首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background  

The role of gene duplication in the structural and functional evolution of genomes has been well documented. Analysis of complete rice (Oryza sativa) genome sequences suggested an ancient whole genome duplication, common to all the grasses, some 50-70 million years ago and a more conserved segmental duplication between the distal regions of the short arms of chromosomes 11 and 12, whose evolutionary history is controversial.  相似文献   

2.

Background  

Based on the observation of an increased number of paralogous genes in teleost fishes compared with other vertebrates and on the conserved synteny between duplicated copies, it has been shown that a whole genome duplication (WGD) occurred during the evolution of Actinopterygian fish. Comparative phylogenetic dating of this duplication event suggests that it occurred early on, specifically in teleosts. It has been proposed that this event might have facilitated the evolutionary radiation and the phenotypic diversification of the teleost fish, notably by allowing the sub- or neo-functionalization of many duplicated genes.  相似文献   

3.

Background  

The regulatory network underlying the yeast galactose-use pathway has emerged as a model system for the study of regulatory network evolution. Evidence has recently been provided for adaptive evolution in this network following a whole genome duplication event. An ancestral gene encoding a bi-functional galactokinase and co-inducer protein molecule has become subfunctionalized as paralogous genes (GAL1 and GAL3) in Saccharomyces cerevisiae, with most fitness gains being attributable to changes in cis-regulatory elements. However, the quantitative functional implications of the evolutionary changes in this regulatory network remain unexplored.  相似文献   

4.

Background  

The mechanism by which duplicate genes originate – whether by duplication of a whole genome or of a genomic segment – influences their genetic fates. To study events that trigger duplicate gene persistence after whole genome duplication in vertebrates, we have analyzed molecular evolution and expression of hundreds of persistent duplicate gene pairs in allopolyploid clawed frogs (Xenopus and Silurana). We collected comparative data that allowed us to tease apart the molecular events that occurred soon after duplication from those that occurred later on. We also quantified expression profile divergence of hundreds of paralogs during development and in different tissues.  相似文献   

5.

Background  

Ancient whole genome duplications have been implicated in the vertebrate and teleost radiations, and in the emergence of diverse angiosperm lineages, but the evolutionary response to such a perturbation is still poorly understood. The African clawed frog Xenopus laevis experienced a relatively recent tetraploidization ~40 million years ago. Analysis of the considerable amount of EST sequence available for this species together with the genome sequence of the related diploid Xenopus tropicalis provides a unique opportunity to study the genomic response to whole genome duplication.  相似文献   

6.

Background  

The vertebrate tetraspanin family has many features which make it suitable for preserving the imprint of ancient sequence evolution and amenable for phylogenomic analysis. So we believe that an in-depth analysis of the tetraspanin evolution not only provides more complete understanding of tetraspanin biology, but offers new insights into the influence of the two rounds of whole genome duplication (2R-WGD) at the origin of vertebrates.  相似文献   

7.

Background  

High gene numbers in plant genomes reflect polyploidy and major gene duplication events. Oryza sativa, cultivated rice, is a diploid monocotyledonous species with a ~390 Mb genome that has undergone segmental duplication of a substantial portion of its genome. This, coupled with other genetic events such as tandem duplications, has resulted in a substantial number of its genes, and resulting proteins, occurring in paralogous families.  相似文献   

8.

Background   

Whole genome duplication (WGD) is a special case of gene duplication, observed rarely in animals, whereby all genes duplicate simultaneously through polyploidisation. Two rounds of WGD (2R-WGD) occurred at the base of vertebrates, giving rise to an enormous wave of genetic novelty, but a systematic analysis of functional consequences of this event has not yet been performed.  相似文献   

9.

Background  

It is difficult to accurately interpret chromosomal correspondences such as true orthology and paralogy due to significant divergence of genomes from a common ancestor. Analyses are particularly problematic among lineages that have repeatedly experienced whole genome duplication (WGD) events. To compare multiple "subgenomes" derived from genome duplications, we need to relax the traditional requirements of "one-to-one" syntenic matchings of genomic regions in order to reflect "one-to-many" or more generally "many-to-many" matchings. However this relaxation may result in the identification of synteny blocks that are derived from ancient shared WGDs that are not of interest. For many downstream analyses, we need to eliminate weak, low scoring alignments from pairwise genome comparisons. Our goal is to objectively select subset of synteny blocks whose total scores are maximized while respecting the duplication history of the genomes in comparison. We call this "quota-based" screening of synteny blocks in order to appropriately fill a quota of syntenic relationships within one genome or between two genomes having WGD events.  相似文献   

10.

Background  

Recent genomic studies have revealed a teleost-specific third-round whole genome duplication (3R-WGD) event occurred in a common ancestor of teleost fishes. However, it is unclear how the genes duplicated in this event were lost or persisted during the diversification of teleosts, and therefore, how many of the duplicated genes contribute to the genetic differences among teleosts. This subject is also important for understanding the process of vertebrate evolution through WGD events. We applied a comparative evolutionary approach to this question by focusing on the genes involved in long-term potentiation, taste and olfactory transduction, and the tricarboxylic acid cycle, based on the whole genome sequences of four teleosts; zebrafish, medaka, stickleback, and green spotted puffer fish.  相似文献   

11.
12.

Background  

The physical organization and chromosomal localization of genes within genomes is known to play an important role in their function. Most genes arise by duplication and move along the genome by random shuffling of DNA segments. Higher order structuring of the genome occurs in eukaryotes, where groups of physically linked genes are co-expressed. However, the contribution of gene duplication to gene order has not been analyzed in detail, as it is believed that co-expression due to recent duplicates would obscure other domains of co-expression.  相似文献   

13.

Background  

The chondrichthyan or cartilaginous fish (chimeras, sharks, skates and rays) occupy an important phylogenetic position as the sister group to all other jawed vertebrates and as an early lineage to diverge from the vertebrate lineage following two whole genome duplication events in vertebrate evolution. There have been few comparative genomic analyses incorporating data from chondrichthyan fish and none comparing genomic information from within the group. We have sequenced the complete Hoxa cluster of the Little Skate (Leucoraja erinacea) and compared to the published Hoxa cluster of the Horn Shark (Heterodontus francisci) and to available data from the Elephant Shark (Callorhinchus milii) genome project.  相似文献   

14.

Background  

Well preserved genomic colinearity among agronomically important grass species such as rice, maize, Sorghum, wheat and barley provides access to whole-genome structure information even in species lacking a reference genome sequence. We investigated footprints of whole-genome duplication (WGD) in barley that shaped the cereal ancestor genome by analyzing shared synteny with rice using a ~2000 gene-based barley genetic map and the rice genome reference sequence.  相似文献   

15.

Background  

Characteristics derived from mutation and other mechanisms that are advantageous for survival are often preserved during evolution by natural selection. Some genes are conserved in many organisms because they are responsible for fundamental biological function, others are conserved for their unique functional characteristics. Therefore one would expect the rate of molecular evolution for individual genes to be dependent on their biological function. Whether this expectation holds for genes duplicated by whole genome duplication is not known.  相似文献   

16.

Background  

Gene duplication, a major evolutionary path to genomic innovation, can occur at the scale of an entire genome. One such "whole-genome duplication" (WGD) event among the Ascomycota fungi gave rise to genes with distinct biological properties compared to small-scale duplications.  相似文献   

17.

Background  

One of the main explanations for the stunning diversity of teleost fishes (~29,000 species, nearly half of all vertebrates) is that a fish-specific whole-genome duplication event (FSGD) in the ancestor to teleosts triggered their subsequent radiation. However, one critical assumption of this hypothesis, that diversification rates in teleosts increased soon after the acquisition of a duplicated genome, has never been tested.  相似文献   

18.

Background  

Ortholog assignment is a critical and fundamental problem in comparative genomics, since orthologs are considered to be functional counterparts in different species and can be used to infer molecular functions of one species from those of other species. MSOAR is a recently developed high-throughput system for assigning one-to-one orthologs between closely related species on a genome scale. It attempts to reconstruct the evolutionary history of input genomes in terms of genome rearrangement and gene duplication events. It assumes that a gene duplication event inserts a duplicated gene into the genome of interest at a random location (i.e., the random duplication model). However, in practice, biologists believe that genes are often duplicated by tandem duplications, where a duplicated gene is located next to the original copy (i.e., the tandem duplication model).  相似文献   

19.
Chaos game representation for comparison of whole genomes   总被引:1,自引:0,他引:1  

Background  

Chaos game representation of genome sequences has been used for visual representation of genome sequence patterns as well as alignment-free comparisons of sequences based on oligonucleotide frequencies. However the potential of this representation for making alignment-based comparisons of whole genome sequences has not been exploited.  相似文献   

20.

Background  

While gene duplication is known to be one of the most common mechanisms of genome evolution, the fates of genes after duplication are still being debated. In particular, it is presently unknown whether most duplicate genes preserve (or subdivide) the functions of the parental gene or acquire new functions. One aspect of gene function, that is the expression profile in gene coexpression network, has been largely unexplored for duplicate genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号