共查询到20条相似文献,搜索用时 15 毫秒
1.
S V Khizhniak V M Vo?tsitski? S G Ostapchenko N E Kucherenko 《Ukrainski? biokhimicheski? zhurnal》1990,62(2):58-63
It is established that a decrease in the Ca2(+)-ATPase activity in the sarcoplasmic reticulum membranes 1 and 24 hours after the local X-ray irradiation of rabbit hind limb by a dose of 0.21 Cl/kg is caused mainly by a change in the enzymic microenvironment and a damage of native protein-lipid interactions essential for the functional activity of Ca2(+)-ATPase. 相似文献
2.
Lax A Soler F Fernandez-Belda F 《American journal of physiology. Cell physiology》2002,283(1):C85-C92
The inhibition of sarcoplasmic reticulumCa2+-ATPase activity by miconazole was dependent on theconcentration of ATP and membrane protein. Half-maximal inhibition wasobserved at 12 µM miconazole when the ATP concentration was 50 µMand the membrane protein was 0.05 mg/ml. When ATP was 1 mM, a lowmicromolar concentration of miconazole activated the enzyme, whereashigher concentrations inhibited it. A qualitatively similar responsewas observed when Ca2+ transport was measured. Likewise,the half-maximal inhibition value was higher when the membraneconcentration was raised. Phosphorylation studies carried out aftersample preequilibration in different experimental settings shed lighton key partial reactions such as Ca2+ binding and ATPphosphorylation. The miconazole effect on Ca2+-ATPaseactivity can be attributed to stabilization of theCa2+-free enzyme conformation giving rise to a decrease inthe rate of the Ca2+ binding transition. The phosphoryltransfer reaction was not affected by miconazole. 相似文献
3.
《Biochemical and biophysical research communications》1985,126(3):1196-1200
The Ca2+-dependent ATPase activity of sarcoplasmic reticulum was inhibited when membrane vesicles were incubated at 0°C in presence of thiols. 2-mercaptoethanol was the most effective inhibitor from the thiols tested. The effect of 2-mercaptoethanol on the ATPase activity was biphasic; enzyme inhibition originally increased and then decreased with increasing thiol concentration. The inhibitory action of this thiol was significantly higher at low membrane concentrations and the rate of inactivation at 22°C was considerably lower than that at 0°C. Ca2+-ATPase previously inhibited by 2-mercaptoethanol was partially reactivated by incubation with periodate. 相似文献
4.
5.
Decavanadate produces extensive ordered arrays of Ca2+-ATPase molecules on sarcoplasmic reticulum (SR) vesicle surfaces [(1984) J. Bioenerg. Biomembranes 16, 491-505] and the basic unit of these crystalline structures seems to be a dimer of Ca2+-ATPase [(1983) J. Ultrastruct. Res. 24, 454-464; (1984) J. Mol. Biol. 174, 193-204]. Myotoxin a, isolated from the venom of the prairie rattlesnake Crotalus viridis viridis, is a muscle-degenerating polypeptide and its primary site of interaction is the SR membrane, where it uncouples CA2+-translocation from CA2+-dependent ATP hydrolysis [(1986) Arch. Biochem. Biophys. 246, 90-97]. The effect of myotoxin a on decavanadate-induced two-dimensional Ca2+-ATPase crystals of SR membranes has been investigated. The toxin inhibits the formation of two-dimensional SR-membrane crystals and disrupts previously formed crystals in a time- and concentration-dependent manner, which parallels the uncoupling of ATP hydrolysis from Ca2+ translocation. Two-dimensional crystalline arrays of the SR membrane have a typical diffraction pattern which, after myotoxin a treatment, displays a progressive loss of order. Decavanadate is an uncompetitive inhibitor of the Ca2+-ATPase enzyme-myotoxin a complex. The present results suggest that a Ca2+-ATPase dimer is required for coupling Ca2+ translocation to Ca2+-dependent ATP hydrolysis. 相似文献
6.
The triazine dye, Reactive Red 120, was found to bind tightly (Kd = 30) nM) and with low stoichiometry to sarcoplasmic reticulum membranes. Our finding that this high-affinity binding caused noncompetitive inhibition of the Ca2+-ATPase indicates that the dye-binding site is distinct from both the active site and putative regulatory site. Detergent solubilization (monomerization) of the Ca2+-ATPase caused a 25-fold decrease in affinity for Reactive Red 120, while causing no decrease in affinity toward another dye, Reactive Blue 2. For the Reactive-Red-120-inhibited enzyme, the level of steady-state enzyme phosphorylation by ATP was not significantly different from that exhibited by the control Ca2+-ATPase. The rate of dephosphorylation in the presence and absence of ADP, however, was markedly decreased by the presence of the inhibitor. Distance measurements by fluorescence energy transfer from the active (FITC-reactive) site to the Reactive Red 120 site gave a value of 59 A. Similar experiments yielded an average distance of 35 A between the latter site and the tryptophan residues, most of which are postulated by the 'sequence model' (MacLennan et al. (1985) Nature 316, 696-700) to be located in a transmembrane domain. 相似文献
7.
Steady state turnover of Ca2+-ATPase of sarcoplasmic reticulum has generally been reported to have a bell-shaped pH profile, with an optimum near pH 7.0. While a free [Mg2+] of 2 mM is optimal for activity at pH 7.0, it was found that this level was markedly inhibitory (K1/2 = 2 mM) at pH 8.0, thus accounting for the generally observed low activity at high pH. High activity was restored at pH 8.0 using an optimum free [Mg2+] of 0.2 mM. The mechanism of the Mg2+-dependent inhibition at pH 8.0 was probed. Inhibition was not due to Mg2+ competition with Ca2+ for cytoplasmic transport sites nor to inhibition of formation of steady state phosphoenzyme from ATP. Mg2+ inhibited (K1/2 = 1.8 mM) decay of steady state phosphoenzyme; thus, the locus of inhibition was one of the phosphoenzyme interconversion steps. Transient kinetic experiments showed that Mg2+ competitively inhibited (Ki = 0.7 mM) binding of Ca2+ to lumenal transport sites, blocking the ability of Ca2+ to reverse the catalytic cycle to form ADP-sensitive, from ADP-insensitive, phosphoenzyme. The data were consistent with a hypothesis in which Mg2+ binds lumenal Ca2+ transport sites with progressively higher affinity at higher pH to form a dead-end complex; its dissociation would then be rate-limiting during steady state turnover. 相似文献
8.
G Liguri M Stefani A Berti P Nassi G Ramponi 《Archives of biochemistry and biophysics》1982,217(1):120-130
Fractionation of sarcoplasmic reticulum vesicles from rabbit skeletal muscle was performed by solubilization of the vesicles in the presence of deoxycholate, followed by sucrose density gradient centrifugation and gel filtration chromatography. This procedure permitted the isolation of essentially pure Ca2+-ATPase; this enzyme showed ATPase as well as acylphosphatase activity, both activities being clearly enhanced by deoxycholate. The acylphosphatase activity of the purified Ca2+-ATPase was characterized with regard to some kinetic properties, such as pH, Mg2+, Ca2+, and deoxycholate dependence, and substrate affinity, determined in the presence of acetylphosphate, succinylphosphate, carbamylphosphate, and benzoylphosphate; in addition, the stability of both activities was checked in time-course experiments. The main similarities between the two activities, such as the Mg2+ requirement, the deoxycholate activation, and the pH dependence, together with the competitive inhibition of the benzoylphosphatase activity by ATP, the inhibition of both activities by tris(bathophenanthroline)-Fe2+, and the relief of this inhibitory effect by carbonylcyanide-4-trifluoromethoxyphenyl hydrazone support the hypothesis that acylphosphatase and ATPase activities of sarcoplasmic reticulum vesicles reside in the same active site of the enzyme. With regard to possible relationships between acylphosphatase activity of the purified Ca2+-ATPase and “soluble” acylphosphatase present in the 100,000g supernatant fraction, comparison of some kinetic and structural parameters indicate that these two activities are supported by quite different enzymes. 相似文献
9.
Summary This review summarizes studies on the structural organization of Ca2+-ATPase in the sarcoplasmic reticulum membrane in relation to the function of the transport protein. Recent advances in this field have been made by a combination of protein-chemical, ultrastructural, and physicochemical techniques on membraneous and detergent solubilized ATPase. A particular feature of the ATPase (Part I) is the presence of a hydrophilic head, facing the cytoplasm, and a tail inserted in the membrane. In agreement with this view the protein is moderately hydrophobic, compared to many other integral membrane proteins, and the number of traverses of the 115 000 Dalton peptide chain through the lipid may be limited to 3–4.There is increasing evidence (Part II) that the ATPase is self-associated in the membrane in oligomeric form. This appears to be a common feature of many transport proteins. Each ATPase peptide seems to be able to perform the whole catalytic cycle of ATP hydrolysis and Ca2+ transport. Protein-protein interactions seem to have a modulatory effect on enzyme activity and to stabilize the enzyme against inactivation.Phospholipids (Part III) are not essential for the expression of enzyme activity which only requires the presence of flexible hydrocarbon chains that can be provided e.g. by polyoxyethylene glycol detergents. Perturbation of the lipid bilayer by the insertion of membrane protein leads to some immobilization of the lipid hydrocarbon chains, but not to the extent envisaged by the annulus hypothesis. Strong immobilization, whenever it occurs, may arise from steric hindrance due to protein-protein contacts. Recent studies suggest that breaks in Arrhenius plots of enzyme activity primarily reflect intrinsic properties of the protein rather than changes in the character of lipid motion as a function of temperature. 相似文献
10.
Do Han Kim Young Sup Lee Arthur B. Landry III 《Molecular and cellular biochemistry》1992,114(1-2):105-108
Ca2+ release from skeletal sarcoplasmic reticulum (SR) could be regulated by at least three mechanisms: 1) Ca2+, 2) calmodulin, and 3) Ca2+/calmodulin-dependent phosphorylation. Bell-shaped Ca2+-dependence, of Ca2+ release from both actively- and passively-loaded SR vesicles suggest that opening and closing of the Ca2+ release channel could be regulated by [Ca2+
o] . The time- and concentration-dependent inhibition of Ca 2+ release from skeletal SR by calmodulin was also studied using passively-Ca2+ loaded SR vesicles. Up to 50% of Ca 2+ release was inhibited by calmodulin (0.01–0.5 µM); this inhibition required 5–15 min preincubation time. The hypothesis that Ca2+/calmodulin-dependent phosphorylation of a 60 kDa protein regulates Ca2+ release from skeletal SR was tested by stopped-flow fluorometry using passively-Ca2+-loaded SR vesicles. Approximately 80% of the initial rates of Ca2+-induced Ca2+ release was inhibited by the phosphorylation within 2 min of incubation of the SR with Mg·ATP and calmodulin. We identified two types of 60 kDa phosphoproteins in the rabbit skeletal SR, which was distinguished by solubility of the protein in CHAPS. The CHAPS-soluble 60 kDa phosphoprotein was purified by column chromatography on DEAE-Sephacel, heparin-agarose, and hydroxylapatite. Analyses of the purified protein indicate that the CHAPS-soluble 60 kDa protein is an isoform of phosphoglucomutase (PGM). cDNAs encoding isoforms of PGM were cloned and sequenced using synthetic oligonucleotides. Two types of PGM isoforms (Type I and Type 11) were identified. The translated amino acid sequences show that Type II isoform is SR-form. Our results are significant in terms of understanding evidence of an association of glycolytic and glycogenolytic enzymes with SR and a role in the regulation of SR functions. (Mol Cell Biochem 114: 105-108, 1992) 相似文献
11.
M D Kurski? T P Kondratiuk A A Osipenko A N Fedorov V A Grigor'eva 《Biokhimii?a (Moscow, Russia)》1982,47(1):34-42
The purified membrane fragments of sarcoplasmic reticulum (SR) of rabbit fast skeletal muscles were found to incorporate 32P from[gamma-32P]ATP in endogenous membrane substrates and in histone H1. The existence of membrane-bound protein kinase of SR was demonstrated by steady state binding of [3H]-cAMP to the SR membranes. The constant of [3H]cAMP binding to the membranes is 2.5 +/- 0.003 x 10(6) M-1, the number of binding sites is 6.1 +/- 0.8 pmol per 1 mg of protein. The endogenous phosphorylation of SR components was inhibited by cAMP and cGMP at concentrations of 10(-7)-10(-6) and depended on Mg2+ and Ca2+. The thermostable protein inhibitor of cAMP-dependent protein kinase inhibited the endogenous phosphorylation of SR membranes by 30-40%. The protein phosphoproduct of SR membranes revealed the properties of a phosphoester. The membrane-bound protein kinase was active towards the exogenous substrate--histone H1. Phosphorylation in the presence of histones was independent of cyclic nucleotides, Mg2+ and Ca2+. Fractionation of 32P-labelled solubilized membranes in polyacrylamide gel in the presence of Na-SDS showed that the radioactivity is bound to protein zones with molecular weights of 95 000 and 6000. 相似文献
12.
The fast-twitch SERCA1 isoform of the sarcoplasmic reticulum Ca(2+)-ATPase was purified to homogeneity and conjugated to peroxidase. The SERCA1 probe showed high affinity binding to the immobilized monomeric enzyme, but not crosslinker-stabilized oligomers. This suggests a preferential complex formation via homo-dimerization, rather than interactions with established oligomeric structures. 相似文献
13.
Favero Terence G.; Colter David; Hooper Paul F.; Abramson Jonathan J. 《Journal of applied physiology》1998,84(2):425-430
Favero, Terence G., David Colter, Paul F. Hooper, andJonathan J. Abramson. Hypochlorous acid inhibitsCa2+-ATPase from skeletal musclesarcoplasmic reticulum. J. Appl. Physiol. 84(2): 425-430, 1998.Hypochlorous acid(HOCl) is produced by polymorphonuclear leukocytes that migrate andadhere to endothelial cells as part of the inflammatory response totissue injury. HOCl is an extremely toxic oxidant that can react with avariety of cellular components, and concentrations reaching 200 µMhave been reported in some tissues. In this study, we show that HOClinteracts with the skeletal sarcoplasmic reticulumCa2+-adenosinetriphosphatase(ATPase), inhibiting transport function. HOCl inhibits sarcoplasmicreticulum Ca2+-ATPase activity ina concentration-dependent manner with a concentration required toinhibit ATPase activity by 50% of 170 µM and with completeinhibition of activity at 3 mM. A concomitant reduction infree sulfhydryl groups after HOCl treatment was observed, paralleling the inhibition of ATPase activity. It was also observed that HOCl inhibited the binding of the fluorescent probe fluoresceinisothiocyanate to the ATPase protein, indicating some structural damagemay have occurred. These findings suggest that the reactive oxygenspecies HOCl inhibits ATPase activity via a modification of sulfhydryl groups on the protein, supporting the contention that reactive oxygenspecies disrupt the normalCa2+-handling kinetics in musclecells. 相似文献
14.
Membrane crystals of Ca2+-ATPase in sarcoplasmic reticulum of fast and slow skeletal and cardiac muscles 总被引:3,自引:0,他引:3
Crystalline arrays of Ca2+ transport ATPase develop in sarcoplasmic reticulum membranes after treatment with Na3VO4 in a calcium-free medium [ Dux , L. and Martonosi , A. (1983) J. Biol. Chem. 258, 2599-2603]. The proportion of vesicles containing Ca2+-ATPase crystals in microsome preparations isolated from rat muscle of different fiber types (semimembranosus, levator ani, extensor digitorum longus, diaphragm, soleus, and heart) correlates well with the Ca2+-ATPase content and Ca2+-modulated ATPase activity. This implies that the concentration of Ca2+-ATPase in sarcoplasmic reticulum membranes of fast and slow skeletal or cardiac muscles differs only slightly, and the low Ca2+ transport activity of 'sarcoplasmic reticulum' preparations isolated from slow-twitch skeletal and cardiac muscles is due to the presence of large amount of non-sarcoplasmic-reticulum membrane elements. This is in accord with the relatively small differences in the density of 8.5-nm intramembranous particles seen by freeze-etch electron microscopy in sarcoplasmic reticulum of red and white muscles. The dimensions of the Ca2+-ATPase crystal lattice are similar in sarcoplasmic reticulum membranes of different fiber types; therefore if structural differences exist between 'isoenzymes' of Ca2+-ATPase, these are not reflected in the crystal-lattice. 相似文献
15.
L Dux G Lelkes L H Hieu J Nemcsók 《Comparative biochemistry and physiology. B, Comparative biochemistry》1989,92(2):263-270
1. Structural features were compared in sarcoplasmic reticulum Ca2+-ATPase enzymes from carp (Cyprinus carpio L.) and rabbit muscles. 2. Both membrane preparations contained the 105,000 mol. wt Ca2+ pump protein in high local density. 3. The tryptic cleavage of the carp enzyme gave different peptide fragments from those observed from rabbit enzyme. 4. Addition of vanadate, Ca2+ or lanthanides did not cause two-dimensional Ca2+-ATPase crystal formation, in contrast to the rabbit enzyme, which forms extensive arrays under these conditions. 5. No differences were found in this respect between microsome preparations derived from warm and cold adapted fishes. 6. A different primary sequence as well as a different disposition of the enzyme in the membrane may stand behind the observed dissimilarities. 相似文献
16.
Schertzer JD Plant DR Ryall JG Beitzel F Stupka N Lynch GS 《American journal of physiology. Endocrinology and metabolism》2005,288(3):E526-E533
Aging is associated with a slowing of skeletal muscle contractile properties, including a decreased rate of relaxation. In rats, the age-related decrease in the maximal rate of relaxation is reversed after 4-wk administration with the beta2-adrenoceptor agonist (beta2-agonist) fenoterol. Given the critical role of the sarcoplasmic reticulum (SR) in regulating intracellular Ca2+ transients and ultimately the time course of muscle contraction and relaxation, we tested the hypothesis that the mechanisms of action of fenoterol are mediated by alterations in SR proteins. Sarcoendoplasmic reticulum Ca2+-ATPase (SERCA) kinetic properties were assessed in muscle homogenates and enriched SR membranes isolated from the red (RG) and white (WG) portions of the gastrocnemius muscle in adult (16 mo) and aged (28 mo) F344 rats that had been administered fenoterol for 4 wk (1.4 mg/kg/day ip, in saline) or vehicle only. Aging was associated with a 29% decrease in the maximal activity (Vmax) of SERCA in the RG but not in the WG muscles. Fenoterol treatment increased the Vmax of SERCA and SERCA1 protein levels in RG and WG. In the RG, fenoterol administration reversed an age-related selective nitration of the SERCA2a isoform. Our findings demonstrate that the mechanisms underlying age-related changes in contractile properties are fiber type dependent, whereas the effects of fenoterol administration are independent of age and fiber type. 相似文献
17.
The effect of corticotropin (ACTH1-39), synacthen (ACTH1-24) and hydrocortisone-hemisuccinate on the activity of Ca-ATPase of skeletal muscle sarcoplasmic reticulum (SR) and calcium (Ca) accumulation in SR vesicles has been studied. It has been shown that ACTH1-39 (I U per 100 g body weight) increased the activity of Ca-ATPase in skeletal muscle SR of rats, while hydrocortisone (5 mg per 100 g body weight) did not change the activity of Ca-ATPase in skeletal muscle SR. However, both hormones increase the total activity of ATPase. ACTH1-39 and ACTH1-24 (0.05-0.0005 U/ml) and hydrocortisone (2.8 X 10(-7)-2.8 X 10(-9) mol/l) increased in vitro Ca-ATPase isolated from rabbit skeletal muscle SR and accumulation of Ca is SR vesicles. At the same time, hydrocortisone reduced calcium/phosphorus ratio, while ACTH1-39 and ACTH1-24 increased it, i.e. hydrocortisone facilitated Ca accumulation in SR requiring more ATP energy, whereas ACTH facilitated Ca accumulation in SR requiring less ATP energy. 相似文献
18.
The mechanism of inhibition of Ca2+-transport activity of rabbit sarcoplasmic reticulum Ca 2+-ATPase (SERCA) by anisodamine (a drug isolated from a medicinal herb Hyoscyamuns niger L) was investigated by using ANS (1-anilino-8-naphthalenesulfonate) fluorescence probe, intrinsic fluorescence quenching and Ca 2+-transport activity assays. The number of ANS binding sites for apo Ca2+-ATPase was determined as 8, using a multiple-identical binding site model. Both anisodamine and Ca2+ at millimolar level enhanced the ANS binding fluorescence intensities. Only anisodamine increased the number of ANS molecules bound by SERCA from 8 to 14. The dissociation constants of ANS to the enzyme without any ligand, with 30 mM anisodamine and with 15 mM Ca 2 were found to be 53.0 microM, 85.0 microM and 50.1 microM, respectively. Both anisodamine and Ca2+ enhanced the ANS binding fluorescenc with apparent dissociation constants of 7.6 mM and 2.3 mM, respectively, at a constant concentration of the enzyme. Binding of anisodamine significantly decreased the binding capacity of Ca2+ with the dissociation constant of 9.5 mM, but binding of Ca2+ had no obvious effect on binding of anisodamine. Intrinsic fluorescence quenching and Ca2+-transport activity assays gave the dissociation constants of anisodamine to SERCA as 9.7 and 5.4 mM, respectively, which were consistent with those obtained from ANS-binding fluorescence changes during titration of SERCA with anisodamine and anisodamine + 15 mM Ca2+, respectively. The results suggest that anisodamine regulates Ca2+-transport activity of the enzyme, by stabilizing the trans-membrane domain in an expanded, inactive conformation, at least at its annular ring region. 相似文献
19.
《Journal of enzyme inhibition and medicinal chemistry》2013,28(4):563-570
AbstractObjective: Effect of peroxynitrite on SERCA1 activity was studied in correlation with enzyme carbonylation. Kinetic parameters and location of peroxynitrite effect on SERCA1 were determined.Methods: Carbonyls were determined by immunoblotting. FITC, NCD-4 and Trp fluorescence were used to indicate changes in cytosolic and transmembrane regions of SERCA1.Results: Peroxynitrite-concentration-dependent decrease of SERCA1 activity was associated with elevation of protein carbonyls. 4-HNE was not involved in carbonylation of SERCA1. Increased FITC fluorescence in the presence of peroxynitrite correlated with the decrease of the enzyme affinity to ATP.Discussion and conclusion: Peroxynitrite-induced SERCA1 carbonylation that was not accompanied with the formation of 4-HNE-SERCA1 adducts is indicative of direct oxidation of SERCA1. As assessed by FITC fluorescence and decreased affinity of the enzyme to ATP, peroxynitrite impairment was found to occur in the cytosolic ATP-binding region of SERCA1. 相似文献
20.
Velasco-Guillén I Guerrero JR Gomez-Fernández JC Teruel JA 《The Journal of biological chemistry》2000,275(50):39103-39109
Maleimidylsalicylic acid reacts with the Ca(2+)-ATPase of skeletal muscle sarcoplasmic reticulum with high affinity and inhibits the ATPase activity following a pseudo-first-order kinetic with a rate constant of 8.3 m(-1) s(-1). Calcium binding remains unaffected in the maleimide-inhibited ATPase. However, the presence of ATP, ADP, and, to a lesser extent, AMP protects the enzyme against inhibition. Furthermore, ATPase inhibition is accompanied by a concomitant decrease in ATP binding. The stoichiometry of the nucleotide-dependent maleimidylsalicylic acid binding is 6-10 nmol/mg ATPase, which corresponds to the binding of up to one molecule of maleimide/molecule of ATPase. The stoichiometry of maleimide binding is decreased in the presence of nucleotides and in the ATPase previously labeled with fluorescein-5'-isothiocyanate or N-ethylmaleimide A fluorescent peptide was isolated by high performance liquid chromatography after trypsin digestion of the maleimide-labeled ATPase. Analysis of the sequence and mass spectrometry of the peptide leads us to propose Cys(344) as the target for maleimidylsalicylic acid in the inhibition reaction. The effect of Cys(344) modification on the nucleotide site is discussed. 相似文献