首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
2.
During mRNA 3′ end formation, cleavage stimulation factor (CstF) binds to a GU-rich sequence downstream from the polyadenylation site and helps to stabilise the binding of cleavage-polyadenylation specificity factor (CPSF) to the upstream polyadenylation sequence (AAUAAA). The 64 kDa subunit of CstF (CstF-64) contains an RNA binding domain and is responsible for the RNA binding activity of CstF. It interacts with CstF-77, which in turn interacts with CPSF. The Drosophila suppressor of forked gene encodes a homologue of CstF-77, and mutations in it affect mRNA 3′ end formation in vivo. A Drosophila homologue for CstF-64 has now been isolated, both through homology with the human protein and through protein–protein interaction in yeast with the suppressor of forked gene product. Alignment of CstF-64 homologues shows that the proteins have a conserved N-terminal 200 amino acids, the first half of which is the RNA binding domain with the second half likely to contain the CstF-77 interaction domain; a central region variable in length and rich in glycine, proline and glutamine residues and containing an unusual degenerate repeat motif; and then a conserved C-terminal 50 amino acids. In Drosophila, the CstF-64 gene has a single 63 bp intron, is transcribed throughout development and probably corresponds to l(3)91Cd.  相似文献   

3.
CstF-64 (cleavage stimulation factor-64), a major regulatory protein of polyadenylation, is absent during male meiosis. Therefore a paralogous variant, tauCstF-64 is expressed in male germ cells to maintain normal spermatogenesis. Based on sequence differences between tauCstF-64 and CstF-64, and on the high incidence of alternative polyadenylation in testes, we hypothesized that the RBDs (RNA-binding domains) of tauCstF-64 and CstF-64 have different affinities for RNA elements. We quantified K(d) values of CstF-64 and tauCstF-64 RBDs for various ribopolymers using an RNA cross-linking assay. The two RBDs had similar affinities for poly(G)18, poly(A)18 or poly(C)18, with affinity for poly(C)18 being the lowest. However, CstF-64 had a higher affinity for poly(U)18 than tauCstF-64, whereas it had a lower affinity for poly(GU)9. Changing Pro-41 to a serine residue in the CstF-64 RBD did not affect its affinity for poly(U)18, but changes in amino acids downstream of the C-terminal alpha-helical region decreased affinity towards poly(U)18. Thus we show that the two CstF-64 paralogues differ in their affinities for specific RNA sequences, and that the region C-terminal to the RBD is mportant in RNA sequence recognition. This supports the hypothesis that tauCstF-64 promotes germ-cell-specific patterns of polyadenylation by binding to different downstream sequence elements.  相似文献   

4.
Polyadenylation of mRNA precursors is a two-step reaction requiring multiple protein factors. Cleavage stimulation factor (CstF) is a heterotrimer necessary for the first step, endonucleolytic cleavage, and it plays an important role in determining the efficiency of polyadenylation. Although a considerable amount is known about the RNA binding properties of CstF, the protein-protein interactions required for its assembly and function are poorly understood. We therefore first identified regions of the CstF subunits, CstF-77, CstF-64, and CstF-50, required for interaction with each other. Unexpectedly, small regions of two of the subunits participate in multiple interactions. In CstF-77, a proline-rich domain is necessary not only for binding both other subunits but also for self-association, an interaction consistent with genetic studies in Drosophila. In CstF-64, a small region, highly conserved in metazoa, is responsible for interactions with two proteins, CstF-77 and symplekin, a nuclear protein of previously unknown function. Intriguingly, symplekin has significant similarity to a yeast protein, PTA1, that is a component of the yeast polyadenylation machinery. We show that multiple factors, including CstF, cleavage-polyadenylation specificity factor, and symplekin, can be isolated from cells as part of a large complex. These and other data suggest that symplekin may function in assembly of the polyadenylation machinery.  相似文献   

5.
The Cleavage stimulation Factor (CstF) complex is composed of three subunits and is essential for pre-mRNA 3'-end processing. CstF recognizes U and G/U-rich cis-acting RNA sequence elements and helps stabilize the Cleavage and Polyadenylation Specificity Factor (CPSF) at the polyadenylation site as required for productive RNA cleavage. Here, we describe the crystal structure of the N-terminal domain of Drosophila CstF-50 subunit. It forms a compact homodimer that exposes two geometrically opposite, identical, and conserved surfaces that may serve as binding platform. Together with previous data on the structure of CstF-77, homodimerization of CstF-50 N-terminal domain supports the model in which the functional state of CstF is a heterohexamer.  相似文献   

6.
F Chen  J Wilusz 《Nucleic acids research》1998,26(12):2891-2898
We have previously identified a G-rich sequence (GRS) as an auxiliary downstream element (AUX DSE) which influences the processing efficiency of the SV40 late polyadenylation signal. We have now determined that sequences downstream of the core U-rich element (URE) form a fundamental part of mammalian polyadenylation signals. These novel AUX DSEs all influenced the efficiency of 3'-end processing in vitro by stabilizing the assembly of CstF on the core downstream URE. Three possible mechanisms by which AUX DSEs mediate efficient in vitro 3'-end processing have been explored. First, AUX DSEs can promote processing efficiency by maintaining the core elements in an unstructured domain which allows the general polyadenylation factors to efficiently assemble on the RNA substrate. Second, AUX DSEs can enhance processing by forming a stable structure which helps focus binding of CstF to the core downstream URE. Finally, the GRS element, but not the binding site for the bacteriophage R17 coat protein, can substitute for the auxiliary downstream region of the adenovirus L3 polyadenylation signal. This suggests that AUX DSE binding proteins may play an active role in stimulating 3'-end processing by stabilizing the association of CstF with the RNA substrate. AUX DSEs, therefore, serve as a integral part of the polyadenylation signal and can affect signal strength and possibly regulation.  相似文献   

7.
Vertebrate polyadenylation sites are identified by the AAUAAA signal and by GU-rich sequences downstream of the cleavage site. These are recognized by a heterotrimeric protein complex (CstF) through its 64 kDa subunit (CstF-64); the strength of this interaction affects the efficiency of poly(A) site utilization. We present the structure of the RNA-binding domain of CstF-64 containing an RNA recognition motif (RRM) augmented by N- and C-terminal helices. The C-terminal helix unfolds upon RNA binding and extends into the hinge domain where interactions with factors responsible for assembly of the polyadenylation complex occur. We propose that this conformational change initiates assembly. Consecutive Us are required for a strong CstF-GU interaction and we show how UU dinucleotides are recognized. Contacts outside the UU pocket fine tune the protein-RNA interaction and provide different affinities for distinct GU-rich elements. The protein-RNA interface remains mobile, most likely a requirement to bind many GU-rich sequences and yet discriminate against other RNAs. The structural distinction between sequences that form stable and unstable complexes provides an operational distinction between weakly and strongly processed poly(A) sites.  相似文献   

8.
9.
The CstF polyadenylation factor is a multisubunit complex required for efficient cleavage and polyadenylation of pre-mRNAs. Using an RNase H-mediated mapping technique, we show that the 64-kDa subunit of CstF can be photo cross-linked to pre-mRNAs at U-rich regions located downstream of the cleavage site of the simian virus 40 late and adenovirus L3 pre-mRNAs. This positional specificity of cross-linking is a consequence of CstF interaction with the polyadenylation complex, since the 64-kDa protein by itself is cross-linked at multiple positions on a pre-mRNA template. During polyadenylation, four consecutive U residues can substitute for the native downstream U-rich sequence on the simian virus 40 pre-mRNA, mediating efficient 64-kDa protein cross-linking at the downstream position. Furthermore, the position of the U stretch not only enables the 64-kDa polypeptide to be cross-linked to the pre-mRNA but also influences the site of cleavage. A search of the GenBank database revealed that a substantial portion of mammalian polyadenylation sites carried four or more consecutive U residues positioned so that they should function as sites for interaction with the 64-kDa protein downstream of the cleavage site. Our results indicate that the polyadenylation machinery physically spans the cleavage site, directing cleavage factors to a position located between the upstream AAUAAA motif, where the cleavage and polyadenylation specificity factor is thought to interact, and the downstream U-rich binding site for the 64-kDa subunit of CstF.  相似文献   

10.
The removal of the 3' region of pre-mRNA followed by polyadenylation is a key step in mRNA maturation. In the yeast Saccharomyces cerevisiae, one component of the processing machinery is the cleavage/polyadenylation factor IA (CF IA) complex, composed of four proteins (Clp1p, Pcf11p, Rna14p, Rna15p) that recognize RNA sequences adjacent to the cleavage site and recruit additional processing factors. To gain insight into the molecular architecture of CF IA we solved the solution structure of the heterodimer composed of the interacting regions between Rna14p and Rna15p. The C-terminal monkeytail domain from Rna14p and the hinge region from Rna15p display a coupled binding and folding mechanism, where both peptides are initially disordered. Mutants with destabilized monkeytail-hinge interactions prevent association of Rna15p within CF IA. Conservation of interdomain residues reveals that the structural tethering is preserved in the homologous mammalian cleavage stimulation factor (CstF)-77 and CstF-64 proteins of the CstF complex.  相似文献   

11.
Recent genome-wide analyses have implicated alternative polyadenylation — the process of regulated mRNA 3′ end formation — as a critical mechanism that influences multiple steps of mRNA metabolism in addition to increasing the protein-coding capacity of the genome. Although the functional consequences of alternative polyadenylation are well known, protein factors that regulate this process are poorly characterized. Previously, we described an evolutionarily conserved family of neuronal splice variants of the CstF-64 mRNA, βCstF-64, that we hypothesized to function in alternative polyadenylation in the nervous system. In the present study, we show that βCstF-64 mRNA and protein expression increase in response to nerve growth factor (NGF), concomitant with differentiation of adrenal PC-12 cells into a neuronal phenotype, suggesting a role for βCstF-64 in neuronal gene expression. Using PC-12 cells as model, we show that βCstF-64 is a bona fide polyadenylation protein, as evidenced by its association with the CstF complex, and by its ability to stimulate polyadenylation of luciferase reporter mRNA. Using luciferase assays, we show that βCstF-64 stimulates polyadenylation equivalently at the two weak poly(A) sites of the β-adducin mRNA. Notably, we demonstrate that the activity of βCstF-64 is less than CstF-64 on a strong polyadenylation signal, suggesting polyadenylation site-specific differences in the activity of the βCstF-64 protein. Our data address the polyadenylation functions of βCstF-64 for the first time, and provide initial insights into the mechanism of alternative poly(A) site selection in the nervous system.  相似文献   

12.
13.
We have investigated the role of the human papillomavirus type 16 (HPV-16) early untranslated region (3' UTR) in HPV-16 gene expression. We found that deletion of the early 3' UTR reduced the utilization of the early polyadenylation signal and, as a consequence, resulted in read-through into the late region and production of late L1 and L2 mRNAs. Deletion of the U-rich 3' half of the early 3' UTR had a similar effect, demonstrating that the 57-nucleotide U-rich region acted as an enhancing upstream element on the early polyadenylation signal. In accordance with this, the newly identified hFip1 protein, which has been shown to enhance polyadenylation through U-rich upstream elements, interacted specifically with the HPV-16 upstream element. This upstream element also interacted specifically with CstF-64, hnRNP C1/C2, and polypyrimidine tract binding protein, suggesting that these factors were either enhancing or regulating polyadenylation at the HPV-16 early polyadenylation signal. Mutational inactivation of the early polyadenylation signal also resulted in increased late mRNA production. However, the effect was reduced by the activation of upstream cryptic polyadenylation signals, demonstrating the presence of additional strong RNA elements downstream of the early polyadenylation signal that direct cleavage and polyadenylation to this region of the HPV-16 genome. In addition, we identified a 3' splice site at genomic position 742 in the early region with the potential to produce E1 and E4 mRNAs on which the E1 and E4 open reading frames are preceded only by the suboptimal E6 AUG. These mRNAs would therefore be more efficiently translated into E1 and E4 than previously described HPV-16 E1 and E4 mRNAs on which E1 and E4 are preceded by both E6 and E7 AUGs.  相似文献   

14.
Cleavage stimulation factor (CstF) is a heterotrimeric protein complex essential for polyadenylation of mRNA precursors. The 77 kDa subunit, CstF-77, is known to mediate interactions with the other two subunits of CstF as well as with other components of the polyadenylation machinery. We report here the crystal structure of the HAT (half a TPR) domain of murine CstF-77, as well as its C-terminal subdomain. Structural and biochemical studies show that the HAT domain consists of two subdomains, HAT-N and HAT-C domains, with drastically different orientations of their helical motifs. The structures reveal a highly elongated dimer, spanning 165 A, with the dimerization mediated by the HAT-C domain. Light-scattering studies, yeast two-hybrid assays, and analytical ultracentrifugation measurements confirm this self-association. The mode of dimerization and the relative arrangement of the HAT-N and HAT-C domains are unique to CstF-77. Our data support a role for CstF dimerization in pre-mRNA 3' end processing.  相似文献   

15.
16.
17.
A recent genome-wide bioinformatic analysis indicated that 54% of human genes undergo alternative polyadenylation. Although it is clear that differential selection of poly(A) sites can alter gene expression, resulting in significant biological consequences, the mechanisms that regulate polyadenylation are poorly understood. Here we report that the neuron-specific members of a family of RNA-binding proteins, Hu proteins, known to regulate mRNA stability and translation in the cytoplasm, play an important role in polyadenylation regulation. Hu proteins are homologs of the Drosophila embryonic lethal abnormal visual protein and contain three RNA recognition motifs. Using an in vitro polyadenylation assay with HeLa cell nuclear extract and recombinant Hu proteins, we have shown that Hu proteins selectively block both cleavage and poly(A) addition at sites containing U-rich sequences. Hu proteins have no effect on poly(A) sites that do not contain U-rich sequences or sites in which the U-rich sequences are mutated. All three RNA recognition motifs of Hu proteins are required for this activity. Overexpression of HuR in HeLa cells also blocks polyadenylation at a poly(A) signal that contains U-rich sequences. Hu proteins block the interaction between the polyadenylation cleavage stimulation factor 64-kDa subunit and RNA most likely through direct interaction with poly(A) cleavage stimulation factor 64-kDa subunit and cleavage and polyadenylation specificity factor 160-kDa subunit. These studies identify a novel group of mammalian polyadenylation regulators. Furthermore, they define a previously unknown nuclear function of Hu proteins.  相似文献   

18.
19.
20.
The 3' cleavage and polyadenylation of mRNAs has been studied in detail in animals and yeast, but not in plants. Aimed at elucidating the regulation of mRNA 3' end formation in plants, three Arabidopsis cDNAs encoding homologues of the animal proteins CstF-64, CstF-77 and CstF-50 that form the cleavage stimulating factor of the polyadenylation machinery have been cloned. It is shown experimentally that the N-terminal domain of the Arabidopsis CstF-64 homologue binds the mRNA 3' non-coding region in an analogous manner to the animal protein. It is also shown that the Arabidopsis CstF-64 and CstF-77 homologues strongly interact with each other in a similar way to their animal counterparts. These results imply that these Arabidopsis homologues belong to the polyadenylation machinery of nuclear mRNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号