G2 delay was reversed by caffeine, IR-induced G1 arrest was not. Incubation in caffeine did not increase the percentage of cells entering the S phase 6-8h after irradiation; ATM-dependent phosphorylation of p53 and transactivation of p21(Cip1/Waf1) post-IR were resistant to caffeine. Caffeine alone induced a concentration- and time-dependent inhibition of DNA synthesis. It inhibited the entry of human fibroblasts into S phase by 70-80% regardless of the presence or absence of wildtype ATM or p53. Caffeine also enhanced the inhibition of cell proliferation induced by UVC in XP variant fibroblasts. This effect was reversed by expression of DNA polymerase eta, indicating that translesion synthesis of UVC-induced pyrimidine dimers by DNA pol eta protects human fibroblasts against UVC genotoxic effects even when other DNA repair functions are compromised by caffeine.  相似文献   

17.
L-Asparaginase is widely used in the treatment of acute lymphoblastic leukemia. L-Asparaginase preparation derived from E. coli converts asparagine (Asn) and glutamine (Gln) to aspartate (Asp) and glutamate (Glu), respectively, and causes rapid depletion of Asn and Gln. It thus suppresses growth of malignant cells that are more dependent on an exogenous source of Asn and Gln than are normal cells. It remains unclear, however, which signaling events in leukemic cells are affected by L-asparaginase. Recently, amino acid sufficiency has been demonstrated to selectively regulate p70 S6 kinase (p70(s6k)) and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1), both of which are targeted by the anti-proliferative drug rapamycin. Here we demonstrate that addition of L-asparaginase to human leukemic cells inhibits activity of p70(s6k) and phosphorylation of 4E-BP1, but not activities of other cell growth-related serine/threonine kinases. The rate and kinetics of p70(s6k) inhibition by L-asparaginase were comparable to those seen by deprivation of Asn and/or Gln from cell culture media, suggesting that the effect of L-asparaginase on p70(s6k) is explained by depletion of Asn and/or Gln. Moreover, L-Asparaginase as well as rapamycin selectively suppressed synthesis of ribosomal proteins at the level of mRNA translation. These data indicate that L-asparaginase and rapamycin target a common signaling pathway in leukemic cells.  相似文献   

18.
To understand the mechanisms of prostaglandin F2alpha (PGF2alpha)-induced protein synthesis in vascular smooth muscle cells (VSMC), we have studied its effect on two major signal transduction pathways: mitogen-activated protein kinases and phosphatidylinositol 3-kinase (PI3-kinase) and their downstream targets ribosomal protein S6 kinase (p70(S6k)) and eukaryotic initiation factor eIF4E and its regulator 4E-BP1. PGF2alpha induced the activities of extracellular signal-regulated kinase 2 (ERK2) and Jun N-terminal kinase 1 (JNK1) groups of mitogen-activated protein kinases, PI3-kinase, and p70(S6k) in a time-dependent manner in growth-arrested VSMC. PGF2alpha also induced eIF4E and 4E-BP1 phosphorylation, global protein synthesis, and basic fibroblast growth factor-2 (bFGF-2) expression in VSMC. Whereas inhibition of PI3-kinase by wortmannin completely blocked the p70(S6k) activation, it only partially decreased the ERK2 activity, and had no significant effect on global protein synthesis and bFGF-2 expression induced by PGF2alpha. Rapamycin, a potent inhibitor of p70(S6k), also failed to prevent PGF2alpha-induced global protein synthesis and bFGF-2 expression, although it partially decreased ERK2 activity. In contrast, inhibition of ERK2 activity by PD 098059 led to a significant loss of PGF2alpha-induced eIF4E and 4E-BP1 phosphorylation, global protein synthesis, and bFGF-2 expression. PGF2alpha-induced phosphorylation of eIF4E and 4E-BP1 was also found to be sensitive to inhibition by both wortmannin and rapamycin. These findings demonstrate that 1) PI3-kinase-dependent and independent mechanisms appear to be involved in PGF2alpha-induced activation of ERK2; 2) PGF2alpha-induced eIF4E and 4E-BP1 phosphorylation appear to be mediated by both ERK-dependent and PI3-kinase-dependent rapamycin-sensitive mechanisms; and 3) ERK-dependent eIF4E phosphorylation but not PI3-kinase-dependent p70(S6k) activation correlates with PGF2alpha-induced global protein synthesis and bFGF-2 expression in VSMC.  相似文献   

19.
The signal transduction pathways that mediate the mitogenic response of muscarinic acetylcholine receptors in astroglial cells have not been fully elucidated. In this study we investigated the activation of p70S6 kinase (p70S6K) by carbachol in 1321 N1 astroctyoma cells. Carbachol induced a dose- and time-dependent activation of p70S6K, as evidenced by increased phosphorylation at Thr-389, Thr-421 and Ser-424, by increased p70S6K activity, and by a shift in its molecular weight. Activation of p70S6K was mediated by M3 muscarinic acetylcholine receptors (mAChRs) and was inhibited by two phosphatidylinositol-3-kinase (PI3-K) inhibitors, by a pseudosubstrate to protein kinase C (PKC) zeta, and by the p70S6K inhibitor rapamycin. Carbachol-induced DNA synthesis was strongly inhibited by rapamycin, suggesting that p70S6K activation plays an important role in carbachol-induced cell proliferation. Ethanol (25-100 mm) has been shown to inhibit carbachol-induced proliferation of astroglial cells. In the same range of concentrations, ethanol also inhibits carbachol-induced activation of PKCzeta and of p70S6K. On the other hand, inhibition of PI3-kinase was only observed at higher ethanol concentrations. These results indicate that activation of the PKCzeta--> p70S6K pathway by M3 mAChRs may play a role in the increased DNA synthesis and may represent a target for ethanol-induced inhibition of astroglial cell proliferation.  相似文献   

20.
The addition of leucine induced activation of p70S6k in amino acid-depleted H4IIE cells. Whereas the activation of p70S6k by leucine was transient, the complete amino acid stimulated p70S6k more persistently. The effect of leucine on p70S6k was sensitive to rapamycin, but less sensitive to wortmannin. Using various amino acids and derivatives of leucine, we found that the chirality, the structure of the four branched hydrocarbons, and the primary amine are required for the ability of leucine to stimulate p70S6k, indicating that the structural requirement of leucine to induce p70S6k activation is very strict and precise. In addition, some leucine derivatives exhibited the ability to stimulate p70S6k and the other derivatives acted as inhibitors against the leucine-induced activation of p70S6k.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号