首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Carbon monoxide dehydrogenase from the bacterium Oligotropha carboxidovorans catalyzes the oxidation of CO to CO2 at a unique [CuSMoO2] cluster. In the bacteria the cluster is assembled post-translational. The integration of S, and particularly of Cu, is rate limiting in vivo, which leads to CO dehydrogenase preparations containing the mature and fully functional enzyme along with forms of the enzyme deficient in one or both of these elements. The active sites of mature and immature forms of CO dehydrogenase were converted into a [MoO3] centre by treatment with potassium cyanide. We have established a method, which rescues 50% of the CO dehydrogenase activity by in vitro reconstitution of the active site through the supply of sulphide first and subsequently of Cu(I) under reducing conditions. Immature forms of CO dehydrogenase isolated from the bacterium, which were deficient in S and/or Cu at the active site, were similarly activated. X-ray crystallography and electron paramagnetic resonance spectroscopy indicated that the [CuSMoO2] cluster was properly reconstructed. However, reconstituted CO dehydrogenase contains mature along with immature forms. The chemical reactions of the reconstitution of CO dehydrogenase are summarized in a model, which assumes resulphuration of the Mo-ion at both equatorial positions at a 1:1 molar ratio. One equatorial Mo–S group reacts with Cu(I) in a productive fashion yielding a mature, functional [CuSMoO2] cluster. The other Mo–S group reacts with Cu(I), then Cu2S is released and an oxo group is introduced from water, yielding an inactive [MoO3] centre.  相似文献   

3.
DsrC is a key protein in dissimilatory sulfur metabolism, where it works as co-substrate of the dissimilatory sulfite reductase DsrAB. DsrC has two conserved cysteines in a C-terminal arm that are converted to a trisulfide upon reduction of sulfite. In sulfate-reducing bacteria, DsrC is essential and previous works suggested additional functions beyond sulfite reduction. Here, we studied whether DsrC also plays a role during fermentative growth of Desulfovibrio vulgaris Hildenborough, by studying two strains where the functionality of DsrC is impaired by a lower level of expression (IPFG07) and additionally by the absence of one conserved Cys (IPFG09). Growth studies coupled with metabolite and proteomic analyses reveal that fermentation leads to lower levels of DsrC, but impairment of its function results in reduced growth by fermentation and a shift towards more fermentative metabolism during sulfate respiration. In both respiratory and fermentative conditions, there is increased abundance of the FlxABCD–HdrABC complex and Adh alcohol dehydrogenase in IPFG09 versus the wild type, which is reflected in higher production of ethanol. Pull-down experiments confirmed a direct interaction between DsrC and the FlxABCD–HdrABC complex, through the HdrB subunit. Dissimilatory sulfur metabolism, where sulfur compounds are used for energy generation, is a key process in the ecology of anoxic environments, and is more widespread among bacteria than previously believed. Two central proteins for this type of metabolism are DsrAB dissimilatory sulfite reductase and its co-substrate DsrC. Using physiological, proteomic and biochemical studies of Desulfovibrio vulgaris Hildenborough and mutants affected in DsrC functionality, we show that DsrC is also relevant for fermentative growth of this model organism and that it interacts directly with the soluble FlxABCD-HdrABC complex that links the NAD(H) pool with dissimilatory sulfite reduction.  相似文献   

4.
5.
In search of a possible mechanism of inhibition which might be responsible for the different specificities of the three isoforms of the bean (Phaseolus vulgaris) α-amylase inhibitor α-AI1, α-AI2 and α-AIL (EC 3.2.1.1), the two isoforms α-AI2 and α-AIL were modelled from the atomic co-ordinates of α-AI1 in the α-AI1/PPA complex and docking experiments were performed with pig pancreatic α-amylase (PPA) and the modelled amylase from Zabrotes subfasciatus (ZSA). The modelled α-AI2 penetrates without any steric hindrance in the substrate cleft of both enzymes but the possible hydrogen bonds between PPA and α-AI2 seem too few to maintain the stability of the complex. α-AIL, which differs from α-AI1 and α-AI2 by the absence of post-translational proteolytic cleavage and the occurrence of two additional loops of fifteen and six residues, creates steric clashes with PPA and ZSA that prevent its penetration into the substrate cleft of the enzyme. Docking experiments explain at the molecular level the specificity of α-amylase inhibitor isoforms towards enzymes of different origins. In addition, they explain why, according to its unprocessed and more bulky character, α-AIL was previously shown to be inactive on all α-amylases assayed. In fact, this last isoform is now considered as an evolutionary intermediate between phytohaemagglutinins, arcelins and α-amylase inhibitors.  相似文献   

6.
  • 1.1. A lipoxygenase activity was purified from Thermoactinomyces vulgaris and some of its properties were characterized.
  • 2.2. The enzyme showed a temperature activity range of 40–55°C with still significant activity over 60°C.
  • 3.3. The pH of activity on linoleic acid had a broad range with an optimum at pH 6.0 and a weaker one at pH 11.0.
  • 4.4. On arachidonic acid the pattern was narrow bell-shaped with an optimum at pH 6.5.
  • 5.5. The purified lipoxygenase from Th. vulgaris showed an apparent Km of 1 mM and Vmax of 0.84 μmol diene/min/mg protein.
  • 6.6. It was inhibited by the oxidation products, 9-HPOD and 13-HPOD.
  • 7.7. A 160,000 Da molecular weight of the enzyme was determined by molecular filtration. Methionine, tyrosine, tryptophan and cysteine are apparently involved in its activity.
  相似文献   

7.
8.
9.
10.
Retama raetam (Forsk.) Webb & Berthel plant has been traditionally used for the treatment of diabetes mellitus and hypertension. Interest in the medicinal chemistry of the plant in the past resulted in the isolation of a number of compounds with anti-hyperglycemic activity. The current work is a further extension of our recent work in which we isolated and characterized seven new flavonoids from Retama raetam with preliminary biological activity screening. It addresses the α-glucosidase inhibitory activity and molecular docking studies of the flavonoids. Retamasin D, G, H, and erysubin A and B noncompetitively inhibited the enzyme whereas retamasin C and F exhibited competitive inhibition. Moreover, retamasin C, F, G, and erysubin A and B carry dual activity in addition to α-glucosidase inhibition. Our previous studies have shown that they also caused significant stimulation of insulin from the blood-perfused pancreatic islets of Langerhans of mice. The C6 and C8 substituent groups greatly influenced the inhibition potency of the compounds. The most potent inhibitor was retamasin H with the γ-lactone ring substituent at C6 position of the main flavonoid moiety. Notable active chemical groups in the target compounds include γ-lactone, dihydropyran and dihydrofuran rings with hydroxyl and geminal methyl groups. Molecular modeling studies revealed that the compounds fit well in the α-glucosidase active site by interacting with important active site residues. These findings will incorporate new chemical, structural and functional diversity to the search and drug development of α-glucosidase inhibitors as anti-diabetic drugs.  相似文献   

11.
Hydrogenases are enzymes which catalyze the reversible cleavage of molecular hydrogen into protons and electrons. In [FeFe] hydrogenases the active center is a 6Fe6S cluster, referred to as the “H-cluster.” It consists of the redox-active binuclear subcluster ([2Fe]H) coordinated by CN and CO ligands and the cubane-like [4Fe–4S]H subcluster which is connected to the protein via Cys ligands. One of these Cys ligands bridges to the [2Fe]H subcluster. The CO-inhibited form of [FeFe] hydrogenase isolated from Desulfovibrio desulfuricans was studied using advanced EPR methods. In the Hox–CO state the open coordination site at the [2Fe]H subcluster is blocked by extrinsic CO, giving rise to an EPR-active S = 1/2 species. The CO inhibited state was prepared with 13CO and illuminated under white light at 273 K. In this case scrambling of the CO ligands occurs. Three 13C hyperfine couplings of 17.1, 7.4, and 3.8 MHz (isotropic part) were observed and assigned to 13CO at the extrinsic, the bridging, and the terminal CO-ligand positions of the distal iron, respectively. No 13CO exchange of the CO ligand to the proximal iron was observed. The hyperfine interactions detected indicate a rather large distribution of the spin density over the terminal and bridging CO ligands attached to the distal iron. Furthermore, 14N nuclear spin interactions were measured. On the basis of the observed 14N hyperfine couplings, which result from the CN ligands of the [2Fe]H subcluster, it has been concluded that there is very little unpaired spin density on the cyanides of the binuclear subcluster.
Wolfgang Lubitz (Corresponding author)Email:
  相似文献   

12.
[Fe] hydrogenase (iron–sulfur-cluster-free hydrogenase) catalyzes the reversible reduction of methenyltetrahydromethanopterin (methenyl-H4MPT+) with H2 to methylene-H4MPT, a reaction involved in methanogenesis from H2 and CO2 in many methanogenic archaea. The enzyme harbors an iron-containing cofactor, in which a low-spin iron is complexed by a pyridone, two CO and a cysteine sulfur. [Fe] hydrogenase is thus similar to [NiFe] and [FeFe] hydrogenases, in which a low-spin iron carbonyl complex, albeit in a dinuclear metal center, is also involved in H2 activation. Like the [NiFe] and [FeFe] hydrogenases, [Fe] hydrogenase catalyzes an active exchange of H2 with protons of water; however, this activity is dependent on the presence of the hydride-accepting methenyl-H4MPT+. In its absence the exchange activity is only 0.01% of that in its presence. The residual activity has been attributed to the presence of traces of methenyl-H4MPT+ in the enzyme preparations, but it could also reflect a weak binding of H2 to the iron in the absence of methenyl-H4MPT+. To test this we reinvestigated the exchange activity with [Fe] hydrogenase reconstituted from apoprotein heterologously produced in Escherichia coli and highly purified iron-containing cofactor and found that in the absence of added methenyl-H4MPT+ the exchange activity was below the detection limit of the tritium method employed (0.1 nmol min−1 mg−1). The finding reiterates that for H2 activation by [Fe] hydrogenase the presence of the hydride-accepting methenyl-H4MPT+ is essentially required. This differentiates [Fe] hydrogenase from [FeFe] and [NiFe] hydrogenases, which actively catalyze H2/H2O exchange in the absence of exogenous electron acceptors.  相似文献   

13.
We have studied metabolic responses of six male volunteers who were exposed to hypoxic nitrogen–oxygen and argon–oxygen respiratory mixtures under hermetic chamber conditions for a long time. We measured the values of 44 biochemical parameters of venous blood, which reflected the state of different parts of metabolism, as well as the state of organs and tissues. Under the conditions of argon–oxygen respiratory mixture with the level of oxygen of 12.8% within the first five days and 12.0% from six to ten days of the experiment, the activation of processes of anaerobic glycolysis and lipolysis with the development of metabolic acidosis was observed. Against this background, biochemical signs of unfavorable changes in the myocardium were recorded. When we used the nitrogen–oxygen respiratory mixture with the level of oxygen of 13.0% during the first five days of the experiment and 12.1% from the sixth to the tenth day, these changes were expressed much more significantly: the activation of lipolysis and a decrease in the level of serum iron were observed and the signs of damage of mitochondria, depression of the kidney function, and development of hypodynamia were recorded. Complete stabilization of metabolic processes was reached only after seven to eight days of the recovery period for both mixtures. These findings lead to the conclusion that it is physiologically more preferable to use oxygen–argon respiratory mixtures at small immersion depths.  相似文献   

14.
New C-glycosides and α,β-unsaturated ketones incorporating the 4-hydroxy-3-methoxyphenyl (vanillin) moiety as inhibitors of carbonic anhydrase (CA, EC 4.2.1.1) isoforms have been investigated. The inhibition profile of these compounds is presented against four human CA (hCA) isozymes, comprising hCAs I and II (cytosolic, ubiquitous enzymes) and hCAs IX and XII (tumour associated isozymes). Docking analysis of the inhibitors within the active sites of these enzymes has been performed and is discussed, showing that the observed selectivity could be explained in terms of an alternative pocket out of the CA active site where some of these compounds may bind. Several derivatives were identified as selective inhibitors of the tumour-associated hCA IX and XII. Their discovery might be a step in the strategy for finding an effective non-sulfonamide CA inhibitor useful in therapy/diagnosis of hypoxic tumours or other pathologies in which CA isoforms are involved.  相似文献   

15.
In living systems, tungsten is exclusively found in microbial enzymes coordinated by the pyranopterin cofactor, with additional metal coordination provided by oxygen and/or sulfur, and/or selenium atoms in diverse arrangements. Prominent examples are formate dehydrogenase, formylmethanofuran dehydrogenase, and aldehyde oxidoreductase all of which catalyze redox reactions. The bacterial enzyme acetylene hydratase (AH) stands out of its class as it catalyzes the conversion of acetylene to acetaldehyde, clearly a non-redox reaction and a reaction distinct from the reduction of acetylene to ethylene by nitrogenase. AH harbors two pyranopterins bound to W, and a [4Fe–4S] cluster. W is coordinated by four dithiolene sulfur atoms, one cysteine sulfur, and one oxygen ligand. AH activity requires a strong reductant suggesting W(IV) as the active oxidation state. Two different types of reaction pathways have been proposed. The 1.26 Å structure reveals a water molecule coordinated to W which could gain a partially positive net charge by the adjacent protonated Asp-13, enabling a direct attack of C2H2. To access the W–Asp site, a substrate channel was evolved distant from where it is found in other members of the DMSOR family. Computational studies of this second shell mechanism led to unrealistically high energy barriers, and alternative pathways were proposed where C2H2 binds directly to W. The architecture of the catalytic cavity, the specificity for C2H2 and the results from site-directed mutagenesis do not support this first shell mechanism. More investigations including structural information on the binding of C2H2 are needed to present a conclusive answer.  相似文献   

16.
An artificial hybrid hemoglobin, α(Co)2β(Fe)2, the α and β subunits of which carry cobaltous protoporphyrin IX and ferrous protoporphyrin IX, respectively, and its complementary hybrid α(Fe)2β(Co)2 were prepared and the properties of their ferrous subunits were examined by equilibrium and kinetic measurements with carbon monoxide as a ligand.The β(Fe)2 subunits in fully deoxy α(Co)2β(Fe)2 exhibited a higher affinity for carbon monoxide than did the α(Fe)2 subunits in fully deoxy α(Fe)2β(Co)2. Addition of 2 mm-inositol hexaphosphate decreased fourfold the carbon monoxide affinity of the α(Fe)2 subunits in α(Fe)2β(Co)2 and by more than tenfold that of the β(Fe)2 subunits in α(Co)2β(Fe)2 at pH 7.0. The higher affinity for carbon monoxide of the β(Fe)2 subunits inα(Co)2β(Fe)2 than that of the α(Fe)2 subunits in α(Fe)2β(Co)2 was caused by a smaller dissociation rate of the β(Fe)2-carbon monoxide complex. These results are considered to underlie the different affinity for carbon monoxide of the α and β subunits in deoxy hemoglobin.Oxygen equilibria of the cobaltous subunits in iron-cobalt hybrid hemoglobins were also measured in the presence of carbon monoxide. The α(Co)2 subunits in α(Co)2β(FeCO)2 showed a higher oxygen affinity than the β(Co)2 subunits in α(FeCO)2β(Co)2. Inositol hexaphosphate lowered the oxygen affinity of the β(Co)2 subunits in α(FeCO)2β(Co)2 by eight-fold, but that of the α(Co)2 subunits in α(Co)2β(FeCO)2¦by only 1.6-fold. The magnitude of the alkaline Bohr effect, as defined by Δlog PmΔpH was found to be ?0.34 and ?0.14 for α(FeCO)2β(Co)2 and α(Co)2β(FeCO)2, respectively, in 0.1 m-phosphate buffer at 15 °C.The rate of oxygenation and deoxygenation of the cobaltous subunits in iron-cobalt hybrid hemoglobins in the presence of carbon monoxide was determined by a temperature-jump relaxation method in 0.1 m-phosphate buffer with and without inositol hexaphosphate. Their relaxation spectra were of a single exponential character and differed from that of cobalt hemoglobin. Without inositol hexaphosphate, the association rate constants for both α(Co)2β(FeCO)2 and α(FeCO)2β(Co)2 were close to that for cobalt hemoglobin, whereas the dissociation rate constants for iron-cobalt hybrid hemoglobins were smaller than that for cobalt hemoglobin by more than fourfold. Inositol hexaphosphate affected both the association and dissociation rates of α(FeCO)2β(Co)2 but did so to a lesser extent than those of α(Co)2β(FeCO)2.These observations suggest strongly a different role for the α and β subunits in the co-operative oxygenation and alkaline Bohr effect of hemoglobin.  相似文献   

17.
The putative [6Fe-6S] prismane cluster in the 6-Fe/S-containing protein from Desulfovibrio vulgaris, strain Hildenborough, has been enriched to 80% in 57Fe, and has been characterized in detail by S-, X-, P- and Q-band EPR spectroscopy, parallel-mode EPR spectroscopy and high-resolution 57Fe M?ssbauer spectroscopy. In EPR-monitored redox-equilibrium titrations, the cluster is found to be capable of three one-electron transitions with midpoint potentials at pH 7.5 of +285, +5 and -165 mV. As the fully reduced protein is assumed to carry the [6Fe-6S]3+ cluster, by spectroscopic analogy to prismane model compounds, four valency states are identified in the titration experiments: [6Fe-6S]3+, [6Fe-6S]4+, [6Fe-6S]5+, [6Fe-6S]6+. The fully oxidized 6+ state appears to be diamagnetic at low temperature. The prismane protein is aerobically isolated predominantly in the one-electron-reduced 5+ state. In this intermediate state, the cluster exists in two magnetic forms: 10% is low-spin S = 1/2; the remainder has an unusually high spin S = 9/2. The S = 1/2 EPR spectrum is significantly broadened by ligand (2.3 mT) and 57Fe (3.0 mT) hyperfine interaction, consistent with a delocalization of the unpaired electron over 6Fe and indicative of at least some nitrogen ligation. At 35 GHz, the g tensor is determined as 1.971, 1.951 and 1.898. EPR signals from the S = 9/2 multiplet have their maximal amplitude at a temperature of 12 K due to the axial zero-field splitting being negative, D approximately -0.86 cm-1. Effective g = 15.3, 5.75, 5.65 and 5.23 are observed, consistent with a rhombicity of [E/D] = 0.061. A second component has g = 9.7, 8.1 and 6.65 and [E/D] = 0.108. When the protein is reduced to the 4+ intermediate state, the cluster is silent in normal-mode EPR. An asymmetric feature with effective g approximately 16 is observed in parallel-mode EPR from an integer spin system with, presumably, S = 4. The fully reduced 3+ state consists of a mixture of two S = 1/2 ground state. The g tensor of the major component is 2.010, 1.825 and 1.32; the minor component has g = 1.941 and 1.79, with the third value undetermined. The sharp line at g = 2.010 exhibits significant convoluted hyperfine broadening from ligands (2.1 mT) and from 57Fe (4.6 mT). Zero-field high-temperature M?ssbauer spectra of the protein, isolated in the 5+ state, quantitatively account for the 0.8 fractional enrichment in 57Fe, as determined with inductively coupled plasma mass spectrometry.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
The peripheral anionic site (PAS) of human butyrylcholinesterase is involved in the mechanism of substrate activation by positively charged substrates and ligands. Two substrate binding loci, D70 in the PAS and W82 in the active site, are connected by the Ω loop. To determine whether the Ω loop plays a role in the signal transduction between the PAS and the active site, residues involved in stabilization of the loop, N83, K339 and W430, were mutated. Mutations N83A and N83Q caused loss of substrate activation, suggesting that N83 which interacts with the D70 backbone may be an element of the transducing system. The K339M and W430A mutant enzymes retained substrate activation. Residues W82, E197, and A328 in the active site gorge have been reported to be involved in substrate activation. At butyrylthiocholine concentrations greater then 2 mM, W82A showed apparent substrate activation. Mutations E197Q and E197G strongly reduced substrate activation, while mutation E197D caused a moderate effect, suggesting that the carboxylate of residue E197 is involved in substrate activation. Mutations A328F and A328Y showed no substrate activation, whereas A328G retained substrate activation. Substrate activation can result from an allosteric effect due to binding of the second substrate molecule on the PAS. Mutation W430A was of special interest because this residue hydrogen bonds to W82 and Y332. W430A had strongly reduced affinity for tetramethylammonium. The bimolecular rate constant for reaction with diisopropyl fluorophosphate was reduced 10 000-fold, indicating severe alteration in the binding area in W430A. The kcat values for butyrylthiocholine, o-nitrophenyl butyrate, and succinyldithiocholine were lower. This suggested that the mutation had caused misfolding of the active site gorge without altering the Ω loop conformation/dynamics. W430 as well as W231 and W82 appear to form the wall of the active site gorge. Mutation of any of these tryptophans disrupts the architecture of the active site.  相似文献   

19.
20.
Phytochemical investigation of the oleo-gum resins from Boswellia papyrifera afforded one new triterpene, named 3α-hydroxyurs-5:19-diene (1) together with twelve known compounds including eight triterpenoids (29), two diterpenoids (10 and 11) and two straight chain alkanes (12 and 13). Similarly ten more known compounds were isolated from the resin of Boswellia sacra including one triterpene (20) and nine boswellic acids (1419 and 2123). Herein the compound 2 was first time reporting from natural source along with complete NMR assignment, while compounds 311 are known, but reported for the first time from the resin of B. papyrifera. The structure elucidation was done by advance spectroscopic 1D and 2D NMR techniques viz., 1H, 13C, DEPT, HSQC, HMBC, and COSY, and NEOSY, ESI-MS and compared with the reported literature. All compounds were evaluated for their α-glucosidase inhibitory activity and as result eight of them 1, 3, 10, 11, 15, and 17–19 were found significantly active against α-glucosidase with an IC50 value ranging from 15.0 ± 0.84 to 80.3 ± 2.33 µM, while 21 exhibited moderate activity with IC50 of 799.9 ± 4.98 µM. Furthermore, two compounds 24 and 25 were synthesised from 16 and 17 to see the effect of carboxyl group in structural-activity relationship (SAR) study. Compounds 24 and 25 retained good α-glucosidase inhibition as compared to 16 and 17, indicating that carboxylic group play a key role in SAR. In addition, the aforementioned activity of all the active compounds was first time reported for their α-glucosidase inhibition potential. The molecular docking studies showed that all the active compounds well accommodate in the active site of the enzyme. Moreover pharmacokinetic properties of the compounds were predicted in silico, suggesting that the compounds possess drug like properties and excellent ADMET profile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号