首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Aims: The aim of this study is to assess the antibacterial activity of sodium citrate against Streptococcus pneumoniae and several oral bacteria. Methods and Results: The antibacterial activity was determined by broth microdilution method. The results showed that although Enterocuccus faecium OB7084 and Klebsiella pneumoniae OB7088 had high tolerance to sodium citrate, several oral bacteria including Fusobacterium nucleatum JCM8532T, Streptococcus mutans JCM5705T and Strep. pneumoniae NBRC102642T were susceptible. Furthermore, the bactericidal activity of sodium citrate against Strep. pneumoniae NBRC102642T was not influenced by pH in the range of 5·0–8·0, whereas that of sodium lactate was weakened at neutral or weak alkaline pH. When Strep. pneumoniae NBRC102642T was treated with sodium citrate for 2 h, many burst cells were observed. However, addition of MgCl2 or CaCl2 to an assay medium weakened the antimicrobial activity although ZnCl2 or MnCl2 did not influence. Conclusions: Independent of pH, sodium citrate inhibited the growth of oral bacteria, which suggests that the mechanism is different from that of sodium lactate. Significance and Impact of the Study: The results presented in this study would be available for understanding the antimicrobial property of sodium citrate.  相似文献   

2.
Abstract

This study evaluated the antibacterial properties of carvacrol and terpinen-4-ol against Porphyromonas gingivalis and Fusobacterium nucleatum and its cytotoxic effects on fibroblast cells. The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) were examined. The minimum biofilm inhibition concentration (MBIC) was evaluated by XTT assay. Biofilm decontamination on titanium surfaces was quantified (CFU ml?1), evaluated by confocal laser scanning microscopy (CLSM) and cytotoxic activity by MTT. The MIC and MBC for carvacrol were 0.007% and 0.002% for P. gingivalis and F. nucleatum, and 0.06% for terpinen-4-ol for both microorganisms. The MBIC for carvacrol was 0.03% and 0.06% for P. gingivalis and F. nucleatum, and for terpinen-4-ol was 0.06% and 0.24%. The results indicated anti-biofilm activity using carvacrol (0.26%, 0.06%) and terpinen-4-ol (0.95%, 0.24%) and showed cytotoxic activity similar to chlorohexidine (CHX). However, terpinen-4-ol (0.24%) showed higher cell viability than other treatments. Carvacrol and terpinen-4-ol showed antibacterial activity in respect of reducing biofilms. Moreover, CHX-like cytotoxicity was observed.  相似文献   

3.
Previous work had suggested that in addition to serving the function of a siderophore, pyridine-2,6-bis(thiocarboxylic acid) (PDTC) may also provide producing organisms with the ability to assimilate other divalent transition metals. This was tested further by examining regulation of siderophore production, expression of pdt genes, and growth in response to added zinc. In media containing 10–50 μM ZnCl2, the production of PDTC was found to be differentially repressed, as compared with the production of pyoverdine. The expression of PdtK, the outer membrane receptor involved in PDTC transport, was also reduced in response to added zinc whereas other iron-regulated outer membrane proteins were not. Expression of a chromosomal pdtI:: xylE fusion was repressed to a similar extent in response to zinc or iron. Mutants that cannot produce PDTC did not show a growth enhancement with micromolar concentrations of zinc as seen in the wild type strain. The phenotype of the mutant strains was suppressed by the addition of PDTC. The outer membrane receptor and inner membrane permease components of PDTC utilization were necessary for relief of chelator (1,10-phenanthroline)-induced growth inhibition by Zn:PDTC. Iron uptake from 55Fe:PDTC was not affected by a 32-fold molar excess of Zn:PDTC. The data indicate that zinc present as Zn:PDTC can be utilized by strains possessing PDTC utilization functions but that transport is much less efficient than for Fe:PDTC.  相似文献   

4.
He X  Hu W  Kaplan CW  Guo L  Shi W  Lux R 《Microbial ecology》2012,63(3):532-542
The development of multispecies oral microbial communities involves complex intra- and interspecies interactions at various levels. The ability to adhere to the resident bacteria or the biofilm matrix and overcome community resistance are among the key factors that determine whether a bacterium can integrate into a community. Fusobacterium nucleatum is a prevalent Gram-negative oral bacterial species that is able to adhere to a variety of oral microbes and has been implicated in playing an important role in the establishment of multispecies oral microbial community. However, the majority of experiments thus far has focused on the physical adherence between two species as measured by in vitro co-aggregation assays, while the community-based effects on the integration of F. nucleatum into multispecies microbial community remains to be investigated. In this study, we focus on community integration of F. nucleatum. We demonstrated using an established in vitro mice oral microbiota (O-mix) that the viability of F. nucleatum was significantly reduced upon addition to the O-mix due to cell contact-dependent induction of hydrogen peroxide (H2O2) production by oral community. Interestingly, this inhibitory effect was significantly alleviated when F. nucleatum was allowed to adhere to its known interacting partner species (such as Streptococcus sanguinis) prior to addition. Furthermore, this aggregate formation-dependent protection was absent in the F. nucleatum mutant strain ΔFn1526 that is unable to bind to a number of Gram-positive species. More importantly, this protective effect was also observed during integration of F. nucleatum into a human salivary microbial community (S-mix). These results suggest that by adhering to other oral microbes, F. nucleatum is able to mask the surface components that are recognized by H2O2 producing oral community members. This evasion strategy prevents detection by antagonistic oral bacteria and allows integration into the developing oral microbial community.  相似文献   

5.
Antibiotic therapy is often used with mechanical therapy to treat periodontal disease. However, complications associated with antibiotic use can occur. A ‘bacteria-specific’ targeted approach would eliminate some of these complications and kill specific periodontopathogens without harming the commensal bacteria. One such approach is to couple antimicrobial peptides to a ligand, pheromone, or antibody specific for the periodontopathogen, Porphyromonas gingivalis. To assess the feasibility of this approach, we attached PQGPPQ, a peptide from proline-rich protein 1 to either the N-terminus of SMAP28 (peptide ZS37-37) or the C-terminus of SMAP28 (peptide ZS37-38) to see whether it has potential as a carrier ligand to deliver SMAP28 to the surface of P. gingivalis. For Escherichia coli and Aggregatibacter actinomycetemcomitans, the median minimal inhibitory concentration (MIC) of ZS37-37 was higher than the median of SMAP28 alone, although the median MIC of ZS37-38 was lower than that of SMAP28 alone. For P. gingivalis, there was no difference in the median MIC values. For S. aureus, the median MIC was higher for ZS37-37 and ZS37-38 compared to SMAP28 alone, particularly for ZS37-38. For Fusobacterium nucleatum, the median MIC values were equal for ZS37-37 and ZS37-38 and higher than the median MIC for SMAP28 alone. Attaching PQGPPQ to SMAP28 did not greatly increase the antimicrobial activity of ZS37-37 or ZS37-38 for P. gingivalis nor substantially decrease the antimicrobial activity of ZS37-37 or ZS37-38 for the four other microorganisms tested. This is an initial step to develop a selective antimicrobial agent that has ‘targeted’ antimicrobial activity without adverse reactions often associated with the use of broad-spectrum antibiotics.  相似文献   

6.
7.
8.
Distribution and retention of zinc in the presence of cadmium and copper was studied in rats exposed repeatedly to these metals. The experiment was performed on white rats of the Wistar strain. The animals were divided into four groups/five rats each: 1)65ZnCl2; 2)65ZnCl2+CdCl2; 3)65ZnCl2+CuCl2; and 4) control group. Rats were administered sc every other day for two weeks:65ZnCl2−5 mg Zn/kg; CdCl2−0,3 Cd/kg; and CuCl2−2 mg Cu/kg. The zinc content was measured in rat tissues by γ-counting. Effect of Cd and Cu on subcellular distribution of zinc in the kidney and liver and on the level of metallothionein were also examined. Whole body retention of zinc under the influence of cadmium was lower than that observed in animals treated with zinc alone. However, copper increased twofold the whole body retention of zinc. Cadmium elevated the accumulation of zinc only in the kidneys nuclear fraction and liver soluble fraction. In the kidneys and liver, copper elevated the accumulation of zinc, in the nuclear, mitochondrial, and soluble fractions. The level of metallothionein-like proteins (MT) in the kidneys after a combined supply of zinc and copper was significantly increased with respect to the group of animals treated with zinc alone. These results indicated complex interactions between cadmium, copper, and zinc that can affect the metabolism of each of the metals.  相似文献   

9.
Filifactor alocis is a gram positive anaerobe that is emerging as an important periodontal pathogen. In the oral cavity F. alocis colonizes polymicrobial biofilm communities; however, little is known regarding the nature of the interactions between F. alocis and other oral biofilm bacteria. Here we investigate the community interactions of two strains of F. alocis with Streptococcus gordonii, Fusobacterium nucleatum, Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans, organisms with differing pathogenic potential in the oral cavity. In an in vitro community development model, S. gordonii was antagonistic to the accumulation of F. alocis into a dual species community. In contrast, F. nucleatum and the type strain of F. alocis formed a synergistic partnership. Accumulation of a low passage isolate of F. alocis was also enhanced by F. nucleatum. In three species communities of S. gordonii, F. nucleatum and F. alocis, the antagonistic effects of S. gordonii superseded the synergistic effects of F. nucleatum toward F. alocis. The interaction between A. actinomycetemcomitans and F. alocis was strain specific and A. actinomycetemcomitans could either stimulate F. alocis accumulation or have no effect depending on the strain. P. gingivalis and F. alocis formed heterotypic communities with the amount of P. gingivalis greater than in the absence of F. alocis. However, while P. gingivalis benefited from the relationship, levels of F. alocis in the dual species community were lower compared to F. alocis alone. The inhibitory effect of P. gingivalis toward F. alocis was dependent, at least partially, on the presence of the Mfa1 fimbrial subunit. In addition, AI-2 production by P. gingivalis helped maintain levels of F. alocis. Collectively, these results show that the pattern of F. alocis colonization will be dictated by the spatial composition of microbial microenvironments, and that the organism may preferentially accumulate at sites rich in F. nucleatum.  相似文献   

10.
11.
The effect of zinc on various pulmonary cell lines has been studied by measuring the depletion of total cellular glutathione after exposure to zinc(II) chloride at different concentrations. Total cellular glutathione (cGS) was measured at 31 ± 3 nmol/mg, 3.8 ± 0.6 nmol/mg, and 3.7 ±1.2 nmol/mg protein in A549, L2, and 11Lu cells, respectively. After treatment with buthionine sulfoximine (BSO), the cGS levels decreased by 20% in A549 cells and below 0.2 nmol/mg in L2 and 11Lu cells. Exposure of A549 cells to 25–200 μM ZnCl2 for 4 h alone decreased the cGS content to 60–80%. There was little additional effect in BSO-pretreated cells. In L2 and 11Lu cells, the decrease of cGS was 70–85% following exposure to 15–150 μM ZnCl2 for 2 h. If BSO was also used, the decrease in cGS was 85–95% in L2 cells and 75–85% in 11Lu cells. Exposure to 25–250 μM ZnCl2 for 2 h diminished protein synthesis as determined by radiolabeled methionine incorporation, with half-maximum inhibition (EC50) from 40–160 μM ZnCl2. To attain similar EC50 values in BSO-pretreated cells, only about half the zinc concentrations were required as compared to cells without pretreatment. The decrease of cGS was accompanied by an increased ratio of oxidized : reduced glutathione that was more pronounced in cells with low glutathione content.  相似文献   

12.
The interaction between Lactobacillus reuteri, a probiotic bacterium, and oral pathogenic bacteria have not been studied adequately. This study examined the effects of L. reuteri on the proliferation of periodontopathic bacteria including Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, Porphyromonas gingivalis, and Tannerella forsythia, and on the formation of Streptococcus mutans biofilms. Human-derived L. reuteri strains (KCTC 3594 and KCTC 3678) and rat-derived L. reuteri KCTC 3679 were used. All strains exhibited significant inhibitory effects on the growth of periodontopathic bacteria and the formation of S. mutans biofilms. These antibacterial activities of L. reuteri were attributed to the production of organic acids, hydrogen peroxide, and a bacteriocin-like compound. Reuterin, an antimicrobial factor, was produced only by L. reuteri KCTC 3594. In addition, L. reuteri inhibited the production of methyl mercaptan by F. nucleatum and P. gingivalis. Overall, these results suggest that L. reuteri may be useful as a probiotic agent for improving oral health.  相似文献   

13.
B Biyikoğlu  A Ricker  PI Diaz 《Anaerobe》2012,18(4):459-470
Periodontitis results from an ecological shift in the composition of subgingival biofilms. Subgingival community maturation is modulated by inter-organismal interactions and the relationship of communities with the host. In an effort to better understand this process, we evaluated biofilm formation, with oral commensal species, by three strains of the subgingivally prevalent microorganism Fusobacterium nucleatum and four strains of the periodontopathogen Porphyromonas gingivalis. We also tested the effect of serum, which resembles gingival exudates, on subgingival biofilms. Biofilms were allowed to develop in flow cells using salivary medium. We found that although not all strains of F. nucleatum were able to grow in mono-species biofilms, forming a community with health-associated partners Actinomyces oris and Veillonella parvula promoted biofilm growth of all F. nucleatum strains. Strains of P. gingivalis also showed variable ability to form mono-species biofilms. P. gingivalis W50 and W83 did not form biofilms, while ATCC 33277 and 381 formed biofilm structures, but only strain ATCC 33277 grew over time. Unlike the enhanced growth of F. nucleatum with the two health-associated species, no strain of P. gingivalis grew in three-species communities with A. oris and V. parvula. However, addition of F. nucleatum facilitated growth of P. gingivalis ATCC 33277 with health-associated partners. Importantly, serum negatively affected the adhesion of F. nucleatum, while it favored biofilm growth by P. gingivalis. This work highlights strain specificity in subgingival biofilm formation. Environmental factors such as serum alter the colonization patterns of oral microorganisms and could impact subgingival biofilms by selectively promoting pathogenic species.  相似文献   

14.
Sixty-eight strains of capnophilic fusiform Gram-negative rods from the human oral cavity were subjected to extensive physiologic characterization, tested for susceptibility to various antibiotics, and the mol-percent guanine plus cytosine of each isolate determined. The characteristics of the isolates were compared with 10 fresh and 2 stock isolates of Fusobacterium nucleatum. The isolates clearly differed from the Fusobacterium species on the basis of molpercent guanine plus cytosine, end products, growth in a capnophilic environment and fermentation of carbohydrates.All of the gliding isolates required CO2 and formed acetate and succinate, but not H2S, indole or acetylmethylcarbinol. All fermented glucose, sucrose, maltose and mannose. The organisms may be differentiated on the basis of fermentation of additional carbohydrates, hydrolysis of polymers and reduction of nitrate. Three species are proposed: Capnocytophaga ochracea, Capnocytophaga sputigena and Capnocytophaga gingivalis. Ten isolates did not fit into the proposed species.  相似文献   

15.
S. Watanabe  T. Saito 《Biopolymers》1987,26(5):625-632
The effect of LiCl, NaCl, and CsCl as univalent salts, and of CaCl2, ZnCl2, and MgCl2 as divalent salts, on the α and antiparallel β-sheet, and random conformations of poly(L-lysine) (PLL), in water at room temperature were examined by means of CD and compared quantitatively on the basis of elliptical strength at the maximal peak. Changes in the α-helical and antiparallel β-sheet helical conformations of PLL were markedly dependent on the salt concentrations of LiCl, NaCl, and CsCl, which induced decreases in negative intensity in that order. The CD spectrum of the random conformation, the most disordered form, displayed positive cotton effect in concentrations of these salts up to 3.0M and a negative peak in concentrations of 6.0M. The effect of these salts on the random conformation of PLL was stronger than that on the α- and β-conformations in higher concentrations. The CD spectrum of the random conformation in the presence of CaCl2, ZnCl2, and MgCl2, on the other hand, showed negative cotton effect in salt concentrations as low as 3.0M. It was impossible, however, to measure the effect on α- and β-conformations of ZnCl2 and MgCl2 above concentrations of 10 mM because of a solubility problem with salts in alkaline solution.  相似文献   

16.

Background

Chlorhexidine (CHX) is a widely used antimicrobial agent in dentistry. Herein, we report the synthesis of a novel mesoporous silica nanoparticle-encapsulated pure CHX (Nano-CHX), and its mechanical profile and antimicrobial properties against oral biofilms.

Methodology/Principal Findings

The release of CHX from the Nano-CHX was characterized by UV/visible absorption spectroscopy. The antimicrobial properties of Nano-CHX were evaluated in both planktonic and biofilm modes of representative oral pathogenic bacteria. The Nano-CHX demonstrated potent antibacterial effects on planktonic bacteria and mono-species biofilms at the concentrations of 50–200 µg/mL against Streptococcus mutans, Streptococcus sobrinus, Fusobacterium nucleatum, Aggregatibacter actinomycetemcomitans and Enterococccus faecalis. Moreover, Nano-CHX effectively suppressed multi-species biofilms such as S. mutans, F. nucleatum, A. actinomycetemcomitans and Porphyromonas gingivalis up to 72 h.

Conclusions/Significance

This pioneering study demonstrates the potent antibacterial effects of the Nano-CHX on oral biofilms, and it may be developed as a novel and promising anti-biofilm agent for clinical use.  相似文献   

17.
Glutamate and aspartate are key amino acids for catabolism byFusobacterium nucleatum subspecies andPorphyromonas gingivalis respectively. However, peptides such as yeast extract are their preferred sources of energy. To determine more precisely the possible nature of these peptides, we examined the utilization of these amino acids and their corresponding peptides by cell suspension experiments with a fluorescamine labeling technique. High molecular weight (M.W.) polyglutamate (>40,000) was poorly utilized by all taxa, whereas 95% of its low-M.W. peptide (2,000–5,000) was used byF. nucleatum subspeciesnucleatum, but the remaining two subspecies utilized <30%.P. gingivalis used ca. 50% polyglutamate but >90% polyaspartate within the same period. ForF. nucleatum subspeciesnucleatum as the test organism, T0.5 (the time taken to use 50% of the test substrate) was 1.7 h longer for glutamate than for the homopolymer. Furthermore, in the presence of both substrates, polyglutamate suppressed the uptake of glutamate until about 50% (ca. 1.5 mmol/L) of the peptide was used, after which the incorporation of the free amino acid started. A similar pattern of utilization was observed inP. gingivalis with its preferred peptide polyaspartate, for which the T0.5 was three times shorter than its monomer, aspartate. Both species had the capacity to utilize the heteropolymer, poly aspartate/glutamate, but at a significantly slower rate than the corresponding homopolymer.  相似文献   

18.
Zinc is an essential trace element necessary to life. This metal may exert some of its physiological effects by acting directly on cellular membranes, either by altering permeability or by modulating the activity of membrane-bound enzymes. On the other hand, calcium is an essential element in a wide variety of cellular activities. The aim of the present work was to study a possible interaction between zinc and calcium on intestinal transport ofd-galactose in jejunum of rabbit in vitro. In media with Ca2+, when ZnCl2 was present at 0.5 or 1 mM, zinc was found to reduce thed-galactose absorption significantly. In Ca2+-free media, where CaCl2 was omitted and replaced isotonically with choline chloride, the sugar transport was not modified by zinc. Verapamil at 10−6 M (blocking mainly Ca2+ transport) did not modify the inhibitory effect of zinc ond-galactose transport. When 10−6 M of A 23187 (Ca2+-specific ionophore) was added with/without Ca2+ to the media, ZnCl2 produced no change in sugar transport. These results could suggest a possible interaction of calcium and zinc for the same chemical groups of membrane, which could affect the intestinal absorption of sugars.  相似文献   

19.
20.
Aims: The aim of this work was to clarify the effects of electromagnetic wave irradiation (EMWI) on oral bacterial pathogens. Methods and Results: A Gram‐negative (Porphyromonas gingivalis) or Gram‐positive (Streptococcus mutans, S. intermedius, Enterococcus faecalis) bacterial suspension was irradiated by EMW apparatus (500–1000 kHz, 5–15 times, 1 s time?1). Quantification of survival bacteria by CFU counting revealed that EMWI exhibited marked bactericidal activity against all tested bacteria and bactericidal activity at 500 kHz increased in an irradiation number‐dependent manner. After EMWI at 500 kHz, scanning electron microscopic observations showed that the chain of S. mutans cells was shortened after 5 irradiations and the outlines of bacterial cells (S. mutans and P. gingivalis) were unclear after 5–10 irradiations. EMWI inhibited the inductive effect of S. mutans on pro‐inflammatory cytokine production in human monocytes and this inhibitory effect was comparable with that of heat‐killed bacteria. Furthermore, using an enzyme activity assay, EMWI partially inactivated the activities of gingipains from P. gingivalis. Conclusions: These findings demonstrated that EMWI has inactivation and bactericidal activities against single microbial species among four kinds of oral pathogens. Significance and Impact of the Study: Electromagnetic wave irradiation may be applicable for medical disinfection and sterilization, such as refractory periapical periodontitis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号