首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Azospirillum brasilense possesses an alternative pathway of l-arabinose metabolism, which is different from the known bacterial and fungal pathways. In a previous paper (Watanabe, S., Kodaki, T., and Makino, K. (2006) J. Biol. Chem. 281, 2612-2623), we identified and characterized l-arabinose 1-dehydrogenase, which catalyzes the first reaction step in this pathway, and we cloned the corresponding gene. Here we focused on the fifth enzyme, alpha-ketoglutaric semialdehyde (alphaKGSA) dehydrogenase, catalyzing the conversion of alphaKGSA to alpha-ketoglutarate. alphaKGSA dehydrogenase was purified tentatively as a NAD(+)-preferring aldehyde dehydrogenase (ALDH) with high activity for glutaraldehyde. The gene encoding this enzyme was cloned and shown to be located on the genome of A. brasilense separately from a gene cluster containing the l-arabinose 1-dehydrogenase gene, in contrast with Burkholderia thailandensis in which both genes are located in the same gene cluster. Higher catalytic efficiency of ALDH was found with alphaKGSA and succinic semialdehyde among the tested aldehyde substrates. In zymogram staining analysis with the cell-free extract, a single active band was found at the same position as the purified enzyme. Furthermore, a disruptant of the gene did not grow on l-arabinose. These results indicated that this ALDH gene was the only gene of the NAD(+)-preferring alphaKGSA dehydrogenase in A. brasilense. In the phylogenetic tree of the ALDH family, alphaKGSA dehydrogenase from A. brasilense falls into the succinic semialdehyde dehydrogenase (SSALDH) subfamily. Several putative alphaKGSA dehydrogenases from other bacteria belong to a different ALDH subfamily from SSALDH, suggesting strongly that their substrate specificities for alphaKGSA are acquired independently during the evolutionary stage. This is the first evidence of unique "convergent evolution" in the ALDH family.  相似文献   

2.
3.
It has been shown (Cambillau, C., and Claverie, J. M. (2000) J. Biol. Chem. 275, 32383-32386) that a large difference between the proportions of charged versus polar (non-charged) amino acids (CvP-bias) was an adequate, if empirical, signature of the proteome of hyperthermophilic organisms (T(growth) >80 degrees C). Since that study, the number of available microbial genomes has more than doubled, raising the possibility that the simple CvP-bias rule might no longer hold. Taking advantage of the new sequence data, we re-analyzed the genomes of 9 fully sequenced thermophiles, 9 hyperthermophiles, and 53 mesothermophile microorganisms to identify the genomic correlates of hyperthermostability on a wider data set. Our new results confirm that the CvP-bias previously identified on a much smaller data set still holds. Moreover, we show that it is an optimal criterion, in the sense that it corresponds to the most discriminating factor between hyperthermophilic and mesothermophilic microorganisms in a principal component analysis. In parallel, we evaluated two other recently proposed correlates of hyperthermostability, the proteome average pI and the dinucleotide statistical index (Kawashima, T., Amano, N., Koike, H., Makino, S., Higuchi, S., Kawashima-Ohya, Y., Watanabe, K., Yamazaki, M., Kanehori, K., Kawamoto, T., Nunoshiba, T., Yamamoto, Y., Aramaki, H., Makino, K., and Suzuki, M. (2000) Proc. Natl. Acad. Sci. 97, 14257-14262). We show that the CvP-bias is the sole criterion that is able to clearly discriminate hyperthermophile from mesothermophile microorganisms on a global genomic basis.  相似文献   

4.
A succinate semialdehyde dehydrogenase gene (gabD) was identified to be disrupted in a transposon-induced mutant of Ralstonia eutropha exhibiting the phenotype 4-hydroxybutyric acid-leaky. The native gabD gene was cloned by colony hybridization using a homologous gabD-specific DNA probe. DNA sequencing revealed an 1452-bp open reading frame, and the deduced amino acid sequence showed strong similarities to NADP(+)-dependent succinate semialdehyde dehydrogenases from Escherichia coli, Rhizobium sp., Homo sapiens and Rattus norvegicus. The gabD gene was heterologously expressed in a recombinant E. coli strain harboring plasmid pSK::EE6.8. Similar to the molecular organization of the gab cluster in E. coli, additional genes encoding enzymes for the degradation of gamma-aminobutyrate are closely related to gabD in R. eutropha. Enzymatic studies indicated the existence of a second NAD(+)-dependent succinate semialdehyde dehydrogenase in R. eutropha.  相似文献   

5.
We have recently purified and characterized a truncated soluble form of furin from which the predicted transmembrane domain and cytoplasmic tail were deleted (Hatsuzawa, K., Nagahama, M., Takahashi, S., Takada, K., Murakami, K., and Nakayama, K. (1992) J. Biol. Chem. 267, 16094-16099). Our results showed that furin resembles the yeast Kex2 protease with respect to both its enzymic properties and substrate specificity. Here we demonstrate that the soluble form of furin is capable of converting the precursors of albumin and the third component of complement (proalbumin and pro-C3, respectively) in vitro to mature proteins. Thus furin mimics the Ca(2+)-dependent proalbumin and pro-C3 convertases found in the Golgi membranes (Brennan, S. O., and Peach, R. J. (1988) FEBS Lett. 229, 167-170; Oda, K. (1992) J. Biol. Chem. 267, 17465-17471). Furthermore we show that the variant alpha 1-antitrypsin Pittsburgh, which is a specific inhibitor of the Golgi proalbumin convertase, inhibits not only the Golgi pro-C3 convertase, but also the soluble furin. These results suggest a role for furin in the cleavage of proproteins transported via the constitutive pathway.  相似文献   

6.
Folate coenzymes function as one-carbon group carriers in intracellular metabolic pathways. Folate-dependent reactions are compartmentalized within the cell and are catalyzed by two distinct groups of enzymes, cytosolic and mitochondrial. Some folate enzymes are present in both compartments and are likely the products of gene duplications. A well-characterized cytosolic folate enzyme, FDH (10-formyltetrahydro-folate dehydrogenase, ALDH1L1), contains a domain with significant sequence similarity to aldehyde dehydrogenases. This domain enables FDH to catalyze the NADP(+)-dependent conversion of short-chain aldehydes to corresponding acids in vitro. The aldehyde dehydrogenase-like reaction is the final step in the overall FDH mechanism, by which a tetrahydrofolate-bound formyl group is oxidized to CO(2) in an NADP(+)-dependent fashion. We have recently cloned and characterized another folate enzyme containing an ALDH domain, a mitochondrial FDH. Here the biological roles of the two enzymes, a comparison of the respective genes, and some potential evolutionary implications are discussed. The phylogenic analysis suggests that the vertebrate ALDH1L2 gene arose from a duplication event of the ALDH1L1 gene prior to the emergence of osseous fish >500 millions years ago.  相似文献   

7.
Bacillus megaterium is known to have several genes that code for isozymes of glucose dehydrogenase. Two of them, gdhI and gdhII, were cloned from B. megaterium IAM1030 in our previous work (T. Mitamura, R. V. Evora, T. Nakai, Y. Makino, S. Negoro, I. Urabe, and H. Okada, J. Ferment. Bioeng. 70:363-369, 1990). In the present study, two new genes, gdhIII and gdhIV, were isolated from the same strain and their nucleotide sequences were identified. Each gene has an open reading frame of 783 bp available to encode a peptide of 261 amino acids. Thus, a total of four glucose dehydrogenase genes have been cloned from B. megaterium IAM1030. In addition, this strain does not seem to have other glucose dehydrogenase genes that can be distinguished from the four cloned genes so far examined by Southern hybridization analysis. The two newly cloned genes were expressed in Escherichia coli cells, and the products, GlcDH-III and GlcDH-IV, were purified and characterized and compared with the other isozymes, GlcDH-I and GlcDH-II, encoded by gdhI and gdhII, respectively. These isozymes showed different mobilities in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (GlcDH-I greater than GlcDH-III = GlcDH-IV greater than GlcDH-II), although they have the same number of amino acid residues. Double-immunodiffusion tests showed that GlcDH-I is immunologically different from the other isozymes and that GlcDH-III and GlcDH-IV are identical to one another but a little different from GlcDH-II. These glucose dehydrogenases were stabilized in the presence of 2 M NaCl. The effect of NaCl was especially large for GlcDH-III, which is most unstable enzyme. Kinetic studies showed that these isozymes are divided into two groups with respect to coenzyme specificity, although they can utilize both NAD and NADP: GlcDH-III and GlcDH-IV prefer NAD, and GlcDH-I and GlcDH-II prefer NADP. The phylogenic relationship of these glucose dehydrogenase genes is also discussed.  相似文献   

8.
Two species of adenylate kinase isozymes (ATP:AMP phosphotransferase, EC 2.7.4.3) from human Duchenne dystrophic serum were separated by Blue Sepharose CL-6B affinity column chromatography. One of these species was the "aberrant" adenylate kinase isozyme, found specifically in the Duchenne type of this disease (Hamada, M., Okuda, H., Oka, K., Watanabe, T., Ueda, K., Nojima, M., Kuby, S.A., Manship, M., Tyler, F., and Ziter, F. (1981) Biochim. Biophys. Acta 660, 227-237). The separated aberrant form possessed a molecular size of 98,000 (+/- 1,500), whereas the normal serum species of the enzyme was 87,000 (+/- 1,600) by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, by gel filtration, and by sedimentation equilibrium. The sedimentation coefficient of each species was found to be 5.8 S for the aberrant form and 5.6 S for the normal form, respectively. The subunit size (Mr = 24,700) of the aberrant enzyme in 8 M urea proved to be very similar to that of the normal human liver enzyme (Hamada, M., Sumida, M., Okuda, H., Watanabe, T., Nojima, M., and Kuby, S.A. (1982) J. Biol. Chem. 257, 13120-13128), and the normal species subunit (Mr = 21,700) was found to be very similar to that of the normal human muscle enzyme (Kuby, S.A., Fleming, G., Frischat, A., Cress, M.C., and Hamada, M. (1983) J. Biol. Chem. 258, 1901-1907). Both species were tetrameric enzymes in the serum. The amino acid composition for the normal species was similar to that for the muscle-type enzyme, and that for the aberrant species was similar to the liver enzyme, but with some notable exceptions in both cases. Thus, the normal species had no tryptophan and two half-cystine residues/subunit; whereas, there was 1 tryptophan and 4 half-cystine residues/subunit of the aberrant molecule. The amino acid composition of both serum isozymes when compared to their respective muscle or liver-type enzyme differed mainly in the content of Glu, Asp, His, Leu, Ile, Gly. Kinetic properties of the two forms of human serum adenylate kinase were studied at limiting concentrations of both ADP3- and MgADP- in the reverse reaction and of AMP2- and MgATP2- in the forward reaction. The type of reaction mechanism compatible with the data was a two-substrate random quasiequilibrium type of mechanism without independent binding of the substrates and with a rate-limiting step largely at the interconversion of the ternary complexes.  相似文献   

9.
10.
Succinic semialdehyde reductase, a NADP+-dependent enzyme, was purified from whole pig brain homogenates. The enzyme preparation migrates as a single protein and activity band on analytical gel electrophoresis. Succinic semialdehyde reductase (Mr 110,000) catalyzes the reduction of succinic semialdehyde to 4-hydroxybutyrate. The equilibrium constant of the reaction is Keq = 5.8 X 10(7) M-1 at pH 7 and 25 degrees C. The inhibition kinetic patterns obtained when 4-hydroxybutyrate or substrate analogs are used as inhibitors of the reaction catalyzed by the reductase are consistent with an ordered sequential mechanism, in which the coenzyme NADPH adds to the enzyme before the aldehyde substrate. A specific aldehyde reductase was also purified to homogeneity from brain mitochondria preparations. Its catalytic properties are identical to those of the enzyme isolated from whole brain homogenates. It is postulated that two enzymes, i.e. a NAD+-dependent dehydrogenase and a NADP+-dependent reductase, participate in the metabolism of succinic semialdehyde in the mitochondria matrix.  相似文献   

11.
The Bacillus methanolicus methanol dehydrogenase (MDH) is a decameric nicotinoprotein alcohol dehydrogenase (family III) with one Zn(2+) ion, one or two Mg(2+) ions, and a tightly bound cofactor NAD(H) per subunit. The Mg(2+) ions are essential for binding of cofactor NAD(H) in MDH. A B. methanolicus activator protein strongly stimulates the relatively low coenzyme NAD(+)-dependent MDH activity, involving hydrolytic removal of the NMN(H) moiety of cofactor NAD(H) (Kloosterman, H., Vrijbloed, J. W., and Dijkhuizen, L. (2002) J. Biol. Chem. 277, 34785-34792). Members of family III of NAD(P)-dependent alcohol dehydrogenases contain three unique, conserved sequence motifs (domains A, B, and C). Domain C is thought to be involved in metal binding, whereas the functions of domains A and B are still unknown. This paper provides evidence that domain A constitutes (part of) a new magnesium-dependent NAD(P)(H)-binding domain. Site-directed mutants D100N and K103R lacked (most of the) bound cofactor NAD(H) and had lost all coenzyme NAD(+)-dependent MDH activity. Also mutants G95A and S97G were both impaired in cofactor NAD(H) binding but retained coenzyme NAD(+)-dependent MDH activity. Mutant G95A displayed a rather low MDH activity, whereas mutant S97G was insensitive to activator protein but displayed "fully activated" MDH reaction rates. The various roles of these amino acid residues in coenzyme and/or cofactor NAD(H) binding in MDH are discussed.  相似文献   

12.
The putative Drosophila (D.) melanogaster gene ortholog of mammalian succinic semialdehyde dehydrogenase (SSADH, EC1.2.1.24; NM_143151) that is involved in the degradation of the neurotransmitter GABA, and the putative D. melanogaster aldehyde dehydrogenase gene Aldh (NM_135441) were cloned and expressed as enzymatically active maltose binding protein (MalE) fusion products in Escherichia coli. The identities of the NM_143151 gene product as NAD+-dependent SSADH and of the Aldh gene product as NAD+-dependent non-specific aldehyde dehydrogenase (ALDH, EC1.2.1.3) were established by substrate specificity studies using 30 different aldehydes. In the case of D. melanogaster MalE-SSADH, the Michaelis constants (K(M)s) for the specific substrates succinic semialdehyde and NAD+ was 4.7 and 90.9 microM, respectively. For D. melanogaster MalE-ALDH the K(M) of the putative in vivo substrate acetaldehyde was 0.9 microM while for NAD+, a K(M) of 62.7 microM was determined. Site-directed mutagenesis studies on D. melanogaster MalE-SSADH suggest that cysteine 311 and glutamic acid 277 of this enzyme are likely candidates for the active site residues directly involved in catalysis.  相似文献   

13.
3-Hydroxypropionic acid (3-HP) can be produced from glycerol via two enzymatic reactions catalyzed by a coenzyme B12-dependent glycerol dehydratase (GDHt) and aldehyde dehydrogenase (ALDH) in Klebsiella pneumoniae. As the intracellular GDHt activity in K. pneumoniae is high, the overall rate of 3-HP production is controlled by the ALDH activity. To examine the effect of different ALDH activity on 3-HP production, three different ALDHs, AldH from Escherichia coli (EaldH), PuuC from K. pneumoniae (PuuC) and KGSADH from Azospirillum brasilense (KGSADH), were overexpressed and compared in various recombinant K. pneumoniae strains. In addition, the genes encoding DhaT and YqhD, which are responsible for the conversion of 3-hydroxypropionaldehyde (3-HPA) to 1,3-propanediol (1,3-PDO), were disrupted individually from K. pneumoniae to enhance the carbon flux from 3-HPA to 3-HP. When the ALDH activity was measured in various recombinant K. pneumoniae, KGSADH showed the highest crude cell activity of 8.0 U/mg protein, which was 2 and 4 times higher than that of PuuC and EaldH, respectively. The different ALDH activities had a significant effect on 3-HP production in a flask culture containing 100 mM glycerol, and K. pneumoniae ΔdhaT (KGSADH) resulted in the highest titer (64 mM) among the nine recombinant strains (three ALDH × three host strains; one wild type and two mutants). In glycerol fed-batch bioreactor cultivation, K. pneumoniae ΔdhaT (KGSADH) exhibited 3-HP production at >16 g/L in 48 h with a glycerol carbon yield of >40%. In comparison, K. pneumoniae ΔdhaT (PuuC) produced only 11 g/L 3-HP in 48 h with a yield of >23%. This study demonstrates that a high ALDH activity is essential for the effective production of 3-HP from glycerol with recombinant K. pneumoniae.  相似文献   

14.
Cell-free extract (crude extract) of Agrobacterium tumefaciens grown on d-glucuronate or d-glucarate converts d-glucarate and galactarate to a mixture of 2-keto-3-deoxy- and 4-deoxy-5-keto-d-glucarate. These compounds are then converted by partially purified crude extract to an intermediate tentatively identified as 2,5-diketoadipate. The same enzyme preparation further decarboxylates this intermediate to alpha-ketoglutarate semialdehyde, which is subsequently oxidized in a nicotinamide adenine dinucleotide-dependent reaction to alpha-ketoglutaric acid. Since A. tumefaciens converts d-glucuronic acid to d-glucarate, a pathway from d-glucuronate to alpha-ketoglutarate in A. tumefaciens was determined.  相似文献   

15.
Fungal Pichia stipitis and bacterial Azotobacter vinelandii possess an alternative pathway of L-rhamnose metabolism, which is different from the known bacterial pathway. In a previous study (Watanabe S, Saimura M & Makino K (2008) Eukaryotic and bacterial gene clusters related to an alternative pathway of non-phosphorylated L-rhamnose metabolism. J Biol Chem283, 20372-20382), we identified and characterized the gene clusters encoding the four metabolic enzymes [L-rhamnose 1-dehydrogenase (LRA1), L-rhamnono-gamma-lactonase (LRA2), L-rhamnonate dehydratase (LRA3) and l-2-keto-3-deoxyrhamnonate aldolase (LRA4)]. In the known and alternative L-rhamnose pathways, L-lactaldehyde is commonly produced from l-2-keto-3-deoxyrhamnonate and L-rhamnulose 1-phosphate by each specific aldolase, respectively. To estimate the metabolic fate of L-lactaldehyde in fungi, we purified L-lactaldehyde dehydrogenase (LADH) from P. stipitis cells L-rhamnose-grown to homogeneity, and identified the gene encoding this enzyme (PsLADH) by matrix-assisted laser desorption ionization-quadruple ion trap-time of flight mass spectrometry. In contrast, LADH of A. vinelandii (AvLADH) was clustered with the LRA1-4 gene on the genome. Physiological characterization using recombinant enzymes revealed that, of the tested aldehyde substrates, L-lactaldehyde is the best substrate for both PsLADH and AvLADH, and that PsLADH shows broad substrate specificity and relaxed coenzyme specificity compared with AvLADH. In the phylogenetic tree of the aldehyde dehydrogenase superfamily, PsLADH is poorly related to the known bacterial LADHs, including that of Escherichia coli (EcLADH). However, despite its involvement in different L-rhamnose metabolism, AvLADH belongs to the same subfamily as EcLADH. This suggests that the substrate specificities for L-lactaldehyde between fungal and bacterial LADHs have been acquired independently.  相似文献   

16.
The cDNA clone for rat liver microsomal aldehyde dehydrogenase (msALDH) was isolated and sequenced. The deduced amino acid sequence consisting of 484 amino acid residues revealed that the carboxyl-terminal region of msALDH has a hydrophobic segment, which is probably important for the insertion of this enzyme into the endoplasmic reticulum membrane. COS-1 cells transfected with the expression vector pcD containing the full-length cDNA showed that the active enzyme was expressed and localized mainly on the cytoplasmic surface of the endoplasmic reticulum membranes. It has been proposed that ALDH isozymes form a superfamily consisting of class 1, 2, and 3 ALDHs (Hempel, J., Harper, K., and Lindahl, R., (1989) Biochemistry 28, 1160-1167). Comparison of the amino acid sequence of rat liver msALDH with those of rat other class ALDHs showed that msALDH was 24.2, 24.0, and 65.5% identical to phenobarbital-inducible ALDH (variant class 1), mitochondrial ALDH (class 2), and tumor-associated ALDH (class 3), respectively. Several amino acid residues common to the other known ALDHs, however, were found to be conserved in msALDH. Based on these results, we proposed to classify msALDH as a new type, class 4 ALDH.  相似文献   

17.
The loss of cell volume is a fundamental feature of apoptosis. We have previously shown that DNA degradation and caspase activity occur only in cells which have shrunken as a result of potassium and sodium efflux (Bortner, C. D., Hughes, F. M., Jr., and Cidlowski, J. A. (1997) J. Biol. Chem. 272, 32436-32442). Furthermore, maintaining a normal intracellular potassium concentration represses the cell death process by inhibiting the activity of apoptotic nucleases and suppressing the activation of effector caspases (Hughes, F. M., Jr., Bortner, C. D. Purdy, G. D., and Cidlowski, J. A. (1997) J. Biol. Chem. 272, 30567-30576). We have now investigated the relationship between cell shrinkage, ion efflux, and changes in the mitochondrial membrane potential, in addition to the role of caspases in these apoptotic events. Treatment of Jurkat cells with a series of inducers which act via distinct signal transduction pathways, resulted in all of the cell death characteristics including loss of cell viability, cell shrinkage, K(+) efflux, altered mitochondrial membrane potential, and DNA fragmentation. Interestingly, only cells which shrunk had a loss of mitochondrial membrane potential and the other apoptotic characteristics. Treatment of Jurkat cells with an anti-Fas antibody in the presence of the general caspase inhibitor z-VAD, abrogated these features. In contrast, when Jurkat cells were treated with either the calcium ionophore A23187 or thapsigargin, z-VAD failed to prevent cell shrinkage, K(+) efflux, or changes in the mitochondrial membrane potential, while effectively inhibiting DNA degradation. Treatment of Jurkat cells with various apoptotic agents in the presence of either the caspase-3 inhibitor DEVD, or the caspase-8 inhibitor IETD also blocked DNA degradation, but failed to prevent other characteristics of apoptosis. Together these data suggest that the cell shrinkage, K(+) efflux, and changes in the mitochondrial membrane potential are tightly coupled, but occur independent of DNA degradation, and can be largely caspase independent depending on the particular signal transduction pathway.  相似文献   

18.
We have previously discovered the opium alkaloid noscapine as a microtubule interacting agent that binds to tubulin, alters the dynamics of microtubule assembly, and arrests mammalian cells at mitosis (Ye, K., Ke, Y., Keshava, N., Shanks, J., Kapp, J. A., Tekmal, R. R., Petros, J., and Joshi, H. C. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 1601-1606; Ye, K., Zhou, J., Landen, J. W., Bradbury, E. M., and Joshi, H. C. (2001) J. Biol. Chem. 276, 46697-46700; Zhou, J., Panda, D., Landen, J. W., Wilson, L., and Joshi, H. C. (2002) J. Biol. Chem. 277, 17200-17208). Here we show that noscapine does not compete with paclitaxel for tubulin binding and can efficiently inhibit the proliferation of both paclitaxel-sensitive and paclitaxel-resistant human ovarian carcinoma cells (i.e. the parental cell line 1A9 and two derivative cell lines, 1A9PTX10 and 1A9PTX22, which harbor beta-tubulin mutations that impair paclitaxel-tubulin interaction (Giannakakou, P., Sackett, D. L., Kang, Y. K., Zhan, Z., Buters, J. T., Fojo, T., and Poruchynsky, M. S. (1997) J. Biol. Chem. 272, 17118-17125). Strikingly, these cells undergo apoptotic death upon noscapine treatment, accompanied by activation of the c-Jun NH(2)-terminal kinases (JNK). Furthermore, inhibition of JNK activity by treatment with antisense oligonucleotide or transfection with dominant-negative JNK blocks noscapine-induced apoptosis. These findings thus indicate a great potential for noscapine in the treatment of paclitaxel-resistant human cancers. In addition, our results suggest that the JNK pathway plays an essential role in microtubule inhibitor-induced apoptosis.  相似文献   

19.
For more than 50 years, it has been known that K(+) is an essential activator of pyruvate kinase (Kachmar, J. F., and Boyer, P. D. (1953) J. Biol. Chem. 200, 669-683). However, the role of K(+) in the catalysis by pyruvate kinase has not been totally understood. Previous studies without K(+) showed that the affinity of ADP-Mg(2+) depends on the concentration of phosphoenolpyruvate, although the kinetics of the enzyme at saturating K(+) concentrations show independence in the binding of substrates (Reynard, A. M., Hass, L. F., Jacobsen, D. D. & Boyer, P. D. (1961) J. Biol. Chem. 236, 2277-2283). Here, we explored the kinetics of the enzyme with and without K(+). The results show that without K(+), the kinetic mechanism of pyruvate kinase changes from random to ordered with phosphoenol-pyruvate as first substrate. V(max) with K(+) was about 400 higher than without K(+). In the presence of K(+), the affinities for phosphoenol-pyruvate, ADP-Mg(2+), oxalate, and ADP-Cr(2+) were 2-6-fold higher than in the absence of K(+). This as well as fluorescence data also indicate that K(+) is involved in the acquisition of the active conformation of the enzyme, allowing either phosphoenolpyruvate or ADP to bind independently (random mechanism). In the absence of K(+), ADP cannot bind to the enzyme until phosphoenolpyruvate forms a competent active site (ordered mechanism). We propose that K(+) induces the closure of the active site and the arrangement of the residues involved in the binding of the nucleotide.  相似文献   

20.
Abstract: Kinetic studies suggested the presence of several forms of NAD-dependent aldehyde dehydrogenase (ALDH) in rat brain. A subcellular distribution study showed that low- and high- K m activities with acetaldehyde as well as the substrate-specific enzyme succinate semialdehyde dehydrogenase were located mainly in the mitochondrial compartment. The low- K m activity was also present in the cytosol (<20%). The low- K m activity in the homogenate was only 10–15% of the total activity with acetaldehyde as the substrate. Two K m values were obtained with both acetaldehyde (0.2 and 2000 μ m ) and 3,4-dihydroxyphenylacetaldehyde (DOPAL) (0.3 and 31 μ m ), and one K m value with succinate semialdehyde (5 μ m ). The main part of the aldehyde dehydrogenase activities with acetaldehyde, DOPAL, and succinate semialdehyde, but only little activity of the marker enzyme for the outer membrane (monoamine oxidase, MAO), was released from a purified mitochondrial fraction subjected to sonication. Only small amounts of the ALDH activities were released from mitochondria subjected to swelling in a hypotonic buffer, whereas the main part of the marker enzyme for the intermembrane space (adenylate kinase) was released. These results indicate that the ALDH activities with acetaldehyde, DOPAL and succinate semialdehyde are located in the matrix compartment. The low- K m activity with acetaldehyde and DOPAL, but not the high- K m activities and succinate semialdehyde dehydrogenase, was markedly stimulated by Mg2+ and Ca2+ in phosphate buffer. The low- and high- K m activities with acetaldehyde showed different pH optima in pyrophosphate buffer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号