首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Embryonic development depends on the establishment of polarities which define the axial characteristics of the body. In a small number of cases such as the embryo of the fly drosophila, developmental axes are established well before fertilization while in other organisms such as the nematode worm C. elegans these axes are set up only after fertilization. In most organisms the egg posesses a primary (A-V, Animal-Vegetal) axis acquired during oogenesis which participates in the establishment of the embryonic axes. Such is the case for the eggs of ascidians or the frog Xenopus whose AV axes are remodelled by sperm entry to yield the embryonic axes. Embryos of different species thus acquire an anterior end and a posterior end (Antero-Posterior, A-P axis), dorsal and ventral sides (D-V axis) and then a left and a right side.  相似文献   

2.
This paper compares geometry-based knee axes of rotation (transepicondylar axis and geometric center axis) and motion-based functional knee axes of rotation (fAoR). Two algorithms are evaluated to calculate fAoRs: Gamage and Lasenby's sphere fitting algorithm (GL) and Ehrig et al.'s axis transformation algorithm (SARA). Calculations are based on 3D motion data acquired during isokinetic dynamometry. AoRs are validated with the equivalent axis based on static MR-images. We quantified the difference in orientation between two knee axes of rotation as the angle between the projection of the axes in the transversal and frontal planes, and the difference in location as the distance between the intersection points of the axes with the sagittal plane. Maximum differences between fAoRs resulting from GL and SARA were 5.7° and 15.4mm, respectively. Maximum differences between fAoRs resulting from GL or SARA and the equivalent axis were 5.4°/11.5mm and 8.6°/12.8mm, respectively. Differences between geometry-based axes and EA are larger than differences between fAoR and EA both in orientation (maximum 10.6°).and location (maximum 20.8mm). Knee joint angle trajectories and the corresponding accelerations for the different knee axes of rotation were estimated using Kalman smoothing. For the joint angles, the maximum RMS difference with the MRI-based equivalent axis, which was used as a reference, was 3°. For the knee joint accelerations, the maximum RMS difference with the equivalent axis was 20°/s(2). Functional knee axes of rotation describe knee motion better than geometry-based axes. GL performs better than SARA for calculations based on experimental dynamometry.  相似文献   

3.
The blastoderm of the avian embryo acts during the early stages of development as an integrative system programmed to form a single embryonic axis. Isolated parts of the blastoderm are known to each form an axis, owing to the system's properties. In the work reported here, the regulative capability of the right and left halves of chick blastoderms to form an embryonic axis was examined systematically at different stages. This revealed a progressive change in the developing blastoderm. After early separation, the axis in each half will form at some distance from the blastoderm's original midline, while with late separation the axis will form next to the original midline and may even lack one row of somites at the medial rim. Since development stops in culture after about 2 days, axis development after early separation ceases before somites are formed, whereas after late separation somites and brain vesicles can develop. In addition, an attempt was made to learn whether the two halves of blastoderm, when shifted along the midline and then reunited in staggered fashion, act as a single or two separate embryonic fields. When reunion of the right and left halves was achieved so that the posterior end of one half was adjoining the posterior area pellucida region of the other half, a single embryonic axis developed. When, on the other hand, the shift was larger so that the posterior end was fused to the central area pellucida of the other half, two separated embryonic axes developed.  相似文献   

4.
5.
6.
We studied the influence of weightlessness on bilateral symmetry detection during prolonged space flight. Supposing that weightlessness may affect visual information processing by the right and left hemispheres in different ways, we studied this phenomenon with regard for the part of the visual field where to a stimulus was presented (the sight fixation center or the left/right half of this field). We used two types of stimuli, i.e., closed figures (polygons) and distributed figures formed by dots. There was a distinct difference between the central and noncentral presentation of stimuli under terrestrial conditions. When a stimulus was presented noncentrally (on the left or right), a manifest dominance of the horizontal axis was observed. However, there was no substantial difference while stimulating the left and right parts of the visual field. This contradicts the hypothesis on hemispheric specialization of the brain in symmetry detection. When stimuli were presented eccentrically, weightlessness did not notably influence information processing. When they were presented centrally, the predominance of the vertical axis in closed figures tended to weaken under the impact of weightlessness. However, this predominance strengthened when multicomponent figures were presented in space. The different influences of weightlessness on perceiving symmetry of stimuli of different types shows that it may be detected at various levels with different degrees of using nonvisual sensory information.  相似文献   

7.
Most E  Axe J  Rubash H  Li G 《Journal of biomechanics》2004,37(11):1743-1748
Various flexion axes have been used in the literature to describe knee joint kinematics. This study measured the passive knee kinematics of six cadaveric human knee specimens using two widely accepted flexion axes; transepicondylar axis and the geometric center axis. These two axes were found to form an angle of 4.0 degrees +/- 0.8 degrees. The tibial rotation calculated using the transepicondylar axis was significantly different than the rotation obtained using the geometric center axis for the same knee motion. At 90 degrees of flexion, the tibial rotation obtained using the transepicondylar axis was 4.8 degrees +/- 9.4 degrees whereas the rotation recorded using the geometric center axis at the same flexion angle was 13.8 degrees +/- 10.2 degrees. At 150 degrees of knee flexion, the rotations obtained from the transepicondylar and the geometric center axes were 7.2 degrees +/- 5.7 degrees and 19.9 degrees +/- 6.9 degrees, respectively. The data suggest that a clear definition of the flexion axis is necessary when reporting knee joint kinematics.  相似文献   

8.
The spatial gross motion of the foot with respect to the shank is modelled as rotations about two fixed ankle axes: the upper ankle rotation axis (plantarflexion/dorsiflexion) and the subtalar rotation axis (inversion/eversion). The positions of the axes are determined by externally visible bony landmarks of the lower leg and are measured for a living subject. The model input data are the plantarflexion/dorsiflexion and inversion/eversion rotation angles; the model output is a 4 × 4 transformation matrix which quantitatively describes the relative position of a foot coordinate system with respect to a shank coordinate system.  相似文献   

9.
In recent years, genes that show left-right (L-R) asymmetric expression patterns have been identified one after another in vertebrate gastrula-neurula embryos. However, we still have little information about when the irreversible L-R specification is established in vertebrate embryos. In this report, we show that almost 100% of the embryos develop to be L-R-inverted larvae after microinjection of activin molecules into the right lateral hypodermic space of Xenopus neurula embryos. After right-side injection of 10-250 pg activin protein, both early neurulae just after gastrulation movement (stage 13-14) and late neurulae just before neural tube closure (stage 17-18) showed almost 100% reversal of the heart and gut L-R axes. At higher doses of activin, more than 90% of the L-R-inverted embryos showed L-R reversal of both heart and gut. The survival ratio of the right-injected 4-day embryos was 90% on average. In the left-injected embryos, the occurrence of L-R inversion was less than 2% as observed in normal untreated siblings (1.7%). When the same amount of activin (1-50 pg) was microinjected into both sides of neurula embryos, the incidence of L-R inversion was reduced to 58%. The injection of activin along the dorsal midline in the trunk region also randomized the visceral L-R axis. Injection of activin into the right side changed normal left-handed expression of Xnr-1 to right-handed or bilateral expression. In contrast, left-handed expression of Pitx2 was switched to the right side by right activin injection. This is the first report of a method that achieves complete inversion of the visceral L-R axis by treatment of embryos at the neurula stage. Activin not only acts on the neurulae to cancel the original L-R specification up to the late neurula stage, but also rebuilds a new L-R axis whose left side coincides with the injection side. It is suggested that the left and right halves of neurulae have equal potential for L-R differentiation.  相似文献   

10.
Accurate determination of joint axes is essential for understanding musculoskeletal function. Whilst numerous algorithms to compute such axes exist, the conditions under which each of the methods performs best remain largely unknown. Typically, algorithms are evaluated for specific conditions only limiting the external validity of conclusions regarding their performance. We derive exact mathematical relationships between three commonly used algorithms for computing joint axes from motion data: finite helical axes (FHA), instantaneous helical axes (IHA) and SARA (symmetrical axis of rotation approach), including relationships for an extension to the mean helical axes methods that facilitate determining joint centres and axes. Through the derivation of a sound mathematical framework to objectively compare the algorithms we demonstrate that the FHA and SARA approach are equivalent for the analysis of two time frames. Moreover, we show that the position of a helical axis derived from the IHA using positional data is affected by a systematic error perpendicular to the true axis direction, whereas the axis direction is identical to those computed with either the FHA or SARA approach (true direction). Finally, with an appropriate choice of weighting factors the mean FHA (MFHA) method is equivalent to the Symmetrical Centre of Rotation Estimation (SCoRE) algorithm for determination of a Centre of Rotation (CoR), and similarly, equivalent to the SARA algorithm for determination of an Axis of Rotation (AoR). The deep understanding of the equivalences between methods presented here enables readers to choose numerically efficient, robust methods for determining AoRs and CoRs with confidence.  相似文献   

11.
Regulation of axis determinacy by the Arabidopsis PINHEAD gene   总被引:1,自引:0,他引:1       下载免费PDF全文
Plants produce proximal-distal growth axes with two types of growth potential: they can be indeterminate, in which case growth continues indefinitely, or they can be determinate, in which case growth is limited to the production of a single organ or a discrete set of organs. The indeterminate shoot axes of Arabidopsis pinhead/zwille mutants frequently are transformed to a determinate state. PINHEAD (PNH) is expressed in the central domain of the developing plant: the provascular tissue, the shoot apical meristem, and the adaxial (upper) sides of lateral organ primordia. Here, we show that ectopic expression of PNH on the abaxial (lower) sides of lateral organs results in upward curling of leaf blades. This phenotype correlates with a loss of cell number coordination between the two surfaces of the blade, indicating that ectopic PNH can cause changes in cell division rates. More strikingly, moving PNH expression from the central to the peripheral domain of the embryo causes transformation of the determinate cotyledon axis to an indeterminate state. We propose that growth axes are specified as determinate versus indeterminate in a PNH-mediated step. Our results add to a growing body of evidence that radial positional information is important in meristem formation. These results also indicate that genes regulating cell division and axis determinacy are likely to be among PNH targets.  相似文献   

12.
In this study, we investigated (in the early mouse embryo) the clonal properties of precursor cells which contribute to the segmented myotome, a structure derived from the somites. We used the laacZ method of single cell-labelling to visualise clones born before segmentation and bilateralisation. We found that clones which contribute to several segments both unilateral and bilateral were regionalised along the mediolateral axis and that their mediolateral position was maintained in successive adjacent segments. Furthermore, clones contributed to all segments, from their most anterior to their most posterior borders. Therefore, it appears that mediolateral regionalisation of myotomal precursor cells is a property established before bilateralisation of the presomitic mesoderm and that coherent clonal growth accompanies cell dispersion along both the mediolateral and anteroposterior axes. These findings in the mouse correlate well with what is known in the chick, suggesting conservation of the mode of production and distribution of the cells of the presomitic mesoderm. However, in addition, we also found that the mediolateral contribution of a clone is already determined in the pool of self-renewing cells that produces the myotomal precursor cells and thus that this pool is itself regionalised. Finally, we found that bilateral clones exhibit symmetry in right and left sides in the embryo at all levels of the mediolateral axis of the myotome. All these properties indicate synchrony and symmetry of formation of the presomitic mesoderm on both sides of the embryo leading to formation of a static embryonic structure with few cell movements. We suggest that sequential production of groups of cells with an identical clonal origin for both sides of the embryo from a single pool of self-renewing cells, coupled with acquisition of static cell behaviour, could play a role in colinearity of expression of Hox genes and in the segmentation system of higher vertebrates.  相似文献   

13.
When skin-fixed marker trajectories are used to calculate 3D joint kinematics, the measurement errors (i.e. the difference between the trajectories of the external markers and those of the skeleton) influence to some extent the accuracy of the results, depending both on the calculation method and on the axes about which the rotations are expressed. The purpose of this paper is to compare several expressions of joint angular variations. Two kinematic concepts are used to calculate the changes in the orientation of the distal segment versus the proximal one: the first method consists of computing the components of the spatial attitude vector, the second one deals with the determination of elementary rotations about successive axes. For each of these methods, two sets of three axes are tested to express the results: the axes forming the reference frame affixed to the body segment adjacent to the joint (named fixed axes), and a set consisting of a first axis belonging to the proximal segment, a third axis belonging to the distal segment and a second (floating) axis defined as the cross-product between the two other ones (named mobile axes). To compare these four distinct expressions on the knee joint, numerical simulations of perturbed skin marker trajectories are performed, based on experimental data recorded by a Motion Analysis system during a normal gait cycle. A significant difference is pointed out only for the internal–external rotation angle, for which the best expression — from the viewpoint of sensitivity to experimental errors — is obtained using the components of the attitude vector in a segment-embedded reference frame.  相似文献   

14.
The International Society of Biomechanics (ISB) has recommended a standardisation for the motion reporting of almost all human joints. This study proposes an adaptation for the trapeziometacarpal joint. The definition of the segment coordinate system of both trapezium and first metacarpal is based on functional anatomy. The definition of the joint coordinate system (JCS) is guided by the two degrees of freedom of the joint, i.e. flexion-extension about a trapezium axis and abduction-adduction about a first metacarpal axis. The rotations obtained using three methods are compared on the same data: the fixed axes sequence proposed by Cooney et al., the mobile axes sequence proposed by the ISB and our alternative mobile axes sequence. The rotation amplitudes show a difference of 9 degrees in flexion-extension, 2 degrees in abduction-adduction and 13 degrees in internal-external rotation. This study emphasizes the importance of adapting the JCS to the functional anatomy of each particular joint.  相似文献   

15.
The International Society of Biomechanics (ISB) has recommended a standardisation for the motion reporting of almost all human joints. This study proposes an adaptation for the trapeziometacarpal joint.

The definition of the segment coordinate system of both trapezium and first metacarpal is based on functional anatomy. The definition of the joint coordinate system (JCS) is guided by the two degrees of freedom of the joint, i.e. flexion–extension about a trapezium axis and abduction–adduction about a first metacarpal axis. The rotations obtained using three methods are compared on the same data: the fixed axes sequence proposed by Cooney et al., the mobile axes sequence proposed by the ISB and our alternative mobile axes sequence. The rotation amplitudes show a difference of 9° in flexion–extension, 2° in abduction–adduction and 13° in internal–external rotation.

This study emphasizes the importance of adapting the JCS to the functional anatomy of each particular joint.  相似文献   

16.
To obtain breast motion relative to the trunk, skin markers are used to define a local coordinate system (trunk), with respect to the global reference frame. This study aimed to quantify any differences in multiplanar breast displacement relative to the trunk using the first axis of rotation as either the mediolateral or longitudinal axis. Ten female participants ran on a treadmill (10 kph) in three different breast supports (no bra, everyday bra, sports bra). Four reflective markers placed on the trunk and right nipple were tracked using eight infrared cameras (200 Hz) during five running gait cycles in each breast support condition. Following marker identification, right breast multiplanar displacements were calculated relative to the trunk using either the mediolateral axis or the longitudinal axis as the first rotational axis to define the orthogonal local coordinate system. Results showed that there was a significant difference (8.2%) in superioinferior breast displacement in the sports bra condition when calculated using different axes conventions for the trunk segment. Furthermore, the greatest magnitude of breast displacement occurred in a different direction depending upon the selection of the first rotational axis. The definition of the primary reference axis of the trunk significantly alters the magnitude of superioinferior breast displacement and therefore it is recommended that the previously reported ‘stable’ longitudinal axis should be defined as the first rotational axis during running. Caution should also be used as the axes convention influences the magnitude and direction of breast support requirements, which has important implications for bra design.  相似文献   

17.
In brown thrashers (Toxostoma rufum) and grey catbirds (Dumetella carolinensis) neither side of the syrinx has a consistently dominant role in song production. During song, the two sides operate independently, but in close cooperation with each other and with the respiratory muscles which are capable of adjusting expiratory effort to maintain a constant rate of syringeal airflow despite sudden changes in syringeal resistance. Phonation is frequently switched from one side of the syrinx to the other, both between syllables and within a syllable. When both sides of the syrinx produce sound simultaneously, their respective contributions are seldom harmonically related. The resulting “two-voice” syllables sometimes contain difference tones with prominent sinusoidal amplitude modulation (AM). Rarely, both sides simultaneously produce the same sound. In general, however, the frequency range of sound contributed by the right syrinx is higher than that of the left syrinx. The right syrinx is also primarily responsible for producing a rapid cyclical amplitude modulation which is a characteristic feature of some syllables. This kind of AM is generated by either repetitive brief bursts of sound from the right side that modulate the amplitude of a continuous sound arising on the left side or cyclically opening the right syrinx, allowing unmodulated expiratory air to bypass the phonating left side. 1994 John Wiley & Sons, Inc.  相似文献   

18.
Measurements of joint angles during motion analysis are subject to error caused by kinematic crosstalk, that is, one joint rotation (e. g., flexion) being interpreted as another (e.g., abduction). Kinematic crosstalk results from the chosen joint coordinate system being misaligned with the axes about which rotations are assumed to occur. The aim of this paper is to demonstrate that measurement of the so-called "screw-home" motion of the human knee, in which axial rotation and extension are coupled, is especially prone to errors due to crosstalk. The motions of two different two-segment mechanical linkages were examined to study the effects of crosstalk. The segments of the first linkage (NSH) were connected by a revolute joint, but the second linkage (SH) incorporated gearing that caused 15 degrees of screw-home rotation to occur with 90 degrees knee flexion. It was found that rotating the flexion axis (inducing crosstalk) could make linkage NSH appear to exhibit a screw-home motion and that a different rotation of the flexion axis could make linkage SH apparently exhibit pure flexion. These findings suggest that the measurement of screw-home rotation may be strongly influenced by errors in the location of the flexion axis. The magnitudes of these displacements of the flexion axis were consistent with the inter-observer variability seen when five experienced observers defined the flexion axis by palpating the medial and lateral femoral epicondyles. Care should be taken when interpreting small internal-external rotations and abduction-adduction angles to ensure that they are not the products of kinematic crosstalk.  相似文献   

19.
Effects of active head movements about the pitch, roll, or yaw axes on horizontal optokinetic afternystagmas (OKAN) were examined in 16 subjects to test the hypothesis that otolith organ mediated activity induced by a change in head position can couple to the horizontal velocity storage in humans. Active head movements about the pitch axis, forwards or backwards, produced significant OKAN suppression. Pitch forward head movements exerted the strongest effect. Active head movements about the roll axis towards the right also produced OKAN suppression but only if the tilted position was sustained. No suppression was observed following sustained yaw. However, an unsustained yaw left movement after rightward drum rotation significantly enhanced OKAN. Sustained head movement trials did not significantly alter subsequent control trials. In contrast, unsustained movements about the pitch axis, which involve more complex interactions, exerted long-term effects on subsequent control trials. We conclude that otolith organ mediated activity arising from pitch or roll head movements couples to the horizontal velocity storage in humans, thereby suppressing ongoing OKAN. Activity arising from the horizontal canals during an unsustained yaw movement (observed mainly with yaw left), following drum rotation in a direction contralateral to the movement, may also couple to the velocity storage, resulting in increased activity instead of suppression.  相似文献   

20.
In this paper a method is presented to calculate Euler's angles of rotation of a body segment during locomotion without a priori defining the location of the center of rotation, and without defining a local vertebral coordinate system. The method was applied to in vivo spinal kinematics. In this method, the orientation of each segment is identified by a set of three markers. The orientation of the axes of rotation is calculated based on the average position of the markers during one stride cycle. Some restrictions and assumptions should be made. The approach is viable only when the average orientation of the anatomical axes of rotation of each spinal segment during a stride cycle coincides with the three axes of the laboratory coordinate system. Furthermore, the rotations should be symmetrical with respect to both sides of the plane of symmetry of the spinal segment, and the subject should move parallel to one axis of the laboratory coordinate system. Since in experimental conditions these assumptions will only be met approximately, errors will be introduced in the calculated angles of rotation. The magnitude of the introduced errors was investigated in a computer simulation experiment. Since the maximal errors did not exceed 0.7° in a range of misalignments up to 10° between the two coordinate systems, the approach proved to be a valid method for the estimation of spinal kinematics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号