首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A novel marine bacterium, designated strain CNURIC014T was isolated from coastal seawater of Jeju Island in Korea. Strain CNURIC014T formed yellow colonies on marine agar 2216 and the cells were Gram-negative, non-motile, strictly aerobic, rod-shaped. The temperature, pH and NaCl ranges for growth were 15–37°C, pH 6.0–9.0 and 1.0–7.0% NaCl. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain CNURIC014T was most closely related to Gaetbulibacter marinus and Gaetbulibacter saemankumensis, with a sequence similarity of 95.1% and 94.6%, respectively. The DNA G+C content of the strain was 33.1 mol% and the major respiratory quinone was menaquinone-6. The major cellular fatty acids were iso-C15:1 (22.8%), iso-C15:0 (18.8%), summed feature 3 (iso-C15:0 2-OH/C16:1 ω7c, 12.9%) and iso-C17:0 3-OH (11.5%). On the basis of phenotypic, phylogenetic, and genotypic data, strain CNURIC014T represents a novel species within the genus Geatbulibacter, for which the name Gaetbulibacter jejuensis sp. nov. is proposed. The type strain is CNURIC014T(=KCTC 22615T =JCM 15976T).  相似文献   

2.
A novel bacterial strain designated P3-1T was isolated from the intestinal tract contents of Pacific white shrimp (Penaeus vannamei) in Zhangpu, Fujian province, China. The isolate was found to be Gram-negative, long rod shaped, oxidase- and catalase- positive. Growth was observed at 1–7 % sea salt (w/v, optimum, 3 %), at pH 7.0–9.0 (optimum, pH 7.0) and at 10–37 °C (optimum, 28 °C). The isolate was capable of hydrolysing gelatin, casein, starch and DNA but unable to degrade Tween 20, 40, 80 and cellulose. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain P3-1T belongs to the genus Aquimarina, with highest sequence similarity to Aquimarina gracilis PSC32T (96.2 %), followed by Aquimarina intermedia KMM 6258T (96.1 %), Aquimarina spongiae A6T (95.9 %) and Aquimarina muelleri KMM 6020T (95.8 %). The principal cellular fatty acids were identified as iso-C15:0, iso-C17:0 3OH, C16:1 ω7c/ω6c, iso-C15:1 G, iso-C15:0 3OH, iso-C17:1 ω9c/C16:0 10-methyl and C16:0. The G+C content of the chromosomal DNA was determined to be 33.3 mol%. The respiratory quinone was determined to be MK-6 (100 %). The combined genotypic and phenotypic data show that strain P3-1T represents a novel species within the genus Aquimarina, for which the name Aquimarina penaei sp. nov. is proposed, with the type strain P3-1T (=MCCC 1A09871T = LMG 27943T).  相似文献   

3.
A bacterial strain designated antisso-27T, previously isolated from saltpan in Taiwan while screening for bacteria for algicidal activity, was characterized using the polyphasic taxonomic approach. Strain antisso-27T was Gram-negative, aerobic, brownish yellow colored, rod-shaped, non-flagellated and non-gliding. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain antisso-27T belonged to the genus Aquimarina within the family Flavobacteriaceae with relatively low sequence similarities of 94.0–96.6% to other valid Aquimarina spp. It contained iso-C17:0 3-OH, iso-C15:0, iso-C16:0, iso-C15:1 and iso-C15:0 3-OH as the main fatty acids and contained a menaquinone with six isoprene units (MK-6) as the major isoprenoid quinone. Major polar lipids were phosphatidylethanolamine, diphosphatidylglycerol, an uncharacterized aminolipid and five uncharacterized phospholipids. Strain antisso-27T employed direct mode of algicidal lysis to Chlorella vulgaris strain 211-31; nevertheless, it released an algicidal substance against M. aeruginosa strain MTY01. This is the first study that the Aquimarina species possesses both direct and indirect algicidal activities. On the basis of the phylogenetic and phenotypic data, strain antisso-27T should be classified as representing a novel species, for which the name A. salinaria sp. nov. is proposed. The type strain is A. salinaria antisso-27T (= BCRC 80080T = LMG 25375T).  相似文献   

4.
A bacterial strain, designated KMM 6244T, was isolated from the sea urchin Strongylocentrotus intermedius and subjected to a polyphasic taxonomic investigation. The bacterium was found to be heterotrophic, aerobic, non-motile and spore-forming. Comparative phylogenetic analysis based on 16S rRNA gene sequencing placed the marine isolate in the genus Bacillus. The nearest neighbor of strain KMM 6244T was Bacillus decolorationis LMG 19507T with a 16S rRNA gene sequence similarity of 98.0%. Sequence similarities with the other recognized Bacillus species were less than 96.0%. The results of the DNA–DNA hybridization experiments revealed a low relatedness (37%) of the novel isolate with the type strain of B. decolorationis LMG 19507T. Strain KMM 6244T grew at 4–45°C and with 0–12% NaCl. It produced catalase and oxidase and hydrolyzed aesculin, casein, gelatin and DNA. The predominant fatty acids were anteiso-C15:0, iso-C15:0, anteiso-C17:0, C15:0, iso-C16:0 and iso-C14:0. The DNA G + C content was 39.4 mol%. A combination of phylogenetic, genotypic and phenotypic data clearly indicated that strain KMM 6244T represents a novel species in the genus Bacillus, for which the name Bacillus berkeleyi sp. nov. is proposed. The type strain is KMM 6244T (KCTC 12718T = LMG 26357T).  相似文献   

5.
A strictly aerobic, Gram-stain negative, long rod-shaped, motile by gliding and yellow pigmented bacterium, designated strain w01T, was isolated from marine sediment. The strain was characterised to determine its taxonomic position by using a polyphasic approach. Strain w01T was observed to grow optimally in the presence of 3.0% (w/v) NaCl, at 30 °C and to hydrolyse Tweens 20, 40 and 80, starch, casein and alginate. Carotenoid pigments were found to be produced but not flexirubin-type pigments. On the basis of 16S rRNA gene sequence similarities, strain w01T is phylogenetically affiliated with the genus Aquimarina and is closely related to Aquimarina macrocephali JCM 15542T (97.4% sequence similarity) and Aquimarina muelleri KCTC 12285T (97.0%). Lower sequence similarities (<?97.0%) were found with the other currently recognised members of the genus Aquimarina. The predominant fatty acids were identified as iso-C15:0 (33.7%), C18:0 3-OH (16.8%) and C17:1ω7c (10.6%). The polar lipid profile was found to contain phosphatidylethanolamine, an unidentified aminolipid and two unidentified polar lipids. MK-6 was identified as the sole respiratory quinone. The G?+?C content of the genomic DNA was determined to be 33.3 mol%. Strain w01T can be differentiated genotypically and phenotypically from recognised species of the genus Aquimarina. The isolate is therefore concluded to represent a novel species, for which the name Aquimarina sediminis sp. nov. is proposed, with the type strain w01T (=?KCTC 62350T?=?MCCC 1H00287T).  相似文献   

6.
A taxonomic study was carried out on strain 22II-S11-z7T, which was isolated from the surface seawater of the Atlantic Ocean. The bacterium was found to be Gram-negative, oxidase negative and catalase positive, long-rod shaped, and gliding. Growth was observed at salinities of 1–5 % and at temperatures of 10–41 °C. The isolate was capable of hydrolysing gelatin and Tween 80 and able to reduce nitrate to nitrite, but unable to degrade aesculin. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain 22II-S11-z7T belongs to the genus Aquimarina, with highest sequence similarity to Aquimarina megaterium XH134T (98.31 %), followed by Aquimarina macrocephali JAMB N27T (96.59 %); other species of the genus Aquimarina shared 93.63–96.08 % sequence similarity. The ANI value between strain 22II-S11-z7T and A. megaterium XH134T was found to be 91.86–91.81 %. The DNA–DNA hybridization estimated value between strain 22II-S11-z7T and A. megaterium XH134T was 47.7 ± 2.6 %. The principal fatty acids were identified as Summed Feature 3 (C16:1 ω7c/ω6c, as defined by the MIDI system; 8.1 %), SummedFeature 9 (iso-C17:1 ω7c/C16:110-methyl; 6.8 %), iso-C15:0 G (11.3 %), iso-C15:0 (24.9 %), iso-C16:0 (5.7 %), C16:0 (5.2 %), iso-C15:0 3OH (6.4 %) and iso-C17:0 3OH (21.5 %). The G+C content of the chromosomal DNA was determined to be 32.99 mol %. The respiratory quinone was determined to be MK-6 (100 %). Phosphatidylethanolamine, two unidentified aminolipids, five unidentified phospholipids and two unidentified lipids were found to be present. The combined genotypic and phenotypic data show that strain 22II-S11-z7T represents a novel species within the genus Aquimarina, for which the name Aquimarina atlantica sp. nov. is proposed, with the type strain 22II-S11-z7T (=MCCC 1A09239T = KCTC 42003T).  相似文献   

7.
A novel bacterium B9T was isolated from tidal flat sediment. Its morphology, physiology, biochemical features, and 16S rRNA gene sequence were characterized. Colonies of this strain are yellow and the cells are Gram-negative, rod-shaped, and do not require NaCl for growth. The 16S rRNA gene sequence similarity indicated that strain B9T is associated with the genus Lysobacter (≤ 97.2%), Xanthomonas (≤ 96.8%), Pseudomonas (≤ 96.7%), and Luteimonas (≤ 96.0%). However, within the phylogenetic tree, this novel strain shares a branching point with the species Luteimonas composti CC-YY255T (96.0%). The DNA-DNA hybridization experiments showed a DNA-DNA homology of 23.0% between strain B9T and Luteimonas mephitis B1953/27.1T. The G+C content of genomic DNA of the type strain is 64.7 mol% (SD, 1.1). The predominant fatty acids are iso-C11:0, iso-C15:0, iso-C16:0, iso-C17:0, iso-C17:0 ω9c, and iso-C11:0 3-OH. Combined analysis of the 16S rRNA gene sequences, fatty acid profile, and results from physiological and biochemical tests indicated that there is genotypic and phenotypic differentiation of the isolate from other Luteimonas species. For these reasons, strain B9T was proposed as a novel species, named Luteimonas aestuarii. The type strain of the new species is B9T (= KCTC 22048T, DSM 19680T).  相似文献   

8.
A Gram-negative, orange-pigmented, rod-shaped bacterium, designated strain CP32T was isolated from a brown alga Carpopeltis affinis collected on the coast of Jeju Island, Republic of Korea. The isolate grew at 10–37°C (optimum 25°C) and at pH 6.5–9.5 (optimum pH 7.0). The 16S rRNA gene sequence of the isolate showed much similarity with the type strains of recognized species of the genus Winogradskyella (94.0–96.6%). The most closely related species were Winogradskyella echinorum KMM 6211T, Winogradskyella ulvae KMM 6390T, Winogradskyella thalassocola KMM 3907T, Winogradskyella poriferorum UST030701-295T, and Winogradskyella eximia KMM 3944T. The major respiratory quinone was menaquinone-6 (MK-6) and the predominant cellular fatty acids were iso-C15:1 G (24.8%), iso-C15:0 (23.4%), and iso-C17:0 3-OH (11.6 %). The DNA G+C content was 33.3 mol%. The polar lipid profile was composed of phosphatidylethanolamine, two aminolipids, and five unknown lipids. On the basis of phenotypic features, and the result of 16S rRNA gene sequence analysis, strain CP32T (=KCTC 23835T =JCM 18454T) represents a novel species of the genus Winogradskyella, for which the name Winogradskyella jejuensis sp. nov. is proposed.  相似文献   

9.
A Gram-negative, aerobic, rod shaped, non-spore-forming bacterial strain, designated Dae08T, was isolated from sediment of the stream near Daechung dam in South Korea, and was characterized in order to determine its taxonomic position, using a polyphasic approach. Comparative 16S rRNA gene sequence analysis showed that strain Dae08T belongs to the family Xanthomonadaceae of the Gammaproteobacteria, and is related to Lysobacter brunescens ATCC 29482T (97.3%). The phylogenetic distances from any other species with validly published names within the genus Lysobacter were greater than 3.7%. The G+C contents of the genomic DNA of strain Dae08T was 69.3 mol%. The detection of a quinone system with Q-8 as the predominant compound and a fatty acid profile with iso-C15:0, iso-C17:1, ω9c, iso-C17:0, iso-C16:0, and iso-C11:0 3-OH as the major acids supported the affiliation of strain Dae08T to the genus Lysobacter. DNA-DNA relatedness between strain Dae08T and its phylogenetically closest neighbour was 28%. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain Dae08T (= KCTC 12600T) should be classified in the genus Lysobacter as the novel species, for which the name Lysobacter daecheongensis sp. nov. is proposed.  相似文献   

10.
A Gram-staining-negative, motile, non-spore-forming and rod-shaped bacterial strain, 20-23RT, was isolated from intestine of bensasi goatfish, Upeneus bensasi, and its taxonomic position was investigated by using a polyphasic study. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain 20-23RT belonged to the genus Shewanella. Strain 20-23RT exhibited 16S rRNA gene sequence similarity values of 99.5, 99.2, and 97.5% to Shewanella algae ATCC 51192T, Shewanella haliotis DW01T, and Shewanella chilikensis JC5T, respectively. Strain 20-23RT exhibited 93.1–96.0% 16S rRNA gene sequence similarity to the other Shewanella species. It also exhibited 98.3–98.4% gyrB sequence similarity to the type strains of S. algae and S. haliotis. Strain 20-23RT contained simultaneously both menaquinones and ubiquinones; the predominant menaquinone was MK-7 and the predominant ubiquinones were Q-8 and Q-7. The fatty acid profiles of strain 20–23RT, S. algae KCTC 22552T and S. haliotis KCTC 12896T were similar; major components were iso-C15:0, C16:0, C16:1 ω7c and/or iso-C15:0 2-OH and C17:1 ω8c. The DNA G+C content of strain 20-23RT was 53.9 mol%. Differential phenotypic properties and genetic distinctiveness of strain 20–23RT, together with the phylogenetic distinctiveness, revealed that this strain is distinguishable from recognized Shewanella species. On the basis of the data presented, strain 20-23RT represents a novel species of the genus Shewanella, for which the name Shewanella upenei sp. nov. is proposed. The type strain is 20–23RT (=KCTC 22806T =CCUG 58400T).  相似文献   

11.
A Gram-staining-negative, oxidase-positive, catalase-positive, non-motile, non-spore-forming, and rod-shaped bacterium, designated BJQ-6T, was isolated from activated sludge of a waste-water treatment plant in Jiangsu Province, China. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain BJQ-6T belonged to the genus Rhodanobacter, and shared 98.7% similarity with Rhodanobacter lindaniclasticus LMG 18385T and <97% similarities with other Rhodanobacter species. The major fatty acids were iso-C15:0 (17.6%), iso-C16:0 (19.3%), and Summed feature 9 (isoC17:1 ω9c and/or C16:0 10-methyl) (25.8%). The DNA G+C content of strain BJQ-6T was 64.8 mol%. Based on the phenotypic and phylogenetic considerations, strain BJQ-6T represents a novel species of the genus Rhodanobacter, for which the name Rhodanobacter xiangquanii sp. nov. is proposed. The type strain is BJQ-6T (=CCTCC AB 2010106T =KCTC 23100T).  相似文献   

12.
A non-motile red-pigmented bacterium, designated strain HMD1002T, was isolated from an artificial lake located on the campus of Hankuk University of Foreign Studies, South Korea. The major fatty acids were iso-C15:0 (29.6%), Summed Feature 3 (comprising C16:1 ω7c and/or iso-C15:0 2-OH; 17.5%) and iso-C17:0 3-OH (12.5%). The major isoprenoid quinone was menaquinone-7 (MK-7). The DNA G+C content was 41.0 mol%. A phylogenetic tree based on 16S rRNA gene sequences showed that strain HMD1002T formed a lineage in the genus Pedobacer and was closely related to Pedobacer terrae (96.3%) and Pedobacer suwonensis (95.8%) in sequence similarity. On the basis of the evidence presented in this study, strain HMD1002T represents a novel species of the genus Pedobacter, for which the name Pedobacter yonginense sp.nov. is proposed. The type strain is HMD1002T (=KCTC 22721T = CECT 7544T).  相似文献   

13.
A Gram-negative, aerobic, rod-shaped, and red-pigmented bacterial strain, HMC5104T, was isolated from a solar saltern, found in Jeungdo, Republic of Korea (34°59′47″N 126°10′02″E). The major fatty acids were summed feature 4 (comprising iso-C17:1 I and/or anteiso-C17:1 B; 37.2%), iso-C15:0 (20.4%), and iso-C17.0 30H (15.3%). The DNA G+C content was 46.0 mol%. The major isoprenoid quinone was menaquinone-7 (MK-7). A phylogenetic tree based on 16S rRNA gene sequences showed that strain HMC5104T formed a lineage within the genus Pontibacter, and was closely related to Pontibacter korlensis (95.9%), P. roseus (94.9%), and P. actiniarum (94.3%). Similarities to all other Pontibacter species were between 95.9–93.9%. On the basis of the evidence presented in this study, strain HMC5104T represents a novel species of the genus Pontibacter, for which the name Pontibacter salisaro sp. nov. is proposed. The type strain is HMC5104T (=KCTC 22712T = NBRC 105731T).  相似文献   

14.
Two novel, Gram-positive, motile, coccal bacteria, strains L1b-b9T and B5a-b5, were isolated from a potato cultivation field in Ochang, Korea. These isolates grew at 10–45°C, pH 5.0–10.0, and in the presence of 8% (w/v) NaCl. The diagnostic diamino acid in the cell-wall peptidoglycan was meso-diaminopimelic acid. The major menaquinone was MK-8(H4) and the main cellular fatty acids were iso-C14:0, iso-C15:0, and anteiso-C15:0. Polar lipids in strain L1b-b9T consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, and an unknown glyco-amino lipid. The G+C content of genomic DNA was 73.6 mol%. A phylogenetic analysis based on 16S rRNA gene sequences showed that strains L1b-b9T and B5a-b5 shared 99.36% similarity and formed a robust clade with the type species of the genus Phycicoccus. Strain L1b-b9T is related most closely to Phycicoccus cremeus V2M29T (97.52% 16S rRNA gene sequence similarity). On the basis of phylogenetic characteristics, the name Phycicoccus ochangensis sp. nov. is proposed for strain LIb-b9T (=KCTC 19694T =JCM 17595T).  相似文献   

15.
A Gram-negative, non-motile, non-spore-forming bacterial strain designated IBFC2009T was isolated from soil of a bamboo plantation. The strain could grow at 11°C∼39°C, pH 6.0–9.0, and in the presence of 0∼5% NaCl. Based on 16S rRNA gene sequence analysis, Strain IBFC2009T belonged to the genus Sphingobacterium and showed the highest sequence similarity of 94.6% (S. composti T5-12T) with the type strains within the genus. The major fatty acids were summed feature 3 (iso-C15:0 2-OH and/or C16:1 ω7c, 34.4%), iso-C15:0 (22.4%), C16:0 3-OH (15.2%), and iso-C17:0 3-OH (12.8%). The G+C content of the genomic DNA was 41.0 mol%. According to the phenotypic and genotypic characteristics, Strain IBFC2009T should represent a novel species of the genus Sphingobacterium, for which the name Sphingobacterium bambusae sp. nov. is proposed. The type strain is IBFC2009T (=CCTCC AB 209162T =KCTC 22814T).  相似文献   

16.
A novel Gram-negative, facultatively anaerobic and motile bacterial strain, designated KMM 6351T, was isolated from the sea urchin Strongylocentrotus intermedius and examined using a polyphasic taxonomic approach. A phylogenetic analysis based on 16S rRNA gene sequencing revealed that the strain formed a distinct phyletic line in the class Gammaproteobacteria and was most closely related to the genera Aliivibrio, Photobacterium and Vibrio. Strain KMM 6351T grows at 4–40 °C and with 0.5–12 % NaCl and decomposes aesculin, agar, gelatin, starch, chitin and DNA. The DNA G+C content of the strain was determined to be 46.1 mol%. The prevalent fatty acids were found to be C16:0, C18:1 ω7c, C12:0 3-OH and summed feature 3 (comprising C16:1 ω7c and/or iso-C15:0 2-OH fatty acids). The major polar lipids were determined to be diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and an unidentified aminolipid. The predominant ubiquinone was found to be Q-8. The results of the phenotypic, chemotaxonomic and genotypic analyses clearly indicated that the novel strain should be assigned to a new genus and species within the class γ-Proteobacteria for which the name Echinimonas agarilytica gen. nov., sp. nov. is proposed. The type strain is KMM 6351T (=KCTC 22996T = LMG 25420T).  相似文献   

17.
Strain M1-2T was isolated from the black sand from the seashore of Jeju Island, Republic of Korea and was classified using a polyphasic taxonomic approach. Strain M1-2T appeared as Gram-negative, motile rods that could grow in the presence of 1–10% (w/v) NaCl and at temperatures ranging from 4 to 37°C. This isolate has catalase and oxidase activity and hydrolyses aesculin, DNA and l-tyrosine. Based on phylogenetic analysis using 16S rRNA gene sequences, strain M1-2T belongs to the genus Joostella and is clearly distinct from the other described species of this genus, Joostella marina (type strain En5T). The 16S rRNA gene sequence similarity level between M1-2T and J. marina En5T is 97.2%, and the DNA–DNA relatedness value between the two strains is 23.9%. Strain M1-2T contains MK-6 as the major menaquinone and iso-C15:0, summed feature 3 (C16:1 ω7c and/or iso-C15:0 2OH) and iso-C17:0 3OH as major cellular fatty acids. The DNA G + C content is 32.3 mol%. These data suggest that strain M1-2T should be classified as a novel species, for which the name Joostella atrarenae sp. nov. is proposed. The type strain for the novel species is M1-2T (= KCTC 23194T = NCAIM B.002413T).  相似文献   

18.
A strictly aerobic Gram-positive, moderately halophilic spore forming bacterium, designated strain SL6-1T, was isolated from a salt lake in Xin-jiang province, China. Growth of strain SL6-1T was observed at NaCl concentrations of 0∼20% (w/v) (the optimum being 5∼7%, w/v). The peptidoglycan type of strain SL6-1T was Alγ-meso-diaminopimelic acid and its major cellular fatty acids were iso-C14:0 and iso-C16:0 and ante-iso-C15:0. The major respiratory isoprenoid quinone was MK-7 and the G+C content of the genomic DNA was 44.5 mol%. The major cellular phospholipids were phosphatidylglycerol and diphosphatidylglycerol. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain SL6-1T formed a phylogenetic lineage within the genus Virgibacillus. Based on 16S rRNA gene sequence similarity, the strain was most closely related to Virgibacillus olivae E308T, Virgibacillus kekensis YIM kkny16T, Virgibacillus marismortui DSM 12325T with 97.1%, 97.1%, and 97.0% gene sequence similarities, respectively and the sequence similarities to other related taxa were less than 96.7%. The DNA relatedness values between strain SL6-1T and V. olivae E308T, V. kekensis YIM kkny16T, V. marismortui DSM 12325T were 16.7%, 51.0%, and 22.8%, respectively. On the basis of physiological, biochemical and phylogenetic properties, strain SL6-1T represents a novel species, for which the name Virgibacillus xinjiangensis sp. nov. is proposed. The type strain is SL6-1T (=KCTC 13128T =DSM 19031T).  相似文献   

19.
A Gram-positive, non-pigmented, rod-shaped, diazotrophic bacterial strain, designated SC-N012T, was isolated from rhizosphere soil of sugarcane and was subjected to a polyphasic taxonomic study. The strain exhibited phenotypic properties that included chemotaxonomic characteristics consistent with its classification in the genus Bacillus. Sequence analysis of the 16S rRNA gene of SC-N012T revealed the closest match (98.9% pair wise similarity) with Bacillus clausii DSM 8716T. However, DNA–DNA hybridization experiments indicated low levels of genomic relatedness (32%) with this strain. The major components of the fatty acid profile are iso-C15:0, anteiso-C15:0, iso-C17:0 and anteiso-C17:0. The diagnostic cell-wall diamino acid was meso-diaminopimelic acid. The G+C content of the genomic DNA is 43.0 mol%. The lipids present in strain SC-N012T are diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol and two unknown phospholipids. Their predominant respiratory quinone was MK-7. Studies of DNA-DNA relatedness, morphological, physiological and chemotaxonomic analyses and phylogenetic data based on 16S rRNA gene sequencing allowed strain SC-N012T to be described as members of novel species of the genus Bacillus, for which the name Bacillus rhizosphaerae sp. nov. is proposed. The type strain is SC-N012T (=DSM 21911T = NCCB 100267T).  相似文献   

20.
A Gram-negative, aerobic, rod-shaped, motile by gliding and yellow-pigmented bacterium, designated strain 10Alg 130T, that displayed the ability to destroy polysaccharides of red and brown algae, was isolated from the red alga Ahnfeltia tobuchiensis. The phylogenetic analysis based on 16S rRNA gene sequence placed the novel strain within the genus Flavobacterium, the type genus of the family Flavobacteriaceae, the phylum Bacteroidetes, with sequence similarities of 96.2 and 95.7 % to Flavobacterium jumunjiense KCTC 23618T and Flavobacterium ponti CCUG 58402T, and 95.3–92.5 % to other recognized Flavobacterium species. The prevalent fatty acids of strain 10Alg 130T were iso-C15:0, iso-C15:0 3-OH, iso-C17:0 3-OH, C15:0 and iso-C17:1ω9c. The polar lipid profile consisted of phosphatidylethanolamine, two unknown aminolipids and three unknown lipids. The DNA G+C content of the type strain was 34.3 mol%. The new isolate and the type strains of recognized species of the genus Flavobacterium could strongly be distinguished by a number of phenotypic characteristics. A combination of the genotypic and phenotypic data showed that the algal isolate represents a novel species of the genus Flavobacterium, for which the name Flavobacterium ahnfeltiae sp. nov. is proposed. The type strain is 10Alg 130T (=KCTC 32467T = KMM 6686T).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号