首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two plant growth-promoting rhizobacteria (PGPR), viz., Pseudomonas fluorescens strain Pf4 and P. aeruginosa strain Pag, protected chickpea ( Cicer arietinum) plants from Sclerotium rolfsii infection when applied singly or in combination as seed treatment. Pag gave the best protection to the seedlings, applied either singly (mortality 16%) or in combination with Pf4 (mortality 17%) compared with 44% and 24% mortality in control and Pf4 treatment, respectively. The two PGPR strains induced the synthesis of specific phenolic acids, salicylic acid (SA), as well as total phenolics at different growth stages of chickpea seedlings with varied amount. The maximum amount of total phenolics was recorded in all the aerial parts of 4-week-old plants. Gallic, ferulic, chlorogenic, and cinnamic acids were the major phenolic acids detected in high-performance liquid chromatography (HPLC) analysis. Induction of such phenolic acids in the seedlings was observed up to 6 weeks in comparison with control. Salicylic acid (SA) was induced frequently during the first 3 weeks of growth only. Between the two strains, Pag was more effective in inducing phenolic acid synthesis applied either singly or in combination with strain Pf4 during the entire 6 weeks of growth of chickpea. In the presence of a culture filtrate of S. rolfsii, the two Pseudomonas strains induced more phenolic acids in treated than in non-treated and control plants. The occurrence of salicylic acid was frequent in the first 24 h, but infrequent at 48 and 96 h. Foliar spray of Pseudomonas strains also enhanced the phenolic acid content as well as total phenolics within 24 h of application. Gallic, chlorogenic, and cinnamic acids were consistently discerned in the treated leaves, whereas SA was absent even up to 96 h of application. Resistance in chickpea plants by Pseudomonas strains through induction of phenolic compounds as well as induced systemic resistance via SA-dependent pathway was evident.  相似文献   

2.
Sarma BK  Singh UP  Singh KP 《Mycologia》2002,94(6):1051-1058
Variability among 26 isolates of Sclerotium rolfsii collected from various hosts/soil samples and localities in India is reported. The isolates varied in colony morphology, mycelial growth rate, sclerotium formation, teleomorph production and sclerotial size and color. Out of 26 isolates, only 4 produced the teleomorph stage on Cyperus rotundus rhizome meal agar medium. Mycelial incompatibility among the isolates was also seen, and out of 325 combinations, only 29 combinations (8.9%) showed compatible reactions. Based on mycelial compatibility, 13 vegetative incompatibility groups (VCG) were identified among the isolates. HPLC analysis of the ethyl acetate fraction of culture filtrates of the isolates revealed 10-22 peaks. Six peaks were identified as gallic, oxalic, ferulic, indole-3-acetic acid (IAA), chlorogenic, and cinnamic acids. Oxalic, IAA, and cinnamic acids were present in the culture filtrates of all the isolates in varying amounts. The other three phenolic acids were not detected in some of the isolates. A comparative HPLC analysis of sclerotial exudate, sclerotia, mycelia, and culture filtrates of two S. rolfsii isolates (leaf spot- and collar rot-causing) producing different symptoms on their respective hosts revealed variation in the content of phenolic acids, IAA, and oxalic acid.  相似文献   

3.
Two plant growth-promoting rhizobacteria (PGPR), viz., Pseudomonas fluorescens strain Pf4 and P. aeruginosa strain Pag, protected chickpea (Cicer arietinum) plants from Sclerotium rolfsii infection when applied singly or in combination as seed treatment. Pag gave the best protection to the seedlings, applied either singly (mortality 16%) or in combination with Pf4 (mortality 17%) compared with 44% and 24% mortality in control and Pf4 treatment, respectively. The two PGPR strains induced the synthesis of specific phenolic acids, salicylic acid (SA), as well as total phenolics at different growth stages of chickpea seedlings with varied amount. The maximum amount of total phenolics was recorded in all the aerial parts of 4-week-old plants. Gallic, ferulic, chlorogenic, and cinnamic acids were the major phenolic acids detected in high-performance liquid chromatography (HPLC) analysis. Induction of such phenolic acids in the seedlings was observed up to 6 weeks in comparison with control. Salicylic acid (SA) was induced frequently during the first 3 weeks of growth only. Between the two strains, Pag was more effective in inducing phenolic acid synthesis applied either singly or in combination with strain Pf4 during the entire 6 weeks of growth of chickpea. In the presence of a culture filtrate of S. rolfsii, the two Pseudomonas strains induced more phenolic acids in treated than in non-treated and control plants. The occurrence of salicylic acid was frequent in the first 24 h, but infrequent at 48 and 96 h. Foliar spray of Pseudomonas strains also enhanced the phenolic acid content as well as total phenolics within 24 h of application. Gallic, chlorogenic, and cinnamic acids were consistently discerned in the treated leaves, whereas SA was absent even up to 96 h of application. Resistance in chickpea plants by Pseudomonas strains through induction of phenolic compounds as well as induced systemic resistance via SA-dependent pathway was evident. Received: 1 April 2002 / Accepted: 4 May 2002  相似文献   

4.
Phenylalanine ammonia lyase (PAL) activity was measured using HPLC in pea leaves following exogenous application of L-phenylalanine and ferulic acid. Treatment with different concentrations (50, 100, 150 ppm) of L-phenylalanine caused increased activity of PAL activity in comparison to control. In pea leaves treated with 50 ppm L-phenylalanine, maximum PAL activity was observed after 72 h of treatment. Application of ferulic acid first reduced PAL activity at lower concentration (50 ppm) but it further increased at higher concentrations of the compound (100 and 150 ppm) in pea leaves compared to control. Minimum PAL activity was 0.19 nM cinnamic acid/min/g fresh wt after 24 h at 50 ppm and then increased with time. Treatment with both compounds significantly increased the accumulation of phenolic acids and salicylic acid and reduced conidial germination of Erysiphe pisi on pea leaves. They were equally effective at 100 and 150 ppm in reducing conidial germination. Conidial germination on L-phenylalanine-treated leaves was 26% after 24 h and that on ferulic acid treated leaves 34% compared to control (46%). Foliar application of different concentrations of L-phenylalanine increased the level of ferulic acid in the leaves of pea plants. Maximum enzyme activity in terms of the accumulation of cinnamic acid (79.3 and 83.5 μg/g fresh wt) was observed following the application of L-phenylalanine after 24 and 48 h respectively. At 50 ppm, cinnamic acid accumulation in pea leaves was 35.6 and 39.4 μg/g fresh wt and 74.3 and 86.5 μg/g fresh wt at 100 ppm.  相似文献   

5.
High performance liquid chromatographic (HPLC) analysis of culture filtrates of plant growth promoting rhizobacteria (PGPR) and medium of inhibitory zone of interaction of Sclerotium rolfsii with PGPR, viz. Pseudomonas aeruginosa, Pseudomonas fluorescens 4, Pseudomonas fluorescens 4 (new) and Pseudomonas sp. varied from sample to sample. In all the culture filtrates of PGPRs, P. aeruginosa had nine phenolic acids in which ferulic acid (14.52 μg/ml) was maximum followed by other phenolic acids. However, the culture filtrates of P. fluorescens 4 had six phenolic acids with maximum ferulic acid (20.54 μg/ml) followed by indole acetic acid (IAA), caffeic, salicylic, o-coumeric acid and cinnamic acids. However, P. fluorescens 4 culture filtrate had seven phenolic acids in which salicylic acid was maximum (18.03 μg) followed by IAA, caffeic, vanillic, ferulic, o-coumeric and cinnamic acids. Pseudomonas sp. also showed eight phenolic acids where caffeic acid (2.75 μg) was maximum followed by trace amounts of ferulic, salicylic, IAA, vanillic, cinnamic, o-coumeric and tannic acids. The analysis of antibiosis zone of PGPRs showed fairly rich phenolic acids. A total of nine phenolic acids were detected in which caffeic acid was maximum (29.14 μg/g) followed by gallic (17.64 μg/g) and vanillic (3.52 μg/g) acids but others were in traces. In P. aeruginosa, antibiosis zone had seven phenolic acids where IAA was maximum (3.48 μg/g) followed by o-coumeric acid (2.08 μg/g), others were in traces. The medium of antibiosis zone of P. fluorescens 4 and P. fluorescens 4 new had eight phenolic acids in which IAA was maximum with other phenolic acids in traces.  相似文献   

6.
Reversal of ABA-Induced Stomatal Closure by Phenolic Compounds   总被引:10,自引:0,他引:10  
Vanillic acid, gallic acid, salicylic acid, cinnamic acid, p-coumaricacid, ferulic acid, coumarin, chlorogenic acid, rutin and morinantagonize the ABA-induced stomatal closure. This suggests thepossibility of a regulatory role of phenolic compounds in thestomatal mechanism. Stomata respond variably to the individualphenolic compound. Some, such as vanillic acid, promote thestomatal opening while others, such as coumarin, inhibit theprocess. Key words: Phenolic compounds, ABA-induced stomatal closure  相似文献   

7.
Abstract

Identification of individual phenolic acids of Sorghum vulgare Pers. cv. M.P. after interaction with Sclerotium rolfsii Sacc. using high performance liquid chromatograph (HPLC) showed the presence of phenolics namely tannic, gallic, ferulic, chlorogenic and cinnamic acids in varying amounts. After 72 h inoculation with S. rolfsii, a maximum amount of ferulic acid (166.6 µg g?1 fresh wt) was present in the collar of inoculated plants, followed by leaves and roots and its level decreased gradually with time. Similarly, the presence of chlorogenic acid was traced after 48 h, while that of cinnamic acid was traced after 72 h of inoculation. Reddish-brown pigmentation at the collar region of inoculated plants was also observed along with the high content of tannic acid. Among other phenolics, the presence of gallic acid was recorded consistently and maximum accumulation (139.3 µg g?1 fresh wt) was noticed at the zone of interaction (collar region) after 72 h of inoculation. In contrast, maximum lignin deposition was observed at collar region after 96 h of inoculation. Induction of phenolic acids in S. vulgare along with the lignin deposition and red pigmentation at collar region is considered a key biomarker in the non-host-pathogen interaction in the S. valgare–S. rolfsii pathosystem.  相似文献   

8.
The kinetics and mechanisms of the reactions of iron(III) with the hydroxy cinnamic acid based ligands caffeic, chlorogenic, sinapic and ferulic acids and the flavonoid naringin have been investigated in aqueous solution. The mechanisms for caffeic and chlorogenic acid are generally consistent with the formation of a 1:1 complex that subsequently decays through an electron transfer reaction. On reaction with iron(III), ferulic and sinapic acids undergo an electron transfer without the prior formation of any complex. There was no evidence of electron transfer occurring in the complex formed when iron(III) is reacted with naringin. Rate constants for k1 (formation) and k(-1) (dissociation) have been evaluated for the complex formation reactions of [Fe(H2O)6(OH)]2+ with caffeic acid, chlorogenic acid and naringin. Analysis of the kinetic data yielded stability constants, equilibrium constants for protonation of the iron(III) chlorogenic acid complex initially formed, together with the rate constants for complex decomposition through intramolecular electron transfers and in the case of caffeic acid and chlorogenic acid, rate constants for the iron(III) assisted decomposition of the initial complex formed. Some of the suggested mechanisms and calculated rate constants are validated by calculations carried out using global analysis of time dependent spectra.  相似文献   

9.
甜瓜根系分泌物中酚酸物质对尖孢镰孢菌的化感效应   总被引:7,自引:0,他引:7  
采用HPLC法对甜瓜根系分泌物进行分离鉴定,检测到甜瓜根系分泌物中含有没食子酸、邻苯二甲酸、丁香酸、水杨酸、阿魏酸、苯甲酸和肉桂酸7种酚酸物质,通过外源添加法研究该类物质对尖孢镰孢菌的化感效应.室内试验结果表明: 阿魏酸、苯甲酸、肉桂酸在0.1、0.25 mmol·L-1处理浓度下能够显著促进尖孢镰孢菌的孢子萌发,水杨酸则对孢子萌发具有一定的抑制作用;丁香酸、阿魏酸在菌丝培养后期表现出较强的促进作用.盆栽结果显示,在0.05、0.1和0.5 mmol·L-1处理浓度下肉桂酸、阿魏酸、苯甲酸可显著促进甜瓜枯萎病病情.
  相似文献   

10.
ABSTRACT Paul's Scarlet rose cell-suspension cultures were incubated in varying concentrations of the following phenolic inhibitors; chlorogenic acid, cinnamic acid, p-coumaric acid, ferulic acid, and scopoletin. All test compounds except chlorogenic acid were completely inhibitory at a 10−3m concentration, resulting in death of the cells prior to completion of the growth cycle. To assess the cellular effects of two commonly named plant inhibitors, ferulic and cinnamic acids, these compounds were provided to cultures during incubation of cells with glucose-UL-14C. Incubation of cells with glucose-UL-14C in the presence of 10−4m ferulic acid resulted in increased incorporation of 14C into the soluble lipid fraction along with decreased incorporation of 14C into protein, organic acids, and soluble amino acids. Treatment of the cells with 10−5m cinnamic acid during the incubation period resulted in a significant decrease in incorporation of 14C into protein. These alterations in the flow of carbon into cellular constituents when cells are treated with cinnamic and ferulic acids explain, at least in part, why these compounds inhibit growth, seed germination, and seedling development.  相似文献   

11.
Exudates from sclerotia of two Sclerotium rolfsii isolates (one causing collar rot in Cicer arietinum, isolate VC971, and the other leaf spots in Rauvolfia serpentina, isolate VL016) were assayed for their antifungal activity against 26 fungi consisting of plant parasites as well as saprophytes. Spore germination of all the test fungi was affected by the exudates reaching 100% in some cases. Foliar spray with exudates of isolate VL016 significantly reduced disease incidence of balsam (Impatiens balsamina) powdery mildew caused by Erysiphe cichoracearum and pea (Pisum sativum) powdery mildew caused by Erysiphe pisi, under field conditions. Characterization of exudates from 25 isolates of S. rolfsii revealed pH ranging from 3.8 to 5.3 and colour from light yellow to deep yellow. Among the phenolic acids found in the exudates were tannic, gallic, caffeic, vanillic, ferulic, chlorogenic and cinnamic acids. Oxalic acid was also found in varied amounts. Among the phenolic acids, ferulic acid was found to be present at high concentration in exudates of most isolates (3.9–153.4 μg/ml). The antioxidant properties of phenolics, which generally inhibit fungal morphogenesis including spore germination along with the antifungal nature of some phenolics are chiefly attributed to the inhibitory effect of sclerotial exudates of S. rolfsii. Additionally, both the isolates VC971 and VL016 showed almost similar antifungal activities despite they are of different origin and thereby demonstrate the antifungal nature of sclerotial exudates.  相似文献   

12.
High performance liquid chromatography analysis of different parts of Sclerotium rolfsii-infected and healthy seedlings of chickpea (Cicer arietinum) was carried out to examine the status of phenolic compounds. Three major peaks that appeared consistently were identified as gallic, vanillic and ferulic acids. Gallic acid concentrations were increased in the leaves and stems of infected plants compared to healthy ones. Vanillic acid detected in stems and leaves of healthy seedlings was not detected in infected seedlings. There was a significant increase of ferulic acid in those stem portions located above the infected collar region compared to minimal amounts in the roots of healthy seedlings. In vitro studies of ferulic acid showed significant antifungal activity against S. rolfsii. Complete inhibition of mycelial growth was observed with 1000 g of ferulic acid/ml. Lower concentrations (250, 500 and 750 g/ml) were also inhibitory and colony growth was compact in comparison with the fluffy growth of normal mycelium. Higher amounts of phenolics were found in the stems and leaves of S. rolfsii-infected seedlings in comparison to the healthy ones. A role for ferulic acid in preventing infections by S. rolfsii in the stems and leaves of chickpea plants above the infection zone is therefore feasible.  相似文献   

13.
为了解贵州金刺梨(Rosa sterilis D.Shi)果实和叶片中的活性成分及其抗氧化活性,以贵州普定县金刺梨种植基地的果实和叶片为试材,测定其活性成分含量及其抗氧化活性,并对各项指标进行相关性分析。结果显示:没食子酸、芦丁、槲皮素、儿茶素、鞣花酸、绿原酸、阿魏酸是供试金刺梨果实和叶片的主要酚类成分,金刺梨果实和叶片中活性组分差异显著(P<0.05),果实中p-香豆酸、总黄酮和抗坏血酸的含量相对较高,而叶片中没食子酸、儿茶素、绿原酸、表儿茶素、阿魏酸、鞣花酸、芦丁、槲皮素和总酚含量均高于果实;金刺梨果实抗氧化活性值均显著高于叶片(P<0.05);相关性分析发现:总黄酮对总还原力(TRPA)值的贡献极强,抗坏血酸对Fe3+还原抗氧化能力(FRAP)值贡献最强,槲皮素对ABTS值的贡献最强,说明金刺梨果实和叶片是一种具有较高开发价值的药食同源资源。  相似文献   

14.
酚酸类物质的抑草效应分析   总被引:14,自引:2,他引:12  
运用正交旋转回归试验设计分析5种常见的化感物质替代物水饧酸、对羟基苯甲酸、肉桂酸、香草酸和阿魏酸对田间伴生杂草稗草的抑制效应.结果表明,肉桂酸对稗草根长抑制率的影响最显著。其关系函数的二次项系数为-6.18,达极显著水平,水杨酸、对羟基苯甲酸和阿魏酸对稗草根长的抑制效应趋势与肉桂酸相同,效应曲线均为“n”形抛物线;而香草酸的效应曲线则为“U”形抛物线.当水饧酸、对羟基苯甲酸、肉桂酸、香草酸和阿魏酸浓度水平分别为0.06、0.60、0.24、0.02和0.02mmol·L^-1时,混合物对稗草根长的抑制率最大,达到78.65%。  相似文献   

15.
To perform the lipase-catalyzed synthesis of L-ascorbic acid derivatives from plant-based compounds such as cinnamic and ferulic acid under mild reaction conditions, the activities of immobilized Candida ntarctica lipase with different cinnamic acid esters and substituted cinnamic acids were compared. As a result, immobilized C. ntarctica lipase was found to prefer vinyl cinnamic acid to other esters such as allyl-, ethyl-, and isobutyl cinnamic acids as well as substituted cinnamic acids such as p-coumaric acid, caffeic acid, ferulic acid, and sinapic acid. Based on these results, large-scale synthesis of 6-O-cinnamyl-L-ascorbic acid ester was performed using immobilized C. ntarctica lipase in dry organic solvent, resulting in 68% yield (493 mg) as confirmed by 13C-NMR.  相似文献   

16.
Foliar spray and micro-injection of plant growth-promoting rhizobacterial species, viz. Pseudomonas fluorescens and P. aeruginosa on chickpea induced synthesis of phenylalanine ammonia-lyase (PAL) when tested against Sclerotinia sclerotiorum. Induction of PAL was also associated with increased synthesis of phenolic compounds such as tannic, gallic, caffeic, chlorogenic and cinnamic acids. Treatment with P. fluorescens was found to be more effective in inducing phenolic compounds as compared to P. aeruginosa. However, persistence of PAL activity was observed more with P. aeruginosa. Although both the inoculation methods were effective, foliar application was found to be superior to micro-injection in terms of rapid PAL activity leading to the synthesis of phenolic compounds.  相似文献   

17.
Acid-catalyzed nitrosation and production of potentially carcinogenic nitrosative species is focused at the gastroesophageal junction, where salivary nitrite, derived from dietary nitrate, encounters the gastric juice. Ascorbic acid provides protection by converting nitrosative species to nitric oxide (NO). However, NO may diffuse into adjacent lipid, where it reacts with O2 to re-form nitrosative species and N-nitrosocompounds (NOC). In this way, ascorbic acid promotes acid nitrosation. Using a novel benchtop model representing the gastroesophageal junction, this study aimed to clarify the action of a range of water-soluble antioxidants on the nitrosative mechanisms in the presence or absence of lipids. Caffeic, ferulic, gallic, or chlorogenic and ascorbic acids were added individually to simulated gastric juice containing secondary amines, with or without lipid. NO and O2 levels were monitored by electrochemical detection. NOC were measured in both aqueous and lipid phases by gas chromatography–tandem mass spectrometry. In the absence of lipids, all antioxidants tested inhibited nitrosation, ranging from 35.9 ± 7.4% with gallic acid to 93 ± 0.6% with ferulic acid. In the presence of lipids, the impact of each antioxidant on nitrosation was inversely correlated with the levels of NO they generated (R2 = 0.95, p < 0.01): gallic, chlorogenic, and ascorbic acid promoted nitrosation, whereas ferulic and caffeic acids markedly inhibited nitrosation.  相似文献   

18.
Microbial interactions occurring in rhizosphere may play important roles in providing protection against phytopathogens. Induction of phenolic compounds and their modulation in leaf and collar region was investigated upon challenge inoculation with Sclerotinia sclerotiorum in pea plants untreated and treated with beneficial microbes viz. Bacillus subtilis BHHU100, Trichoderma harzianum TNHU27 and Pseudomonas aeruginosa PJHU15 either singly or in the form of consortium. Changes in phenolic compounds in both leaves and collar region indicated that the induced response was systemic in nature altering the physiological status of the host plant. The phenylpropanoid metabolism was strongly involved in providing resistance against S. sclerotiorum challenge; especially in the plants treated with microbes in consortium, where the response was exaggerated in order to cope up with the biotic stress induced by the pathogen. Enhanced accumulation of phenolics viz., shikimic acid, gallic acid, chlorogenic acid, syringic acid, p-coumaric acid, cinnamic acid, salicylic acid, myricitin, quercetin and kaempferol occurred both in leaf and collar tissue.  相似文献   

19.
Aldose reductase (AR) inhibitors have vital importance in the treatment and prevention of diabetic complications. In this study, rat kidney AR was purified 19.34-fold with a yield of 3.49% and a specific activity of 0.88?U/mg using DE-52 Cellulose anion exchange chromatography, gel filtration chromatography and 2′5′ ADP Sepharose-4B affinity chromatography, respectively. After purification, the in vitro inhibition effects of some phenolic acids (tannic acid, chlorogenic acid, sinapic acid, protocatechuic acid, 4-hydroxybenzoic acid, p-coumaric acid, ferulic acid, vanillic acid, syringic acid, α-resorcylic acid, 3-hydroxybenzoic acid and gallic acid) were investigated on purified enzyme. We determined IC50, Ki values and inhibition types of these phenolic acids. As a result, tannic and chlorogenic acid had a strong inhibition effect. On the other hand, gallic acid had a weak inhibition effect. In this study, all phenolic acids except for chlorogenic acid and p-coumaric acid showed non-competitive inhibition effects on rat kidney AR.  相似文献   

20.
To investigate the production of useful phenols from plant resources, we examined the metabolism of cinnamic acid derivatives by a wood-rotting fungus, Schizophyllum commune. Four cinnamic acid derivatives (cinnamic, p-coumaric, ferulic, and sinapic acids) were tested as substrates. Two main reactions, reduction and cleavage of the side chain, were observed. Reduction of the side chain was confirmed in cinnamic acid and p-coumaric acid metabolism. The side chain cleavage occurred in p-coumaric acid and ferulic acid metabolism but the initial reactions of these acids differed. Sinapic acid was not metabolized by S. commune. p-Hydroxybenzaldehyde accumulation was observed in the culture to which p-coumaric acid was added. This suggests that S. commune is a useful agent for transforming p-coumaric acid into p-hydroxybenzaldehyde.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号