首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An anaerobic, rod-shaped, mesophilic, chemolithoautotrophic, sulfate-reducing bacterial strain IOR2T was isolated from a newly found deep-sea hydrothermal vent (OVF, Onnuri Vent Field) area in the central Indian Ocean ridge (11°24′88″ S 66°25′42″ E, 2021 m water depth). The 16S rRNA gene sequence analysis revealed that the strain IOR2T was most closely related to Desulfovibrio senegalensis BLaC1T (96.7%). However, it showed low similarity with the members of the family Desulfovibrionaceae, such as Desulfovibrio tunisiensis RB22T (94.0%), D. brasiliensis LVform1T (93.9%), D. halophilus DSM 5663T (93.7%), and Pseudodesulfovibrio aespoeensis Aspo-2T (93.2%). The strain IOR2T could grow at 23–42°C (optimum 37°C), pH 5.0–8.0 (optimum pH 7.0) and with 0.5–6.5% (optimum 3.0%) NaCl. The strain could use lactate, pyruvate, H2, and glycerol as electron donors and sulfate, thiosulfate, and sulfite as electron acceptors. The major fatty acids of the strain IOR2T were iso-C15:0, iso-C17:0, ante-iso-C15:0, and summed feature 9 (C16:0 methyl/iso-C17:1ω9c). Both the strains IOR2T and BLaC1T could grow with CO2 and H2 as the sole sources of carbon and energy, respectively. Genomic evidence for the Wood-Ljungdahl pathway in both the strains reflects chemolithoautotrophic growth. The DNA G + C content of the strain IOR2T and BLaC1T was 58.1–60.5 mol%. Based on the results of the phylogenetic and physiologic studies, Paradesulfovibrio onnuriensis gen. nov., sp. nov. with the type strain IOR2T (= KCTC 15845T = MCCC 1K04559T) was proposed to be a member of the family Desulfovibrionaceae. We have also proposed the reclassification of D. senegalensis as Paradesulfovibrio senegalensis comb. nov.  相似文献   

2.
A novel bacterium, designated strain ARSA-15(T), was isolated from a freshwater sample collected from the Cheonho reservoir, Cheonan, Republic of Korea. The isolate was deep-yellow pigment, Gram-negative, rod-shaped, non-motile, and catalase- and oxidase-positive. Phylogenetic analysis based on 16S rRNA gene sequences showed that the isolate belongs to the genus Flavobacterium, and shared less than 97% sequence similarity with recognized Flavobacterium species. The novel species was able to grow at 10-37°C, pH 6.5-10.0, and in 0-0.5% (w/v) NaCl concentrations. Chemotaxonomically, iso-C(15:1), iso-C(15:0), and iso-C(16:0) were observed to be the predominant cellular fatty acid, and menaquinone-6 (MK-6) was the predominant respiratory quinone. The major polar lipid patterns of strain ARSA-19(T) was phosphatidylethanolamine, unknown aminolipid (AL1 and AL2), and unidentified polar lipids (L1, L2, and L3). The genomic DNA G+C content of the isolate was 39.2 mol%. On the basis of polyphasic approach, strain ARSA-15(T) represents a novel species of the genus Flavobacterium, for which the name Flavobacterium cheonhonense sp. nov. is proposed. The type strain is ARSA-15(T) (=KACC 14967(T) =KCTC 23180(T) =JCM 17064(T)).  相似文献   

3.
A slightly halophilic, extremely halotolerant, alkaliphilic, and facultatively anaerobic rod bacterium was isolated from a decomposing marine alga collected in Okinawa, Japan. The isolate, designated O15-7(T), was Gram-positive, endospore-forming, catalase-positive, menaquinone-7-possessing bacterium that is motile by peritrichous flagella. The isolate was an inhabitant of marine environments; the optimum NaCl concentration for growth was 0.75-3.0% (w/v) with a range of 0-22.0%, and the optimum pH was 7.0-8.5 with a range of 5.5-9.5. Catalase was produced in aerobic cultivation but not in anaerobic cultivation. Carbohydrate, sugar alcohol or a related carbon compound was required for growth. In aerobic cultivation, the isolate produced pyruvate, acetate and CO(2) from glucose, and in anaerobic cultivation, it produced lactate, formate, acetate and ethanol with a molar ratio of approximately 2 : 1 : 1 for the last three products. No gas was produced anaerobically. Lactate yield per consumed glucose was markedly affected by the pH of the fermentation medium: 51% at pH 6.5 and 8% at pH 9.0. The cell-wall peptidoglycan contained meso-diaminopimelic acid. Phylogenetically, the isolate occupied an independent lineage within the group composed of the halophilic/halotolerant/alkaliphilic and/or alkalitolerant species in Bacillus rRNA group 1 with the highest 16S rRNA gene sequence similarity of 95.2% to the genus Gracilibacillus. For this isolate, Paraliobacillus ryukyuensis gen. nov., sp. nov. was proposed. The type strain, O15-7(T) (G+C535.6 mol%), has been deposited in the DSMZ, IAM, NBRC, and NRIC (DSM 15140(T)=IAM 15001(T)=NBRC 10001(T)=NRIC 0520(T)).  相似文献   

4.
The new mesophilic, chemolithoautotrophic, moderately halophilic, sulfate-reducing bacterium strain 11-6 could grow at a NaCl concentration in the medium of 30-230 g/l, with an optimum at 80-100 g/l. Cells were vibrios motile at the early stages of growth. Lactate, pyruvate, malate, fumarate, succinate, propionate, butyrate, crotonate, ethanol, alanine, formate, and H2 + CO2 were used in sulfate reduction. Butyrate was degraded completely, without acetate accumulation. In butyrate-grown cells, a high activity of CO dehydrogenase was detected. Additional growth factors were not required. Autotrophic growth occurred, in the presence of sulfate, on H2 + CO2 or formate without other electron donors. Fermentation of pyruvate and fumarate was possible in the absence of sulfate. Apart from sulfate, sulfite, thiosulfate, and elemental sulfur were able to serve as electron acceptors. The optimal growth temperature was 37 degrees C; the optimum pH was 7.2. Desulfoviridin was not detected. Menaquinone MK-7 was present. The DNA G+C content was 55.2 mol %. Phylogenetically, the bacterium represented a separate branch within the cluster formed by representatives of the family Desulfohalobiaceae in the subclass Deltaproteobacteria. The bacterium was assigned to a new genus and species, Desulfovermiculus halophilus gen. nov., sp. nov. The type strain is 11-6T (= VKM B-2364), isolated from the highly mineralized formation water of an oil field.  相似文献   

5.
A new thermophilic sulfate-reducing bacterium isolated from the high-temperature White Tiger oil field (Vietnam) is described. Cells of the bacterium are oval (0.4-0.6 by 0.6-1.8 microns), nonmotile, non-spore-forming, and gram-negative. Growth occurs at 45 to 65 degrees C (with an optimum at 60 degrees C) at NaCl concentrations of 0 to 50 g/l. In the course of sulfate reduction, the organism can utilize lactate, pyruvate, malate, fumarate, ethanol, salts of fatty acids (formate, acetate, propionate, butyrate, caproate, palmitate), yeast extract, alanine, serine, cysteine, and H2 + CO2 (autotrophically). In addition to sulfate, the bacterium can use sulfite, thiosulfate, and elemental sulfur as electron acceptors. In the absence of electron acceptors, the bacterium can ferment pyruvate and yeast extract (a yet unrecognized capacity of sulfate reducers) with the formation of acetate and H2. The G + C content of DNA is 60.8 mol %. The level of DNA-DNA hybridization of the isolate (strain 101T) and Desulfacinum infernum (strain B alpha G1T) is as low as 34%. Analysis of the nucleotide sequence of 16S rDNA places strain 101T in the phylogenetic cluster of the Desulfacinum species within the sulfate reducer subdivision of the delta subclass of Proteobacteria. All these results allowed the bacterium studied to be described as a new species, Desulfacinum subterraneum sp. nov., with strain 101 as the type strain.  相似文献   

6.
Two Gram-positive bacteria, designated strains Aji5-31(T) and Ngc37-23(T), were isolated from the intestinal tracts of fishes. 16S rRNA gene sequence analysis indicated that both strains were related to the members of the family Dermatophilaceae, with 95.6-96.9% 16S rRNA gene sequence similarities. The family Dermatophilaceae contains 2 genera and 3 species: Dermatophilus congolensis, Dermatophilus chelonae and Kineosphaera limosa. However, it has been suggested that the taxonomic position of D. chelonae should be reinvestigated using a polyphasic approach, because the chemotaxonomic characteristics are not known (Stackebrandt, 2006; Stackebrandt and Schumann, 2000). Our present study revealed that strains Aji5-31(T), Ngc37-23(T) and D. chelonae NBRC 105200(T) should be separated from the other members of the family Dermatophilaceae on the basis of the following characteristics: the predominant menaquinone of strain Aji5-31(T) is MK-8(H(2)), strain Ngc37-23(T) possesses iso- branched fatty acids as major components, and the menaquinone composition of D. chelonae is MK-8(H(4)), MK-8 and MK-8(H(2)) (5 : 3 : 2, respectively). On the basis of these distinctive phenotypic characteristics and phylogenetic analysis results, it is proposed that strains Aji5-31(T) and Ngc37-23(T) be classified as two novel genera and species of the family Dermatophilaceae. The names are Mobilicoccus pelagius gen. nov., sp. nov. and Piscicoccus intestinalis gen. nov., sp. nov., and the type strains are Aji5-31(T) (=NBRC 104925(T) =DSM 22762(T)) and Ngc37-23(T) (=NBRC 104926(T) =DSM 22761(T)), respectively. In addition, D. chelonae should be reassigned to a new genus of the family Dermatophilaceae with the name Austwickia chelonae gen. nov., comb. nov.  相似文献   

7.
A Gram-negative, strictly aerobic, rod-formed bacterium, strain MKT110(T), was isolated from a mollusk, the sea slug Elysia ornata collected in seawater off the coast of Izu-Miyake Island, Japan at a depth of 15m. Comparative 16S rRNA gene sequences analysis indicated that the isolate MKT110(T) constituted a novel lineage in gamma-proteobacteria related to the genera Zooshikella, Oceanospirillum, Microbulbifer, Marinobacter, Saccharospirillum and Pseudomonas. The strain MKT110(T) was closely related to the clones from marine sponge Halichondria okadai (AB054136, AB054161) and the coral Pocillopora damicornis (AY700600, AY700601). The phylogenetic tree based on the 16S rRNA gene sequences showed that MKT110(T) and four clones formed a sub-lineage related to the genus Zooshikella, with a bootstrap value of 100%. MKT110(T) required salt for its growth and was mesophilic. The bacterium contained 16:1omega7c, 16:0 and 14:0 as major cellular fatty acids, and 3-OH 14:0, 3-OH 10:0 and 3-OH 12:0 as major hydroxy fatty acids. The DNA base composition of the isolate was 50.4 mol% G+C. The major quinone was Q-9. The bacterium is distinguished from currently recognized bacterial genera based on phylogenetic and phenotypic features and should be classified in a novel genus for which the name Endozoicomonas elysicola gen. nov., sp. nov. is proposed. (type strain MKT110(T)=IAM 15107(T)=KCTC 12372(T); GenBank accession no. AB196667).  相似文献   

8.
A chemoorganotrophic, moderately halophilic bacterium (strain SMB35) has been isolated from a naphthalene-utilizing microbial community obtained from salt mines (Perm region of Russia). Strain SMB35 grows in a wide salinity range, 0.5 to 30% (wt/vol) NaCl. Cells are gram-negative rods motile by means of a single polar flagellum. The predominant fatty acids are 16:1omega7, 16:0, 18:1omega7, and 19 cy. The major lipoquinone is an unsaturated ubiquinone with nine isoprene units (Q-9). The DNA G+C content is 63.0 mol%. The 16S rDNA-based phylogenetic analysis has shown that strain SMB35 formed a separate clade in the cluster of the family Halomonadaceae. The 16S rDNA sequence similarity of the isolate to the members of the family is in the range from 90.6% to 95.1%. The phylogenetic and phenotypic differences from Halomonas elongata (the type species of the genus) and from other members of the family suggest that the isolate represents a novel genus and species, for which the name Salinicola socius gen. nov., sp. nov. is proposed. The type strain is SMB35(T) (=VKM B-2397(T)).  相似文献   

9.
A Gram-negative, strictly aerobic, coccoid to short rod-shaped marine bacterium strain MKT107(T) was isolated from the molluscan top shell Omphalius pfeifferi pfeifferi collected on the coast of Japan. Phylogenetic analysis based on the 16S rRNA gene sequence showed that strain MKT107(T) constitutes a new lineage in alpha-Proteobacteria related to the genera Nereida, Roseobacter, Staleya, Oceanibulbus and Sulfitobacter. Strain MKT107(T) was found to require salt for its growth and to be mesophilic. It contained 18:1omega7c and 16:0 as major cellular fatty acids and 3-OH 10:0 and 3-OH 12:0 as hydroxy fatty acids. The DNA base composition of the isolate was 61.6 mol% G+C. The major quinone was Q-10. Sufficient differences existed to distinguish this strain from currently recognized bacterial genera. Therefore, the isolate is classified as representing a new genus and species, Tateyamaria omphalii gen. nov., sp. nov. (type strain MKT107(T) =IAM 15108(T) =KCTC 12333(T); GenBank accession no. AB193438).  相似文献   

10.
A moderately halophilic and alkalitolerant bacterial strain NKC1-1T was isolated from commercial kimchi in Korea. Strain NKC1-1T was Gram-stain-positive, aerobic, rod-shaped, non-motile, and contained diaminopimelic acid-type murein. Cell growth was observed in a medium containing 0–25% (w/v) NaCl (optimal at 10% [w/v]), at 20–40°C (optimal at 37°C) and pH 6.5–10.0 (optimal at pH 9.0). The major isoprenoid quinone of the isolate was menaquinone-7, and the major polar lipids were phosphatidylglycerol and unidentified phospholipids. Cell membrane of the strain contained iso-C17:0 and anteiso-C15:0 as the major fatty acids. Its DNA G + C content was 45.2 mol%. Phylogenetic analysis indicated the strain to be most closely related to Geomicrobium halophilum with 92.7–92.9% 16S rRNA gene sequence similarity. Based on polyphasic taxonomic evaluation with phenotypic, phylogenetic, and chemotaxonomic analyses, the strain represents a novel species in a new genus, for which the name Salicibibacter kimchii gen. nov., sp. nov. is proposed (= CECT 9537T; KCCM 43276T).  相似文献   

11.
A bacterial strain isolated from an air sample, strain 5317J-19(T), was characterized. The isolate was an aerobic, motile, Gram-positive rod. The organism was able to grow between 4 and 35°C and between pH 6 and 9. The predominant fatty acids were anteiso-C(15:0) and iso-C(16:0). The major respiratory menaquinones were MK-12 and MK-11, and the minor ones were MK13, MK-10, and MK-9. Genomic DNA G+C content was 66 mol%. The diagnostic diamino acid of the peptidoglycan is presumably D-Orn. The peptidoglycan is supposed to be B2β type. The 16S rRNA gene sequence analysis indicated that this isolate belongs to the family Microbacteriaceae and had the highest sequence similarities with Salinibacterium xinjiangense 0543(T) (97.6%), Salinibacterium amurskyense KMM 3673(T) (97.2%), and Leifsonia bigeumensis MSL-27(T) (97.2%). Phylogenetic analysis and phenotypic characteristics support the proposal of a new genus and a novel species, with the name Homoserinimonas aerilata gen. nov., sp. nov. The type strain of Homoserinimonas aerilata is 5317J-19(T) (=KACC 15522(T) =NBRC 108729(T)).  相似文献   

12.
An obligately aerobic bacterium, strain KOPRI 20902T, was isolated from a marine sediment in Ny-Arlesund, Spitsbergen Islands, Norway. Cells were irregular rods and motile with polar monotrichous flagellum. The optimum growth temperature was 17-22 degrees . Cells grew best in pH 7.0-10.0 and 3-4% sea salts (corresponding to 2.3-3.1% NaCl). The novel strain required Ca2+ or Mg2+ in addition to NaCl for growth. Sequence analysis of 16S rRNA gene revealed that the Arctic isolate is distantly related with established species (<92.4% sequence similarity) and formed a monophyletic group with Cellvibrio, which formed a distinct phylogenetic lineage in the order Pseudomonadales. Predominant cellular fatty acids [C16:1 omega7c/15:0 iso 2OH (45.3%), C16:0 (18.4%), ECL 11.799 (11.2%), C10:0 3OH (10.4%)]; DNA G+C content (37.0 mol%); nitrate reduction to nitrogen; absence of aesculin hydrolysis, N-acetyl-beta-glucosaminidase and esterase; no assimilation of arabinose, galactose, glucose, lactose, maltose, and trehalose differentiated the strain from the genus Cellvibrio. Based on the phylogenetic and phenotypic characteristics, Dasania marina gen. nov., sp. nov. is proposed in the order Pseudomonadales. Strain KOPRI 20902T (=KCTC 12566T=JCM 13441T) is the type strain of Dasania marina.  相似文献   

13.
An unknown lipophilic coryneform bacterium isolated from the blood cultures of a patient with bacteremia was characterized by phenotypic and molecular genetic methods. Chemical analysis revealed the presence of short chain mycolic acids consistent with the genus Corynebacterium. The DNA G+C content was 60.8mol%. Comparative 16S rRNA gene sequence analysis demonstrated that the isolate represents a new subline within the genus Corynebacterium. The closely phylogenetic relative of the unknown bacterium was found to be C. tuscaniense (97.8% sequence similarity). Partial rpoB gene sequence revealed that strain IMMIB L-2475(T) exhibited 13.5% sequence divergence with C. tuscaniense. The unknown bacterium was distinguished from C. tuscaniense by, DNA-DNA hybridization, cellular fatty acid profiles, MALDI-TOF analyses of cell extracts and biochemical tests. Based on the phylogenetic and phenotypic criteria, it is proposed that this bacterium be classified as new species, Corynebacterium aquatimens sp. nov., and is represented by strain IMMIB L-2475(T) (=DSM 45632(T)=CCUG 61574(T)).  相似文献   

14.
An acetic acid bacterium, designated as isolate AC28(T), was isolated from a flower of red ginger (khing daeng in Thai; Alpinia purpurata) collected in Chiang Mai, Thailand, at pH 3.5 by use of a glucose/ethanol/acetic acid (0.3%, w/v) medium. A phylogenetic tree based on 16S rRNA gene sequences for 1,376 bases showed that isolate AC28(T) constituted a cluster along with the type strain of Kozakia baliensis. However, the isolate formed an independent cluster in a phylogenetic tree based on 16S-23S rDNA internal transcribed spacer (ITS) region sequences for 586 bases. Pair-wise sequence similarities of the isolate in 16S rRNA gene sequences for 1,457 bases were 93.0-88.3% to the type strains of Asaia, Kozakia, Swaminathania, Acetobacter, Gluconobacter, Gluconacetobacter, Acidomonas, and Saccharibacter species. Restriction analysis of 16S-23S rDNA ITS regions discriminated isolate AC28(T) from the type strains of Asaia and Kozakia species. Cells were non-motile. Colonies were pink, shiny, and smooth. The isolate produced acetic acid from ethanol. Oxidation of acetate and lactate was negative. The isolate grew on glutamate agar and mannitol agar. Growth was positive on 30% D-glucose (w/v) and in the presence of 0.35% acetic acid (w/v), but not in the presence of 1.0% KNO(3) (w/v). Ammoniac nitrogen was hardly assimilated on a glucose medium or a mannitol medium. Production of dihydroxyacetone from glycerol was weakly positive. The isolate did not produce a levan-like polysaccharide on a sucrose medium. Major isoprenoid quinone was Q-10. DNA base composition was 63.1 mol% G+C. On the basis of the results obtained, Neoasaia gen. nov. was proposed with Neoasaia chiangmaiensis sp. nov. The type strain was isolate AC28(T) (=BCC 15763(T) =NBRC 101099(T)).  相似文献   

15.
A bacterial strain (CCUG 44693T) was recovered during an industrial hygiene control. Phylogenetic analyses using the 16S rRNA gene sequence of the isolate indicated that it represents a new lineage in the alpha-1 subclass of the Proteobacteria, with the highest sequence similarity of 93.3% to the type strain of Muricoccus roseus. In the polyamine pattern spermidine was the predominant compound. The polar lipid profile consisted of the major lipids phosphatidyl ethanolamine, phosphatidyl dimethylethanolamine, phosphatidyl glycerol, phosphatidyl cholin and an unknown amino lipid. The major respiratory quinone was a ubiquinone Q-10 and the major whole cell fatty acids were 19:0 cyclo omega8c and 18:1 omega7c. The isolate also contained 18:1 2-OH and other fatty acids typical for members of the alpha-1 subclass of the Proteobacteria in addition to 10:0 2-OH in low amounts, not detected in members of closely related genera. The strain grew heterotrophically and strictly aerobically and formed red-colored colonies on tryptone soy agar. Bacteriochlorophyll a could not be detected by direct spectrophotometric analyses of aerobically grown cells. On the basis of the phylogenetic analyses, chemotaxonomic and biochemical characteristics, we propose that strain CCUG 44693T (CIP 108310T) represents a new genus of the alpha-1 subclass of the Proteobacteria for which we propose the name Rhodovarius lipocyclicus gen. nov. sp. nov.  相似文献   

16.
A novel aerobic, Gram-negative bacterial strain, designated KU41E(T), which degrades p-n-nonylphenol, was isolated from seawater obtained from the coastal region of Ishigaki Island, Japan. Cells are motile, curved rods with a single polar flagellum. Strain KU41E(T) grew at 20-35 °C, pH 7.0-8.0, in the presence of 1.0-4.0% NaCl. The predominant respiratory lipoquinone was ubiquinone-8, and the major cellular fatty acids were summed feature 3 (C(15:0) iso 2OH and/or C(16:1) ω7c, 28.4%), C(18:1) ω7c (19.8%), and C(16:0) (17.0%). The DNA G + C content was 48.6 mol%. The 16S rRNA gene sequence analysis indicated that strain KU41E(T) is affiliated with the order Alteromonadales within the class Gammaproteobacteria and is most closely related to Pseudoteredinibacter isoporae SW-11(T) (93.6% similarity) and Teredinibacter turnerae T7902(T) (91.9% similarity). On the basis of physiological, chemotaxonomic, and phylogenetic data, strain KU41E(T) is suggested to represent a novel species of a new genus, for which the name Maricurvus nonylphenolicus gen. nov., sp. nov. is proposed. The type strain of M. nonylphenolicus is KU41E(T) (=JCM 17778(T)).  相似文献   

17.
A red-pigmented, Gram-negative, strictly aerobic, rod-shaped bacterium which was motile by gliding, designated strain 1351T, was isolated from the soil of Lengduo, Tibet in China and subjected to a polyphasic taxonomic analysis. The isolate grows optimally at 30°C and pH 7. It grows with NaCl tolerated up to 1.5% (optimum, 0.5%). Phylogenetic analysis based on the 16S rRNA gene sequence shows that strain 1351T is closely related to members of the family ‘Cytophagaceae’ closest sequence similarity was observed with similarity with Adhaeribacter terreus (91.8%). The major whole-cell fatty acids are summed feature 4 (containing anteiso-C17:1 B and/or iso-C17:1 I, 29.2%), summed feature 3 (containing C16:1ω6c and/or C16:1ω7c, 13.0%) and iso-C15:0 (12.0%). The predominant menaquinone of strain 1351T is menaquinone-7 (MK-7) and the G+C content of the DNA is 46.8 mol%. According to the phylogenetic evidence and phenotypic data, strain 1351T is considered to represent a new genus and species of the family ‘Cytophagaceae’ for which the name Rufibacter tibetensis gen nov., sp. nov. is proposed. The type species is R. tibetensis and the type strain is 1351T (=CCTCC AB 208084T = NRRL B-51285T).  相似文献   

18.
A Gram-negative, motile by tuft flagella, obligately aerobic chemoorganoheterotrophic, sphere-form bacterium, designated IMCC3135(T), was isolated from the Antarctic surface seawater of King George Island, West Antarctica. The strain was mesophilic, neutrophilic, and requiring NaCl for growth, but neither halophilic nor halotolerant. The 16S rRNA gene sequence analysis indicated that the strain was most closely related to genera of the order Chromatiales in the class Gammaproteobacteria. The most closely related genera showed less than 90% 16S rRNA gene sequence similarity and included Thioalkalispira (89.9%), Thioalkalivibrio (88.0%-89.5%), Ectothiorhodospira (87.9%-89.3%), Chromatium (88.3%-88.9%), and Lamprocystis (87.7%-88.9%), which represent three different families of the order Chromatiales. Phylogenetic analyses showed that this Antarctic strain represented a distinct phylogenetic lineage in the order Chromatiales and could not be assigned to any of the defined families in the order. Phenotypic characteristics, including primarily non-phototrophic, non-alkaliphilic, non-halophilic, and obligately aerobic chemoheterotrophic properties, differentiated the strain from other related genera. The very low sequence similarities (<90%) and distant relationships between the strain and members of the order suggested that the strain merited classification as a novel genus within a novel family in the order Chromatiales. On the basis of these taxonomic traits, a novel genus and species is proposed, Granulosicoccus antarcticus gen. nov., sp. nov., in a new family Granulosicoccaceae fam. nov. Strain IMCC3135(T) (=KCCM 42676(T)=NBRC 102684(T)) is the type strain of Granulosicoccus antarcticus.  相似文献   

19.
[目的]厌氧颗粒污泥中含有大量未知微生物资源,利用低浓度底物及添加抗生素的培养基进行厌氧发酵细菌的筛选,并对分离菌株进行生理生化特性研究.[方法]利用系列稀释法及亨盖特厌氧滚管技术从制糖废水厌氧处理反应器的颗粒污泥中分离到一株高温厌氧产氢细菌VM20-7T,通过16S rRNA基因序列同源性确定其系统发育地位.[结果]菌株VM20-7T为高温、严格厌氧、革兰氏阴性梨形细菌,细胞大小为(0.7-2.0)μm×(0.7-2.0) μm,不运动,不产芽胞.其生长温度范围为35℃-50℃(最适温度45℃),pH范围为6.0-8.3(最适pH7.0-7.5),NaCl耐受范围为0%-0.5%(w/v,最适浓度0%).菌株VM20-7T可利用葡萄糖、麦芽糖、核糖等多种糖类为唯一碳源生长,葡萄糖发酵终产物是乙酸和H2.该菌株不利用硝酸盐、硫酸盐等作为电子受体生长.G+C含量为60.9 mol%,16S rRNA基因序列同源性显示菌株属于浮霉菌门,但与已培养菌株的同源性较低,与梨形菌属一红小梨形菌属-芽殖小小梨形菌属(Pirellula-Rhodopirellul -Blastopirellula,PRB)分支的亲缘关系最近,但序列相似性也仅为82.7%-84.3%.[结论]利用低浓度糖类并添加抗生素分离厌氧颗粒污泥中的微生物,获得了浮霉菌门首例严格厌氧细菌VM20-7T.生理生化特性和系统发育分析显示,菌株VM20-7T为浮霉菌目的新属新种,命名为Thermopirellula anaerolimosa.该菌株的菌种保藏号为CGMCC 1.5169T=JCM 17478T=DSM 24165T.  相似文献   

20.
A previous phylogenetic study on type strains of the genus Micromonospora and Micromonospora species bearing non-validly published names has pointed towards the species status of several of latter strains. Subsequent studies on morphological, cultural, chemotaxonomic, metabolic, and genomic properties, and on whole cell mass spectrometric analyses by matrix adsorbed laser desorption/ionization time-of-flight (MALDI-TOF) confirmed the species status, leading to the proposal of eight new Micromonospora species: Micromonospora citrea sp. nov., type strain DSM 43903T, Micromonospora echinaurantiaca sp. nov., type strain DSM 43904T, Micromonospora echinofusca sp. nov., type strain DSM 43913T, Micromonospora fulviviridis sp. nov., type strain DSM 43906T, Micromonospora inyonensis sp. nov., type strain DSM 46123T, Micromonospora peucetia sp. nov., type strain DSM 43363T, Micromonospora sagamiensis sp. nov., type strain DSM 43912T and Micromonospora viridifaciens sp. nov., type strain DSM 43909T.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号