首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Common bean diversity within and between Mesoamerican and Andean gene pools was compared in 89 landraces from America and 256 landraces from Europe, to elucidate the effects of bottleneck of introduction and selection for adaptation during the expansion of common bean (Phaseolus vulgaris L.) in Europe. Thirteen highly polymorphic nuclear microsatellite markers (nuSSRs) were used to complement chloroplast microsatellite (cpSSRs) and nuclear markers (phaseolin and Pv-shatterproof1) data from previous studies. To verify the extent of the introduction bottleneck, inter-gene pool hybrids were distinguished from “pure” accessions. Hybrids were identified on the basis of recombination of gene pool specific cpSSR, phaseolin and Pv-shatterproof1 markers with a Bayesian assignments based on nuSSRs, and with STRUCTURE admixture analysis. More hybrids were detected than previously, and their frequency was almost four times larger in Europe (40.2%) than in America (12.3%). The genetic bottleneck following the introduction into Europe was not evidenced in the analysis including all the accessions, but it was significant when estimated only with “pure” accessions, and five times larger for Mesoamerican than for Andean germplasm. The extensive inter-gene pool hybridization generated a large amount of genotypic diversity that mitigated the effects of the bottleneck that occurred when common bean was introduced in Europe. The implication for evolution and the advantages for common bean breeding are discussed.  相似文献   

2.
Brazil is the largest producer and consumer of common bean (Phaseolus vulgaris L.), which is the most important source of human dietary protein in that country. This study assessed the genetic diversity and the structure of a sample of 279 geo-referenced common bean landraces from Brazil, using molecular markers. Sixty-seven microsatellite markers spread over the 11 linkage groups of the common bean genome, as well as Phaseolin, PvTFL1y, APA and four SCAR markers were used. As expected, the sample showed lower genetic diversity compared to the diversity in the primary center of diversification. Andean and Mesoamerican gene pools were both present but the latter gene pool was four times more frequent than the former. The two gene pools could be clearly distinguished; limited admixture was observed between these groups. The Mesoamerican group consisted of two sub-populations, with a high level of admixture between them leading to a large proportion of stabilized hybrids not observed in the centers of domestication. Thus, Brazil can be considered a secondary center of diversification of common bean. A high degree of genome-wide multilocus associations even among unlinked loci was observed, confirming the high level of structure in the sample and suggesting that association mapping should be conducted in separate Andean and Mesoamerican Brazilian samples.  相似文献   

3.
We have been examining the importance of the root system on shoot growth and development using a developmentally disabled hybrid of the common bean Phaseolus vulgaris L. Parental cultivars (P. Vulgaris cv. Redkloud of Mesoamerican origin, and P. vulgaris cv. Batt of Andean origin) grow normally, but crosses produce F1 hybrids exhibiting hybrid weakness associated with reduced root and shoot growth. In this study, applications of benzylaminopurine (BAP) to roots of F1 hybrids increased the number of root tips and leaves. Reciprocal grafting was used to study the effects of the root system on shoots. Grafting of roots of the Mesoamerican cultivar onto shoots of F1 hybrids increased the cytokinin concentrations in leaves of F1 hybrids and removed the characteristics associated with hybrid weakness. To determine whether factors in the xylem sap enhanced leaf growth, leaf discs were incubated on sap collected from Mesoamerican and Andean cultivars. Sap from Mesoamerican plants enhanced the growth of leaf discs excised from F1 hybrids more than sap collected from Andean cultivars. Estimates of the transport of zeatin riboside (ZR)–type cytokinins from roots of F1 hybrids indicated that transport out of hybrid roots was reduced compared with those transported out of Mesoamerican or Andean roots. Results suggest that ZR-type cytokinins are involved in hormonal integration between roots and shoots of P. vulgaris and that one of the barriers to hybridization between Andean and Mesoamerican landraces is related to hormone transport. Received October 15, 1998; accepted May 12, 1999  相似文献   

4.
Most studies on the genetic diversity of common bean (Phaseolus vulgaris L.) have focussed on accessions from the Mesoamerican gene pool compared to the Andean gene pool. A deeper knowledge of the genetic structure of Argentinian germplasm would enable researchers to determine how the Andean domestication event affected patterns of genetic diversity in domesticated beans and to identify candidates for genes targeted by selection during the evolution of the cultivated common bean. A collection of 116 wild and domesticated accessions representing the diversity of the Andean bean in Argentina was genotyped by means of 114 simple sequence repeat (SSR) markers. Forty-seven Mesoamerican bean accessions and 16 Andean bean accessions representing the diversity of Andean landraces and wild accessions were also included. Using the Bayesian algorithm implemented in the software STRUCTURE we identified five major groups that correspond to Mesoamerican and Argentinian wild accessions and landraces and a group that corresponds to accessions from different Andean and Mesoamerican countries. The neighbour-joining algorithm and principal coordinate clustering analysis confirmed the genetic relationships among accessions observed with the STRUCTURE analysis. Argentinian accessions showed a substantial genetic variation with a considerable number of unique haplotypes and private alleles, suggesting that they may have played an important role in the evolution of the species. The results of statistical analyses aimed at identifying genomic regions with consistent patterns of variation were significant for 35 loci (~20 % of the SSRs used in the Argentinian accessions). One of these loci mapped in or near the genomic region of the glutamate decarboxylase gene. Our data characterize the population structure of the Argentinian germplasm. This information on its diversity will be very valuable for use in introgressing Argentinian genes into commercial varieties because the majority of present-day common bean varieties are of Andean origin.  相似文献   

5.
Studies of the level and the structure of the genetic diversity of local varieties of Phaseolus vulgaris are of fundamental importance, both for the management of genetic resources and to improve our understanding of the pathways of dissemination and the evolution of this species in Europe. We have here characterized 73 local bean populations from Sardinia (Italy) using seed traits and molecular markers (phaseolins, nuSSRs and cpSSRs). American landraces and commercial varieties were also included for comparison. We see that: (a) the Sardinian material is distinct from the commercial varieties considered; (b) the variation in the seed traits is high and it mostly occurs among populations (95%); (c) compared to the American sample and the commercial varieties, the Sardinian collection has a low level of diversity; (d) the majority (>95%) of the Sardinian individuals belong to the Andean gene pool; (e) the Sardinian material shows a strong genetic structure, both for cpSSRs and nuSSRs; (f) the nuSSRs and cpSSRs concur in differentiating between gene pools, but a lack of congruence between nuclear and chloroplast has been observed within gene pools; and (g) there are three putative hybrids between the Andean and Mesoamerican gene pools. Despite the relatively low level of diversity, which is probably due to a strong founder effect, the Sardinian landraces are worth being conserved and studied further because of their distinctiveness and because hybridization within and between the gene pools could generate variation that will be useful for breeding. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
Domesticated materials with well-known wild relatives provide an experimental system to reveal how human selection during cultivation affects genetic composition and adaptation to novel environments. In this paper, our goal was to elucidate how two geographically distinct domestication events modified the structure and level of genetic diversity in common bean. Specifically, we analyzed the genome-wide genetic composition at 26, mostly unlinked microsatellite loci in 349 accessions of wild and domesticated common bean from the Andean and Mesoamerican gene pools. Using a model-based approach, implemented in the software STRUCTURE, we identified nine wild or domesticated populations in common bean, including four of Andean and four of Mesoamerican origins. The ninth population was the putative wild ancestor of the species, which was classified as a Mesoamerican population. A neighbor-joining analysis and a principal coordinate analysis confirmed genetic relationships among accessions and populations observed with the STRUCTURE analysis. Geographic and genetic distances in wild populations were congruent with the exception of a few putative hybrids identified in this study, suggesting a predominant effect of isolation by distance. Domesticated common bean populations possessed lower genetic diversity, higher F ST, and generally higher linkage disequilibrium (LD) than wild populations in both gene pools; their geographic distributions were less correlated with genetic distance, probably reflecting seed-based gene flow after domestication. The LD was reduced when analyzed in separate Andean and Mesoamerican germplasm samples. The Andean domesticated race Nueva Granada had the highest F ST value and widest geographic distribution compared to other domesticated races, suggesting a very recent origin or a selection event, presumably associated with a determinate growth habit, which predominates in this race. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
The common bean (Phaseolus vulgaris) is one of the most important crop plants. About 50% of its genome is composed of repetitive sequences, but only a little fraction was isolated and characterized so far. In this paper, a new repetitive DNA family from the species, named PvMeso, was isolated and characterized in both gene pools of P. vulgaris (Andean and Mesoamerican) and related species. Two fragments, 1.7 and 2.3 kb long, were cloned from BAC 255F18, which has previously shown a repetitive pattern. The subclone PvMeso-31 showed a terminal block in chromosome 7. This subclone contains a 1,705 bp long, AT-rich repeat with small internal repeats and shares a 1.2 kb region with PvMeso-47, derived from the 2.3 kb fragment. The presence of this repetitive block was restricted to Mesoamerican accessions of the common bean. In P. acutifolius, P. leptostachyus and Andean P. vulgaris, only a faint, 2.3 kb fragment was visualized in Southern experiments. Moreover, in Mesoamerican accessions, two other fragments (1.7 kb and 3.4 kb) were strongly labelled as well. Taken together, our results indicate that PvMeso is a recently emerged, repeat family initially duplicated in chromosome 11, on ancestral Mesoamerican accession, and later amplified in chromosome 7, after the split of the two major gene pools of the common bean.  相似文献   

8.
Imputing missing yield trial data   总被引:1,自引:0,他引:1  
Summary Intraspecific mitochondrial DNA (mtDNA) diversity was determined in 23 Phaseolus vulgaris genotypes, and compared to previously observed variability of morphoagronomic characters and isozyme loci. Twenty of the lines were collected from Malawian landraces; the other three were pure-bred cultivars. The mtDNAs were digested with eight restriction endonucleases, revealing complex banding patterns. Southern hybridization using cosmid clones covering about 200-kb of the genome showed a considerable amount of uniformity of the mtDNA banding patterns. However, five restriction fragment length polymorphisms (RFLPs) were detected, dividing the bean lines into two groups corresponding to the previously known Mesoamerican and Andean gene pools of P. vulgaris. The cultivar Mecosta was separated from the rest of the lines by an additional RFLP. At least two out of the six RFLPs are believed to be due to base-pair mutation events. Our results provide the first evidence that the cytoplasms of the two major germ plasm pools of beans are distinct.  相似文献   

9.
Wild common bean (Phaseolus vulgaris L.) is distributed throughout the Americas from Mexico to northern Argentina. Within this range, the species is divided into two gene pools (Andean and Middle American) along a latitudinal gradient. The diversity of 24 wild common bean genotypes from throughout the geographic range of the species was described by using sequence data from 13 loci. An isolation–migration model was evaluated using a coalescent analysis to estimate multiple demographic parameters. Using a Bayesian approach, Andean and Middle American subpopulations with high percentage of parentages were observed. Over all loci, the Middle American gene pool was more diverse than the Andean gene pool (πsil=0.0089 vs 0.0068). The two subpopulations were strongly genetically differentiated over all loci (Fst=0.29). It is estimated that the two current wild gene pools diverged from a common ancestor ∼111 000 years ago. Subsequently, each gene pool underwent a bottleneck immediately after divergence and lasted ∼40 000 years. The Middle American bottleneck population size was ∼46% of the ancestral population size, whereas the Andean was 26%. Continuous asymmetric gene flow was detected between the two gene pools with a larger number of migrants entering Middle American gene pool from the Andean gene pool. These results suggest that because of the complex population structure associated with the ancestral divergence, subsequent bottlenecks in each gene pool, gene pool-specific domestication and intense selection within each gene pool by breeders; association mapping would best be practised within each common bean gene pool.  相似文献   

10.
Summary Previous examination of intraspecific mitochondrial DNA (mtDNA) diversity in common bean, Phaseolus vulgaris, showed that five restriction fragment length polymorphisms (RFLPs) distinguish the mitochondrial genomes of the two major gene pools of cultivated beans, the Mesoamerican and the Andean. In the study presented here, mtDNA was used to compare the amount of diversity in cultivated beans to that in collections of wild beans to gain an understanding of how and when the mitochondrial genomes of the gene pools became distinct. The mtDNA of six wild bean accessions from Central and South America were digested with nine restriction endonucleases and analyzed by Southern hybridization. A total of twenty RFLPs were detected demonstrating a significantly higher amount of mtDNA variability in wild beans than in cultivated ones. All of the wild beans had the same mtDNA pattern for four out of the five inter-gene pool RFLPs, indicating that the polymorphism arose soon after domestication: two in the gene pool of the cultivated Mesoamerican beans and two in the gene pool of the cultivated Andean beans. The fifth RFLP must have occurred before domestication since the locus was also polymorphic in the wild beans. Wild beans from the south Andes were distinct and less variable than wild accessions of the north Andes and Mesoamerica. The distribution of mtDNA RFLPs among the wild beans supports the concept of two distinct domestication events for P. vulgaris.  相似文献   

11.
Single nucleotide polymorphism (SNP) markers have become a genetic technology of choice because of their automation and high precision of allele calls. In this study, our goal was to develop 94 SNPs and test them across well-chosen common bean (Phaseolus vulgaris L.) germplasm. We validated and accessed SNP diversity at 84 gene-based and 10 non-genic loci using KASPar technology in a panel of 70 genotypes that have been used as parents of mapping populations and have been previously evaluated for SSRs. SNPs exhibited high levels of genetic diversity, an excess of middle frequency polymorphism, and a within-genepool mismatch distribution as expected for populations affected by sudden demographic expansions after domestication bottlenecks. This set of markers was useful for distinguishing Andean and Mesoamerican genotypes but less useful for distinguishing within each gene pool. In summary, slightly greater polymorphism and race structure was found within the Andean gene pool than within the Mesoamerican gene pool but polymorphism rate between genotypes was consistent with genepool and race identity. Our survey results represent a baseline for the choice of SNP markers for future applications because gene-associated SNPs could themselves be causative SNPs for traits. Finally, we discuss that the ideal genetic marker combination with which to carry out diversity, mapping and association studies in common bean should consider a mix of both SNP and SSR markers.  相似文献   

12.
Evolutionary studies in plant and animal breeding are aimed at understanding the structure and organization of genetic variations of species. We have identified and characterized a genomic sequence in Phaseolus vulgaris of 1,200 bp (PvSHP1) that is homologous to SHATTERPROOF-1 (SHP1), a gene involved in control of fruit shattering in Arabidopsis thaliana. The PvSHP1 fragment was mapped to chromosome Pv06 in P. vulgaris and is linked to the flower and seed color gene V. Amplification of the PvSHP1 sequence from the most agronomically important legume species showed a high degree of interspecies diversity in the introns within the Phaseoleae, while the coding region was conserved across distant taxa. Sequencing of the PvSHP1 sequence in a sample of 91 wild and domesticated genotypes that span the geographic distribution of this species in the centers of origin showed that PvSHP1 is highly polymorphic and, therefore, particularly useful to further investigate the origin and domestication history of P. vulgaris. Our data confirm the gene pool structure seen in P. vulgaris along with independent domestication processes in the Andes and Mesoamerica; they provide additional evidence for a single domestication event in Mesoamerica. Moreover, our results support the Mesoamerican origin of this species. Finally, we have developed three indel-spanning markers that will be very useful for bean germplasm characterization, and particularly to trace the distribution of the domesticated Andean and Mesoamerican gene pools.  相似文献   

13.
Progress in bean breeding programs requires the exploitation of genetic variation that is present among races or through introgression across gene pools of Phaseolus vulgaris L. Of the two major common bean gene pools, the Andean gene pool seems to have a narrow genetic base, with about 10% of the accessions in the CIAT core collection presenting evidence of introgression. The objective of this study was to quantify the degree of spontaneous introgression in a sample of common bean landraces from the Andean gene pool. The effects of introgression on morphological, economic and nutritional attributes were also investigated. Homogeneity analysis was performed on molecular marker data from 426 Andean-type accessions from the primary centres of origin of the CIAT common bean core collection and two check varieties. Quantitative attribute diversity for 15 traits was studied based on the groups found from the cluster analysis of marker prevalence indices computed for each accession. The two-group summary consisted of one group of 58 accessions (14%) with low prevalence indices and another group of 370 accessions (86%) with high prevalence indices. The smaller group occupied the outlying area of points displayed from homogeneity analysis, yet their geographic origin was widely distributed over the Andean region. This group was regarded as introgressed, since its accessions displayed traits that are associated with the Middle American gene pool: high resistance to Andean disease isolates but low resistance to Middle American disease isolates, low seed weight and high scores for all nutrient elements. Genotypes generated by spontaneous introgression can be helpful for breeders to overcome the difficulties in transferring traits between gene pools.Communicated by H.C. Becker  相似文献   

14.
 Chloroplast DNA (cpDNA) diversity has been examined using PCR-RFLP and RFLP strategies for phylogenetic studies in the genus Phaseolus. Twenty-two species, including 4 of the 5 cultivated species (P. lunatus L., the Lima bean; P. vulgaris L., the common bean; P. coccineus L., the runner bean and P. polyanthus Greenman, the year-bean), represented by 86 accessions were included in the study. Six PCR primers designed from cpDNA and a total cpDNA probe were used for generating markers. Phylogenetic reconstruction using both Wagner parsimony and the neighbor-joining method was applied to the restriction fragment data obtained from each of the molecular approaches. P. vulgaris L. was shown to separate with several species of largely Mesoamerican distribution, including P. coccineus L. and P. polyanthus Greenman, whereas P. lunatus L. forms a complex with 3 Andean species (P. pachyrrhizoides Harms, P. augusti Harms and P. bolivianus Piper) co-evolving with a set of companion species with a Mesoamerican distribution. Andean forms of the Lima bean are found to be more closely related to the 3 Andean wild species than its Mesoamerican forms. An Andean origin of the Lima bean and a double derivative process during the evolution of P. lunatus are suggested. The 3 Andean species are proposed to constitute the secondary gene pool of P. lunatus, while its companion allies of Mesoamerican distribution can be considered as members of its tertiary gene pool. On the basis of these data, an overview on the evolution of the genus Phaseolus is also discussed. Received: 1 May 1998 / Accepted: 13 July 1998  相似文献   

15.
Genetic variation inPhaseolus lunatus (Lima bean) was investigated at isozyme and DNA levels. Sixty cultivated accessions, including representatives of the Mesoamerican and Andean gene pools and intermediate types, were analyzed for variability at 17 isozyme loci. Some accessions were also examined for restriction fragment length polymorphism (RFLP) at the rDNA level. These data were used to construct two dendrograms showing clear separation in two distinct groups corresponding to each of the gene pools and an intermediate one probably representing a transitional group.  相似文献   

16.
Pathogenicity of physiologically distinct races of Colletotrichum lindemuthianum originating from Andean (races 7, 19 and 55) and Mesoamerican (races 9, 31, 65, 69, 73, 81, 89, 95 and 453) locations of the new world were evaluated on 26 landrace genotypes of common bean (Phaseolus vulgaris L.) from Paraná State, Brazil. Races 7 (Andean), 65, 73 and 89 (Mesoamerican) were the most pathogenic, while race 31 (Mesoamerican) was the least pathogenic. Most of the landrace genotypes evaluated (88%) were resistant to race 31, except Carioca 3, Preto 1 and Preto 2. In addition, about 50% of the landrace genotypes had resistance to races 9, 19, 55 and 453; and about 30% to races 7, 65, 69, 73, 81, 89 and 95. The resistance index, which measured the pathogenicity response averaged across all the physiologically distinct Andean and Mesoamerican races of C. lindemuthianum, of the landrace genotypes ranged from 8% to 83%. The most resistant cultivars were Carioca Pintado 1, Carioca Pintado 2, Jalo Vermelho and Jalo de Listras Pretas. In contrast, the most susceptible cultivars were Jalo Pardo, Jalo Pintado 1 and Bolinha that showed resistance only to the least pathogenic race 31. These results indicated that many of the common bean landrace cultivars evaluated have genes that could be useful in breeding programmes to enhance resistance to Andean and Mesoamerican races of C. lindemuthianum.  相似文献   

17.
An investigation was made of the phylogenetic relationships among wild accessions of Lima bean (Phaseolus lunatus) and wild allies of Mesoamerican and Andean origins, using electrophoresis of seed storage proteins and isozymes. Mesoamerican wild species are phylogenetically more distant fromP. lunatus than Andean species, and apparently belong to the tertiary gene pool of Lima bean. The Andean wild species, which are investigated for the first time, reveal a high similarity to the Lima bean, and particularly with its Mesoamerican gene pool. These Andean species probably constitute a secondary gene pool of Lima bean, and are thus of considerable interest in the context of genetic improvement of the crop. Based on these observations, an Andean origin is suggested for the Andean wild species and forP. lunatus. These results point out the importance of collecting and conserving AndeanPhaseolus germplasm.  相似文献   

18.
Genetic diversity of 50 Phaeoisariopsis griseola isolates collected from different agroecological zones in Kenya was studied using group‐specific primers and amplified fragment length polymorphism (AFLP) markers. Group‐specific primers differentiated the isolates into Andean and Mesoamerican groups, corresponding to the two common‐bean gene pools. Significant polymorphisms were observed with all the AFLP primer combinations used, reflecting a wide genetic diversity in the P. griseola population. A total of 207 fingerprints was generated, of which 178 were polymorphic. Cluster analysis of the polymorphic bands also separated the isolates into the two groups defined by group‐specific primers. All the isolates examined were grouped into three virulence populations; Andean, Afro‐Andean and Mesoamerican, and their genetic diversity measured. On average, greater diversity (91%) was detected within populations than between populations (9%). The genetic distance between Andean and Mesoamerican populations was higher (D = 0.0269) than between Andean and Afro‐Andean (D = 0.0095). The wide genetic diversity reported here has significant implications in breeding for resistance to angular leaf spot and should be taken into consideration when screening and deploying resistant bean genotypes.  相似文献   

19.
Chloroplast DNA polymorphisms were studied by PCR sequencing and PCR-restriction fragment length polymorphism in 165 accessions of domesticated landraces of common bean from Latin America and the USA, 23 accessions of weedy beans, and 134 accessions of wild beans covering the entire geographic range of wild Phaseolus vulgaris. Fourteen chloroplast haplotypes were identified in wild beans, only five of which occur also in domesticated beans. The chloroplast data agree with those obtained from analyses based on morphology and isozymes and with other DNA polymorphisms in supporting independent domestications of common bean in Mesoamerica and the Andean region and in demonstrating a founder effect associated with domestication in each region. Andean landraces have been classified into three different racial groups, but all share the same chloroplast haplotype. This suggests that common bean was domesticated once only in South America and that the races diverged post-domestication. The haplotype found in Andean domesticated beans is confined to the southern part of the range of wild beans, so Andean beans were probably domesticated somewhere within this area. Mesoamerican landraces have been classified into four racial groups. Our limited samples of Races Jalisco and Guatemala differ from the more widespread and commercially important Races Mesoamerica and Durango in types and/or frequencies of haplotypes. All four Mesoamerican races share their haplotypes with local wild beans in parts of their ranges. Independent domestications of at least some of the races in Mesoamerica and/or conversion of some locally adapted wild beans to cultigens by hybridization with introduced domesticated beans, followed by introgression of the domestication syndrome seem the most plausible explanations of the chloroplast and other molecular data.  相似文献   

20.
Microsatellite marker diversity in common bean (Phaseolus vulgaris L.)   总被引:7,自引:0,他引:7  
A diversity survey was used to estimate allelic diversity and heterozygosity of 129 microsatellite markers in a panel of 44 common bean (Phaseolus vulgaris L.) genotypes that have been used as parents of mapping populations. Two types of microsatellites were evaluated, based respectively on gene coding and genomic sequences. Genetic diversity was evaluated by estimating the polymorphism information content (PIC), as well as the distribution and range of alleles sizes. Gene-based microsatellites proved to be less polymorphic than genomic microsatellites in terms of both number of alleles (6.0 vs. 9.2) and PIC values (0.446 vs. 0.594) while greater size differences between the largest and the smallest allele were observed for the genomic microsatellites than for the gene-based microsatellites (31.4 vs. 19.1 bp). Markers that showed a high number of alleles were identified with a maximum of 28 alleles for the marker BMd1. The microsatellites were useful for distinguishing Andean and Mesoamerican genotypes, for uncovering the races within each genepool and for separating wild accessions from cultivars. Greater polymorphism and race structure was found within the Andean gene pool than within the Mesoamerican gene pool and polymorphism rate between genotypes was consistent with genepool and race identity. Comparisons between Andean genotypes had higher polymorphism (53.0%) on average than comparisons among Mesoamerican genotypes (33.4%). Within the Mesoamerican parental combinations, the intra-racial combinations between Mesoamerica and Durango or Jalisco race genotypes showed higher average rates of polymorphism (37.5%) than the within-race combinations between Mesoamerica race genotypes (31.7%). In multiple correspondance analysis we found two principal clusters of genotypes corresponding to the Mesoamerican and Andean gene pools and subgroups representing specific races especially for the Nueva Granada and Peru races of the Andean gene pool. Intra population diversity was higher within the Andean genepool than within the Mesoamerican genepool and this pattern was observed for both gene-based and genomic microsatellites. Furthermore, intra-population diversity within the Andean races (0.356 on average) was higher than within the Mesoamerican races (0.302). Within the Andean gene pool, race Peru had higher diversity compared to race Nueva Granada, while within the Mesoamerican gene pool, the races Durango, Guatemala and Jalisco had comparable levels of diversity which were below that of race Mesoamerica.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号