首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A molecular dynamics simulation study of four lipid bilayers with inserted trans-membrane helical fragment of epithelial growth factor (EGF) receptor (EGF peptide) was performed. The lipid bilayers differ in their lipid composition and consist of (i) unsaturated phosphatidylcholine (palmitoyloleoylphosphatidylcholine, POPC), (ii) POPC and 20 mol% of cholesterol (Chol), (iii) sphingomyelin (SM) and 20 mol% of Chol, and (iv) SM and 50 mol% of Chol. Only 1 out of 26 residues in the EGF-peptide sequence is polar (Thr). The hydrophobic thickness of each bilayer is different but shorter than the length of the peptide and so, due to hydrophobic mismatch, the inserted peptide is tilted in each bilayer. Additionally, in the POPC bilayer, which is the thinnest, the peptide loses its helical structure in a short three-amino acid fragment. This facilitates bending of the peptide and burying all hydrophobic amino acids inside the membrane core (Figure 1(b)). Bilayer lipid composition affects interactions between the peptide and lipids in the membrane core. Chol increases packing of atoms relative to the peptide side chains, and thus increases van der Waals interactions. On average, the packing around the peptide is higher in SM-based bilayers than POPC-based bilayers but for certain amino acids, packing depends on their position relative to the bilayer center. In the bilayer center, packing is higher in POPC-based bilayers, while in regions closer to the interface packing is higher in SM-based bilayers. In general, amino acids with larger side chains interact strongly with lipids, and thus the peptide sequence is important for the pattern of interactions at different membrane depths. This pattern closely resembles the shape of recently published lateral pressure profiles [Ollila et alJ. Struct. Biol. DOI:10.1016/j.jsb.2007.01.012].  相似文献   

2.
Packing defects in lipid bilayer play a significant role in the biological activities of cell membranes. Time-resolved fluorescence depolarization has been used to detect and characterize the onset of packing defects in binary mixtures of dilinoleoylphosphatidylethanolamine/1-palmitoyl-2- oleoylphosphatidylcholine (PE/PC). These PE/PC mixtures exhibit mesoscopic packing defect state (D), as well as one-dimensional lambellar liquid crystalline (L alpha) and two-dimensional inverted hexagonal (HII) ordered phases. Based on previous electron microscopic investigations, this D state is characterized by the presence of interlamellar attachments and precursors of HII phase between the lipid layers. Using a rotational diffusion model for rod-shaped fluorophore in a curved matrix, rotational dynamics parameters, second rank order parameter, localized wobbling diffusion, and curvature-dependent rotational diffusion constants of dipyenylhexatriene (DPH)-labeled PC (DPH-PC) in the host PE/PC matrix were recovered from the measured fluorescence depolarization decays of DPH fluorescence. At approximately 60% PE, abrupt increases in these rotational dynamics parameters were observed, reflecting the onset of packing defects in the host PE/PC matrix. We have demonstrated that rotational dynamics parameters are very sensitive in detecting the onset of curvature-associating packing defects in lipid membranes. In addition, the presence of the D state can be characterized by the enhanced wobbling diffusional motion and order packing of lipid molecules, and by the presence of localized curvatures in the lipid layers.  相似文献   

3.
The cationic tridecapeptide alpha-melanocyte stimulating hormone (alpha-MSH) is known to interact with anionic vesicles of 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG), partially penetrating the lipid membrane. In the lipid liquid crystal phase, phospholipid derivatives spin labeled at the different C-atoms along the acyl chain, show that the peptide increases the bilayer packing at all depths. Parallel to that, there is an increase in the probe's isotropic hyperfine splittings, indicating that the peptide significantly decreases the membrane hydrophobic barrier. Accordingly, it is suggested that the increase in membrane packing yielded by alpha-MSH is partly due to a greater level of interchain hydration. This result is compared to the increase in packing and decrease in polarity yielded by cholesterol, and the absence of structural or polar alterations with Na+. The latter result shows that the peptide effect is not related to an increase of positive charges at the anionic vesicle surface. Alterations on the lipid bilayer polar profile measured by the nitroxide hyperfine splitting z component in frozen samples are shown to be different from those obtained at room temperature. However, it is shown here that a certain correlation can be drawn between the increase in polarity measured in frozen samples and the packing effect caused by the different molecules in the lipid gel phase.  相似文献   

4.
We have used multifrequency electron paramagnetic resonance to define the multistate structural dynamics of an integral membrane protein, phospholamban (PLB), in a lipid bilayer. PLB is a key regulator of cardiac calcium transport, and its function requires transitions between distinct states of intramolecular dynamics. Monomeric PLB was synthesized with the TOAC spin label at positions 11 (in the cytoplasmic domain) and 46 (in the transmembrane domain) and reconstituted into lipid bilayers. Unlike other protein spin labels, TOAC reports directly the motion of the peptide backbone, so quantitative analysis of its dynamics is worthwhile. Electron paramagnetic resonance spectra at 9.4 GHz (X-band) and 94 GHz (W-band) were analyzed in terms of anisotropic rotational diffusion of the two domains. Motion of the transmembrane domain is highly restricted, while the cytoplasmic domain exhibits two distinct conformations, a major one with moderately restricted nanosecond dynamics (T) and another with nearly unrestricted subnanosecond motion (R). The global analysis of spectra at two frequencies yielded values for the rotational correlation times and order parameters that were much more precisely determined than at either frequency alone. Multifrequency EPR is a powerful approach for analysis of complex rotational dynamics of proteins.  相似文献   

5.
Doherty T  Waring AJ  Hong M 《Biochemistry》2008,47(4):1105-1116
Tachyplesin-I (TP-I) is a 17-residue beta-hairpin antimicrobial peptide containing two disulfide bonds. Linear analogs of TP-I where the four Cys residues were replaced by aromatic and aliphatic residues, TPX4, were found to have varying degrees of activities, with the aromatic analogs similarly potent as TP-I. Understanding the different activities of the linear analogs should give insight into the mechanism of action of TP-I. To this end, we have investigated the dynamic structures of the active TPF4 and the inactive TPA4 in bacteria-mimetic anionic POPE/POPG bilayers and compared them with the wild-type TP-I using solid-state NMR spectroscopy. 13C isotropic chemical shifts and backbone (phi, psi) torsion angles indicate that both TPF4 and TPA4 adopt beta-strand conformations without a beta-turn at key residues. 1H spin diffusion from lipid chains to the peptide indicates that the inactive TPA4 binds to the membrane-water interface, similar to the active TP-I. Thus, neither the conformation nor the depth of insertion of the three peptides correlates with their antimicrobial activities. In contrast, the mobility of the three peptides correlates well with their activities: the active TP-I and TPF4 are both highly mobile in the liquid-crystalline phase of the membrane while the inactive TPA4 is completely immobilized. The different mobilities are manifested in the temperature-dependent 13C and 15N spectra, 13C-1H and 15N-1H dipolar couplings and 1H rotating-frame spin-lattice relaxation times. The dynamics of TP-I and TPF4 are both segmental and global. Combined, these data suggest that TP-I and TPF4 disrupt the membrane by large-amplitude motion in the plane of the membrane. The loss of this motion in TPA4 due to aggregation significantly weakens its activity because a higher peptide concentration is required to disturb lipid packing. Thus molecular motion, rather than structure, appears to be the key determinant for the membrane-disruptive activities of tachyplesins.  相似文献   

6.
Antimicrobial peptides (AMPs) are an important component of innate immunity and have generated considerable interest as a potential new class of antibiotic. The biological activity of AMPs is strongly influenced by peptide-membrane interactions; however, for many of these peptides the molecular details of how they disrupt and/or translocate across target membranes are not known. CM15 is a linear, synthetic hybrid AMP composed of the first seven residues of the cecropin A and residues 2-9 of the bee venom peptide mellitin. Previous studies have shown that upon membrane binding CM15 folds into an alpha-helix with its helical axis aligned parallel to the bilayer surface and have implicated the formation of 2.2-3.8 nm pores in its bactericidal activity. Here we report site-directed spin labeling electron paramagnetic resonance studies examining the behavior of CM15 analogs labeled with a methanethiosulfonate spin label (MTSL) and a brominated MTSL as a function of increasing peptide concentration and utilize phospholipid-analog spin labels to assess the effects of CM15 binding and accumulation on the physical properties of membrane lipids. We find that as the concentration of membrane-bound CM15 is increased the N-terminal domain of the peptide becomes more deeply immersed in the lipid bilayer. Only minimal changes are observed in the rotational dynamics of membrane lipids, and changes in lipid dynamics are confined primarily to near the membrane surface. However, the accumulation of membrane-bound CM15 dramatically increases accessibility of lipid-analog spin labels to the polar relaxation agent, nickel (II) ethylenediaminediacetate, suggesting an increased permeability of the membrane to polar solutes. These results are discussed in relation to the molecular mechanism of membrane disruption by CM15.  相似文献   

7.
The effects of high hydrostatic pressure (up to 2 kbar) upon the fluidity and order of the synaptic and myelin membrane fractions of goldfish brain have been studied by using steady-state and differential polarized phase fluorometry. Probe motion provided a measure of membrane order (r infinity) and probe rotational rate (R). Membrane order became progressively greater as pressure was increased up to approximately 2 kbar. This effect was similar over the temperature range 5.6-34.3 degrees C. An increase in pressure of 1 kbar had an effect on membrane order that was equivalent to a 13-19 degrees C reduction in temperature. Membrane order was essentially identical during pressurization and depressurization. At 5.6 degrees C, pressurization caused a large increase in R, and similar, though less dramatic, anomalies occurred at higher temperatures. It is suggested that this is due to the segregation of probe molecules in highly ordered membranes, which leads either to excitation transfer between 1,6-diphenyl-1,3,5-hexatriene (DPH) molecules or to changes in the rotational motion of DPH from "sticking" to "slipping".  相似文献   

8.
Biophysical consequences of lipid peroxidation in membranes   总被引:8,自引:0,他引:8  
This article reviews the biophysical consequences of lipid peroxidation in biological membranes. In the lipid domain, lipid peroxidation (a) causes an increase in the order and "viscosity" of the membrane bilayer, particularly at the depth around acyl-carbon 12, (b) changes the thermotropic phase behaviour, (c) decreases the electrical resistance, and (d) facilitates phospholipid exchange between the two monolayers. Upon lipid peroxidation membrane proteins are crosslinked, and their rotational and lateral mobility is decreased. Studies with microsomal cytochrome P-450 suggest protein aggregation but not the increased lipid order to be the major cause of protein immobilization in peroxidized membranes.  相似文献   

9.
The indiscriminate use of conventional antibiotics is leading to an increase in the number of resistant bacterial strains, motivating the search for new compounds to overcome this challenging problem. Antimicrobial peptides, acting only in the lipid phase of membranes without requiring specific membrane receptors as do conventional antibiotics, have shown great potential as possible substituents of these drugs. These peptides are in general rich in basic and hydrophobic residues forming an amphipathic structure when in contact with membranes. The outer leaflet of the prokaryotic cell membrane is rich in anionic lipids, while the surface of the eukaryotic cell is zwitterionic. Due to their positive net charge, many of these peptides are selective to the prokaryotic membrane. Notwithstanding this preference for anionic membranes, some of them can also act on neutral ones, hampering their therapeutic use. In addition to the electrostatic interaction driving peptide adsorption by the membrane, the ability of the peptide to perturb lipid packing is of paramount importance in their capacity to induce cell lysis, which is strongly dependent on electrostatic and hydrophobic interactions. In the present research, we revised the adsorption of antimicrobial peptides by model membranes as well as the perturbation that they induce in lipid packing. In particular, we focused on some peptides that have simultaneously acidic and basic residues. The net charges of these peptides are modulated by pH changes and the lipid composition of model membranes. We discuss the experimental approaches used to explore these aspects of lipid membranes using lipid vesicles and lipid monolayer as model membranes.  相似文献   

10.
T Sakaki  A Tsuji  C H Chang  S Ohnishi 《Biochemistry》1982,21(10):2366-2372
Band 3 protein was isolated from human erythrocyte membranes, purified, and reconstituted into a well-defined phospholipid bilayer matrix (dimyristoylphosphatidylcholine). The preparation yielded uniform single-bilayered vesicles of the diameter 40--80 nm. The rotational motion of band 3 was studied by saturation transfer electron spin resonance (ESR) spectroscopy of covalently attached maleimide spin-labels. The rotational mobility changed in response to the host lipid phase transition. The rotational correlation time was in a range from 73 (37 degrees C) to 94 microseconds (26 degrees C) in the fluid phase and from 240 (15 degrees C) to 420 microseconds (5 degrees C) in the solid phase. The motion was analyzed based on the anisotropic rotation of band 3 in the reconstituted vesicles. To obtain information on the rotational diffusion constant around the axis parallel to the membrane normal, we made an attempt to measure the angle between the spin-label magnetic axis and the membrane normal. The result gave 3.9 x 10(4) s-1 at 37 degrees C as a rough estimate for the diffusion constant. This is compatible to anisotropic rotation of a cylinder of radius 3.3 nm in a two-dimensional matrix with inner viscosity 2 P and inner thickness 4 nm. The cytoskeletal peripheral proteins caused a definite increase in the rotational correlation time (from 73 to 180 microseconds at 37 degrees C, for example). The restriction of the rotational mobility was shown to be due to the ankyrin-linked interaction between band 3 and spectrin-actin-band 4.1 proteins in the reconstituted membranes.  相似文献   

11.
The effect of lysophosphatidylcholine (LPC) on lipid vesicle fusion and leakage induced by influenza virus fusion peptides and the peptide interaction with lipid membranes were studied by using fluorescence spectroscopy and monolayer surface tension measurements. It was confirmed that the wild-type fusion peptide-induced vesicle fusion rate increased several-fold between pH 7 and 5, unlike a mutated peptide, in which valine residues were substituted for glutamic acid residues at positions 11 and 15. This mutated peptide exhibited a much greater ability to induce lipid vesicle fusion and leakage but in a less pH-dependent manner compared to the wild-type fusion peptide. The peptide-induced vesicle fusion and leakage were well correlated with the degree of interaction of these peptides with lipid membranes, as deduced from the rotational correlation time obtained for the peptide tryptophan fluorescence. Both vesicle fusion and leakage induced by the peptides were suppressed by LPC incorporated into lipid vesicle membranes in a concentration-dependent manner. The rotational correlation time associated with the peptide’s tryptophan residue, which interacts with lipid membranes containing up to 25 mole % LPC, was virtually the same compared to lipid membranes without LPC, indicating that LPC-incorporated membrane did not affect the peptide interaction with the membrane. The adsorption of peptide onto a lipid monolayer also showed that the presence of LPC did not affect peptide adsorption.  相似文献   

12.
In vitro membrane model systems are used to dissect complex biological phenomena under controlled unadulterated conditions. In this context, lipid monolayers are a powerful tool to particularly study the influence of lipid packing on the behavior of membrane proteins. Here, monolayers deposited in miniaturized fixed area-chambers, which require only minute amounts of protein, were used and shown to faithfully reproduce the characteristics of Langmuir monolayers. This assay is ideally suited to be combined with single-molecule sensitive fluorescence correlation spectroscopy (FCS) to characterize diffusion dynamics. Our results confirm the influence of lipid packing on lipid mobility and validate the use of FCS as an alternative to conventional surface pressure measurements for characterizing the monolayer. Furthermore, we demonstrate the effect of lipid density on the diffusional behavior of membrane-bound components. We exploit the sensitivity of FCS to characterize protein interactions with the lipid monolayer in a regime in which the monolayer physical properties are not altered. To demonstrate the potential of our approach, we analyzed the diffusion behavior of objects of different nature, ranging from a small peptide to a large DNA-based nanostructure. Moreover, in this work we quantify the surface viscosity of lipid monolayers. We present a detailed strategy for the conduction of point FCS experiments on lipid monolayers, which is the first step toward extensive studies of protein-monolayer interactions.  相似文献   

13.
The effects of Ca2+ on lipid diffusion   总被引:1,自引:0,他引:1  
The effects of Ca2+ on rotational and translational diffusion of lipids in multilamellar dimyristoylphosphatidylcholine (DMPC)-water systems were investigated by time-resolved phosphorescence anisotropy steady-state fluorescence polarization and fluorescence recovery after photobleaching (FRAP) experiments. Above the phase transition temperature (Tm), addition of Ca2+ caused a steady increase in the segmental motion of the phosphorescent probe, but resulted in slower diffusion of the fluorescent and lateral diffusion probes. The former result is attributed to changes in the structure of the lipid/water interface that affects the chromophore mobility on the phosphorescence time scale but does not reflect lipid motion. Below the phase transition temperature, slower diffusion of all probes were observed with increasing concentrations of Ca2+, with sudden large changes occurring at [Ca2+] approximately 500 mM. This behaviour is attributed to association of Ca2+ with the lipid phosphate groups and the exclusion of water molecules which results in tighter packing of lipids and smaller segmental motion, leading eventually to the immobilization of lipid molecules.  相似文献   

14.
The physical mechanisms that govern the folding and assembly of integral membrane proteins are poorly understood. It appears that certain properties of the lipid bilayer affect membrane protein folding in vitro, either by modulating helix insertion or packing. In order to begin to understand the origin of this effect, we investigate the effect of lipid forces on the insertion of a transmembrane alpha-helix using a water-soluble, alanine-based peptide, KKAAAIAAAAAIAAWAAIAAAKKKK-amide. This peptide binds to preformed 1,2-dioleoyl-l-alpha-phosphatidylcholine (DOPC) vesicles at neutral pH, but spontaneous transmembrane helix insertion directly from the aqueous phase only occurs at high pH when the Lys residues are de-protonated. These results suggest that the translocation of charge is a major determinant of the activation energy for insertion. Time-resolved measurements of the insertion process at high pH indicate biphasic kinetics with time constants of ca 30 and 430 seconds. The slower phase seems to correlate with formation of a predominantly transmembrane alpha-helical conformation, as determined from the transfer of the tryptophan residue to the hydrocarbon region of the membrane. Temperature-dependent measurements showed that insertion can proceed only above a certain threshold temperature and that the Arrhenius activation energy is of the order of 90 kJ mol(-1). The kinetics, threshold temperature and the activation energy change with the mole fraction of 1,2-dioleoyl-l-alpha-phosphatidylethanolamine (DOPE) introduced into the DOPC membrane. The activation energy increases with increasing DOPE content, which could reflect the fact that this lipid drives the bilayer towards a non-bilayer transition and increases the lateral pressure in the lipid chain region. This suggests that folding events involving the insertion of helical segments across the bilayer can be controlled by lipid forces.  相似文献   

15.
H Hauser  N Gains  G Semenza  M Spiess 《Biochemistry》1982,21(22):5621-5628
The temperature dependence of the packing (order) and fluidity (microviscosity) of rabbit small, intestinal brush border vesicle membranes and of liposomes made from their extracted lipids has been investigated by using a variety of lipid spin probes. The lipids in the brush border membrane are present essentially as a bilayer. Compared to other mammalian membranes, the brush border membrane appears to be characterized by a relatively high packing order as well as microviscosity. At body temperature, the lipid molecules undergo rapid, anisotropic motion, which is essentially a fast rotation about an axis approximately perpendicular to the bilayer normal. Both the order (motional anisotropy) and the microviscosity increase with decreasing temperature and with increasing distance from the center of the bilayer. Qualitatively similar motional or fluidity gradients have been reported for other mammalian and bacterial membranes. The liposomes made from the extracted lipids have a somewhat lower packing order and a slightly higher fluidity than brush border vesicle membranes. The differences are, however, small indicating that the packing and the fluidity (microviscosity) of the membrane are primarily determined by the lipid composition. Membrane-associated proteins and cytoskeleton cannot play a dominant role in determining the order and fluidity of the lipid bilayer. Discontinuities are observed in the temperature dependence of various spectral parameters, the order parameter S, the rotational correlation time tau, and 2,2,6,6-tetramethylpiperidinyloxy partitioning. They are assigned to phase transitions and/or phase separations of the membrane lipids. These discontinuities occur at about 30, 20, and 13 degrees C for 5-doxyl-, 12-doxyl-, and 16-doxylstearic acid, respectively. The apparent transition temperature depends on the location of the spin probe along the bilayer normal, being higher the closer the probe is to the membrane surface. This indicates the possibility that chain melting is progressive and spreads with increasing temperature from the center of the membrane outward.  相似文献   

16.
The aim of the study was to determine changes incurred by polyphenolic compounds from selected fruits in the lipid phase of the erythrocyte membrane, in liposomes formed of erythrocyte lipids and phosphatidylcholine liposomes. In particular, the effect of extracts from apple, chokeberry, and strawberry on the red blood cell morphology, on packing order in the lipid hydrophilic phase, on fluidity of the hydrophobic phase, as well as on the temperature of phase transition in DPPC liposomes was studied. In the erythrocyte population, the proportions of echinocytes increased due to incorporation of polyphenolic compounds. Fluorimetry with a laurdan probe indicated increased packing density in the hydrophilic phase of the membrane in presence of polyphenolic extracts, the highest effect being observed for the apple extract. Using the fluorescence probes DPH and TMA-DPH, no effect was noted inside the hydrophobic phase of the membrane, as the lipid bilayer fluidity was not modified. The polyphenolic extracts slightly lowered the phase transition temperature of phosphatidylcholine liposomes. The studies have shown that the phenolic compounds contained in the extracts incorporate into the outer region of the erythrocyte membrane, affecting its shape and lipid packing order, which is reflected in the increasing number of echinocytes. The compounds also penetrate the outer part of the external lipid layer of liposomes formed of natural and DPPC lipids, changing its packing order.  相似文献   

17.
The aim of this study was to gain insight into the structural consequences of hydrophobic mismatch for membrane proteins in lipid bilayers that contain cholesterol. For this purpose, tryptophan-flanked peptides, designed to mimic transmembrane segments of membrane proteins, were incorporated in model membranes of unsaturated phosphatidylcholine bilayers of varying thickness and containing varying amounts of cholesterol. Analysis of the lipid organization by (31)P NMR and cryo-TEM demonstrated the formation of an isotropic phase, most likely representing a cubic phase, which occurred exclusively in mixtures containing lipids with relatively long acyl chains. Formation of this phase was inhibited by incorporation of lysophosphatidylcholine. These results indicate that the isotropic phase is formed as a consequence of negative hydrophobic mismatch and that its formation is related to a negative membrane curvature. When either peptide or cholesterol was omitted from the mixture, isotropic-phase formation did not occur, not even when the concentrations of these compounds were significantly increased. This suggests that formation of the isotropic phase is the result of a synergistic effect between the peptides and cholesterol. Interestingly, isotropic-phase formation was not observed when the tryptophans in the peptide were replaced by either lysines or histidines. We propose a model for the mechanism of this synergistic effect, in which its dependence on the flanking residues is explained by preferential interactions between cholesterol and tryptophan residues.  相似文献   

18.
Hydrophobic mismatch, which is the difference between the hydrophobic length of trans-membrane segments of a protein and the hydrophobic width of the surrounding lipid bilayer, is known to play a role in membrane protein function. We have performed molecular dynamics simulations of trans-membrane KALP peptides (sequence: GKK(LA)nLKKA) in phospholipid bilayers to investigate hydrophobic mismatch alleviation mechanisms. By varying systematically the length of the peptide (KALP15, KALP19, KALP23, KALP27, and KALP31) and the lipid hydrophobic length (DLPC, DMPC, and DPPC), a wide range of mismatch conditions were studied. Simulations of durations of 50-200 ns show that under positive mismatch, the system alleviates the mismatch predominantly by tilting the peptide and to a smaller extent by increased lipid ordering in the immediate vicinity of the peptide. Under negative mismatch, alleviation takes place by a combination of local bilayer bending and the snorkeling of the lysine residues of the peptide. Simulations performed at a higher peptide/lipid molar ratio (1:25) reveal slower dynamics of both the peptide and lipid relative to those at a lower peptide/lipid ratio (1:128). The lysine residues have favorable interactions with specific oxygen atoms of the phospholipid headgroups, indicating the preferred localization of these residues at the lipid/water interface.  相似文献   

19.
The transmembrane domains of membrane fusogenic proteins are known to contribute to lipid bilayer mixing as indicated by mutational studies and functional reconstitution of peptide mimics. Here, we demonstrate that mutations of a GxxxG motif or of Ile residues, that were previously shown to compromise the fusogenicity of the Vesicular Stomatitis virus G-protein transmembrane helix, reduce its backbone dynamics as determined by deuterium/hydrogen-exchange kinetics. Thus, the backbone dynamics of these helices may be linked to their fusogenicity which is consistent with the known over-representation of Gly and Ile in viral fusogen transmembrane helices. The transmembrane domains of membrane fusogenic proteins are known to contribute to lipid bilayer mixing. Our present results demonstrate that mutations of certain residues, that were previously shown to compromise the fusogenicity of the Vesicular Stomatitis virus G-protein transmembrane helix, reduce its backbone dynamics. Thus, the data suggest a relationship between sequence, backbone dynamics, and fusogenicity of transmembrane segments of viral fusogenic proteins.  相似文献   

20.
Modulating the structural dynamics of biomembranes by inducing bilayer curvature and lipid packing defects has been highlighted as a practical tool to modify membrane-dependent cellular processes. Previously, we have reported on an amphipathic helical peptide derived from the N-terminal segment (residues 1–18, EpN18) of epsin-1, which can promote membrane remodeling including lipid packing defects in cell membranes. However, a high concentration is required to exhibit a pronounced effect. In this study, we demonstrate a significant increase in the membrane-remodeling effect of EpN18 by constructing a branched EpN18 homotrimer. Both monomer and trimer could enhance cell internalization of octaarginine (R8), a cell-penetrating peptide. The EpN18 trimer, however, promoted the uptake of R8 at an 80-fold lower concentration than the monomer. Analysis of the generalized polarization of a polarity-sensitive dye (di-4-ANEPPDHQ) revealed a higher efficacy of trimeric EpN18 in loosening the lipid packing in the cell membrane. Circular dichroism measurements in the presence of lipid vesicles showed that the EpN18 trimer has a higher α-helix content compared with the monomer. The stronger ability of the EpN18 trimer to impede negative bilayer curvature is also corroborated by solid-state 31P NMR spectroscopy. Hence, trimerizing peptides can be considered a promising approach for an exponential enhancement of their membrane-remodeling performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号