首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The region of the chloroplast genome of Chlamydomonas reinhardii containing the gene of the thylakoid polypeptide D2 (psbD) has been sequenced. A unique open reading frame of 350 codons exists in this region. Because the first ATG is followed 11 codons downstream by a second one, the D2 polypeptide consists of either 339 or 350 amino acids. Comparison of the sequences of D2 and the 32K dalton polypeptides, both of which are associated with photosystem II, reveals partial homology. Although, the overall homology of these two polypeptides is only 27%, they contain several related regions and their hydropathic profiles are strikingly similar. These data suggest that the two polypeptides may have related functions and/or that their genes may have originated from a common ancestor. Alternatively, convergent evolution of these polypeptides may be due to structural constraints in the thylakoid membrane. Limited sequence homology is also observed between the D2 polypeptide and some of the subunits of the reaction centers of photosynthetic bacteria.  相似文献   

2.
The linear, four-step oxidation of water to molecular oxygen by photosystem II requires cooperation between redox reactions driven by light and a set of redox reactions involving the S-states within the oxygen-evolving complex. The oxygenevolving complex is a highly ordered structure in which a number of polypeptides interact with one another to provide the appropriate environment for productive binding of cofactors such as manganese, chloride and calcium, as well as for productive electron transfer within the photoact. A number of recent advances in the knowledge of the polypeptide structure of photosystem II has revealed a correlation between primary photochemical events and a core complex of five hydrophobic polypeptides which provide binding sites for chlorophyll a, pheophytin a, the reaction center chlorophyll (P680), and its immediate donor, denoted Z. Although the core complex of photosystem II is photochemically active, it does not possess the capacity to evolve oxygen. A second set of polypeptides, which are water-soluble, have been discovered to be associated with photosystem II; these polypeptides are now proposed to be the structural elements of a special domain which promotes the activities of the loosely-bound cofactors (manganese, chloride, calcium) that participate in oxygen evolution activity. Two of these proteins (whose molecular weights are 23 and 17 kDa) can be released from photosystem II without concurrent loss of functional manganese; studies on these proteins and on the membranes from which they have been removed indicate that the 23 and 17 kDa species from part of the structure which promotes retention of chloride and calcium within the oxygen-evolving complex. A third water-soluble polypeptide of molecular weight 33 kDa is held to the photosystem II core complex by a series of forces which in some circumstances may include ligation to manganese. The 33 kDa protein has been studied in some detail and appears to promote the formation of the environment which is required for optimal participation by manganese in the oxygen evolving reaction. This minireview describes the polypeptides of photosystem II, places an emphasis on the current state of knowledge concerning these species, and discusses current areas of uncertainty concerning these important polypeptides.Abbreviations A 23187 ionophore that exchanges divalent cations with H+ - Chl chlorophyll - cyt cytochrome - DCPIP dichlorophenolindophenol - DPC diphenylcarbazide - EGTA ethyleneglycoltetraacetic acid - P680 the chlorophyll a reaction center of photosystem II - pheo pheophytin - PQ plastoquinone - PS photosystem - QA and QB primary and secondary plastoquinone electron acceptors of photosystem II - Sn (n=0, 1, 2, 3, 4) charge accumulating state of the oxygen evolving system - Signals IIvf, IIf and IIs epr-detectable free radicals associated with the oxidizing side of photosystem II - Z primary electron donor to the photosystem II reaction center The survey of literature for this review ended in September, 1984.  相似文献   

3.
Inactivation of the water splitting enzyme complex in leaves or isolated chloroplasts results in increased susceptibility of photosystem II (PSII) to damage by light. Photoinhibition under this condition occurs in very weak light. The site of damage is exclusive of the water splitting complex yet still on the oxidizing side of PSII, as the QB locus is unaffected while photoreduction of silicomolybdate is inhibited. The kinetics of loss in PSII activity are more complex than apparent first-order, and the quantum efficiency is low. We observe no evidence of deletion from thylakoid membranes of any PSII polypeptide as a consequence of photoinhibition, although recovery from the photoinhibition is dependent upon both light and 70S protein synthesis. Enhanced synthesis of two proteins occurs during recovery, only one of which (D2) appears to be causally related to the recovery. We present a model which describes the relationship of weak light photoinhibition and its recovery to photoactivation of the S-state water oxidizing complex.  相似文献   

4.
5.
The effect of protein phosphorylation on electron transportactivities of thylakoids isolated from wheat leaves was investigated.Protein phosphorylation resulted in a reduction in the apparentquantum yield of whole chain and photosystem II (PSII) electrontransport but had no effect on photosystem I (PSI) activity.The affinity of the D1 reaction centre polypeptide of PSII tobind atrazine was diminished upon phosphorylation, however,this did not reduce the light-saturated rate of PSII electrontransport. Phosphorylation also produced an inhibition of thelight-saturated rate of electron transport from water or durohydroquinoneto methyl viologen with no similar effect being observed onthe light-saturated rate of either PSII or PSI alone. This suggeststhat phosphorylation produces an inhibition of electron transportat a site, possibly the cytochrome b6/f complex, between PSIIand PSI. This inhibition of whole-chain electron transport wasalso observed for thylakoids isolated from leaves grown underintermittent light which were deficient in polypeptides belongingto the light-harvesting chlorophyll-protein complex associatedwith photosystem II (LHCII). Consequently, this phenomenon isnot associated with phosphorylation of LCHII polypeptides. Apossible role for cytochrome b6/f complexes in the phosphorylation-inducedinhibition of whole chain electron transport is discussed. Key words: Electron transport, light harvesting, photosystem 2, protein phosphorylation, thylakoid membranes, wheat (Triticum aestivum)  相似文献   

6.
The sensitivity of the D-1 and D-2 polypeptide subunits of photosystem II towards trypsin treatment of the thylakoid membrane has been probed with specific antibodies. As long known, electron flow from water to ferricyanide becomes inhibitor insensitive after this trypsin treatment. We show that under these conditions the D-2 polypeptide is cut by trypsin at arg 234. Also the D-1 polypeptide is cut, probably at arg 238. When short time trypsination of the membrane is done in the presence of inhibitors, electron flow also becomes inhibitor insensitive and the D-2 polypeptide is still cut, but the D-1 polypeptide is cut only under certain conditions. A protection of the D-1 polypeptide is possible with inhibitors of photosystem II of the DCMU/triazine-type and with an artificial acceptor quinone, but not with inhibitors of the phenol-type. In hexane extracted membranes plastoquinone has been removed from the QB site. Both the D-1 and D-2 polypeptides are more trypsin sensitive in such preparations. The D-1, but not the D-2 polypeptide is protected when plastoquinone has been readded to the membrane before the trypsin digestion.The results show that plastoquinone, artificial quinones and inhibitors of photosystem II at the QB site, but also carotene to a lesser extent, have an effect on the conformation of both the D-1 and D-2 polypeptide. it is postulated that the amino acid sequence around arginine 238 of the D-1 polypeptide is part of the QB binding niche. Furthermore this sequence is modified or its conformation is changed if the QB site is occupied by either plastoquinone or a DCMU-type inhibitor because under these conditions arginine 238 is less accessible to the trypsin. If the QB site, however, is empty, the amino acid sequence with arg 238 is very trypsin sensitive. This property of modulation or the conformation of the amino acid sequence of the D-1 polypeptide by the state of the QB site is likely to be relevant also for the events in the rapid turnover of the D-1 polypeptide.Abbreviations BNT 2-bromo-4-nitro-thymol - DCMU dichlorophenyldimethylurea - PMSF phenylmethylsulfonylfluoride - SDS sodium dodecylsulfate  相似文献   

7.
Using a var2-2 mutant of Arabidopsis thaliana, which lacks a homologue of the zinc-metalloprotease, FtsH, we demonstrate that this protease is required for the efficient turnover of the D1 polypeptide of photosystem II and protection against photoinhibition in vivo. We show that var2-2 leaves are much more susceptible to light-induced photosystem II photoinhibition than wild-type leaves. Furthermore, the rate of photosystem II photoinhibition in untreated var2-2 leaves is equivalent to that of var2-2 and wild-type leaves, which have been treated with lincomycin, an inhibitor of the photosystem II repair cycle at the level of D1 synthesis. This is in contrast to untreated wild-type leaves, which show a much slower rate of photosystem II photoinhibition due to an efficient photosystem II repair cycle. The recovery of var2-2 leaves from photosystem II photoinhibition is also impaired relative to wild-type. Using Western blot analysis in the presence of lincomycin we show that the D1 polypeptide remains stable in leaves of the var2-2 mutant under photoinhibitory conditions that lead to D1 degradation in wild-type leaves and that the abundance of DegP2 is not affected by the var2-2 mutation. We conclude, therefore, that the Var2 FtsH homologue is required for the cleavage of the D1 polypeptide in vivo. In addition, we identify a conserved lumenal domain in Var2 that is unique to FtsH homologues from oxygenic phototrophs.  相似文献   

8.
Oxygen-evolving photosystem II (PS II) particles isolated fromthe thermophilic cyanobacterium Synechococcus elongatus consistedof about twenty polypeptides. Six polypeptides were identifiedby reaction with specific antisera as constituent subunit polypeptidesof oxygen-evolving PS II reaction center complexes. The mostabundant polypeptides were the and ß subunits ofallophycocyanin. Comparison with the polypeptide profile ofisolated phycobilisomes, as well as immunoblotting with an antiserumagainst the large linker polypeptide, showed that the largelinker polypeptide or some proteolytic fragments of it werepresent in the preparation. Thus, each PS II particle is, inessence, an oxygen-evolving PS II complex that is associatedwith the core substructure of the phycobilisome. Cross-linkingexperiments indicated that fragments of the large linker polypeptidesare closely associated with one another and that the Chl-carrying47- kDa polypeptide is located in close proximity to the D2protein and the extrinsic 33-kDa protein. (Received November 12, 1991; Accepted January 23, 1992)  相似文献   

9.
The cytochrome b559 content was examined in five types of isolated photosystem II D1-D2-cytochrome b559 reaction center preparations containing either five or six chlorophylls per reaction center. The reaction center complexes were obtained following isolation procedures that differed in chromatographic column material, washing buffer composition and detergent concentration. Two different types of cytochrome b559 assays were performed. The absolute heme content in each preparation was obtained using the oxidized-minus-reduced difference extinction coefficient of cytochrome b559 at 559 nm. The relative amount of D1 and cytochrome b559alpha-subunit polypeptide was also calculated for each preparation from immunoblots obtained using antibodies raised against the two polypeptides. The results indicate that the cytochrome b559 heme content in photosystem II reaction center complexes can vary with the isolation procedure, but the variation of the cytochrome b559alpha-subunit/D1 polypeptide ratio was even greater. This variation was not found in the PSII-enriched membrane fragments used as the RC-isolation starting material, as different batches of membranes obtained from spinach harvested at different seasons of the year or those from sugar beets grown in a chamber under controlled environmental conditions lack variation in their alpha-subunit/D1 polypeptide ratio. A precise determination of the ratio using an RC1-control sample calibration curve gave a ratio of 1.25 cytochrome b559alpha-subunit per 1.0 D1 polypeptide in photosystem II membranes. We conclude that the variations found in the reaction center preparations were due to the different procedures used to isolate and purify the different reaction center complexes.  相似文献   

10.
We report here the first three-dimensional structure of the D1 C-terminal processing protease (D1P), which is encoded by the ctpA gene. This enzyme removes the C-terminal extension of the D1 polypeptide of photosystem II of oxygenic photosynthesis. Proteolytic processing is necessary to allow the light driven assembly of the tetranuclear manganese cluster, which is responsible for photosynthetic water oxidation. The X-ray structure of the Scenedesmus obliquus enzyme has been determined at 1.8 A resolution using the multiwavelength anomalous dispersion method. The enzyme is monomeric and is composed of three folding domains. The middle domain is topologically homologous to known PDZ motifs and is proposed to be the site at which the substrate C-terminus binds. The remainder of the substrate likely extends across the face of the enzyme, interacting at its scissile bond with the enzyme active site Ser 372 / Lys 397 catalytic dyad, which lies at the center of the protein at the interface of the three domains.  相似文献   

11.
12.
The variable fluorescence and polypeptide and carotenoid compositions of the chlorophyll b-deficient mutant C-48 of the unicellular green alga Chlamydomonas reinhardtii and its double mutants without chlorophyll b and with inactive photosystem II were compared with those of the wild-type algal cells. Studying variable fluorescence demonstrated the alterations at the donor side (AC-121), the acceptor side (AC-234) or immediately in the photosystem II reaction centre (AC-184, AC-864). Gel electrophoresis showed that the absence of chlorophyll b in all mutants was due to the lack of 26, 28 and 31 kDa polypeptides in the light-harvesting chlorophyll a/b-protein complex II (LHC II). As a result of the second mutation, the chlorophyll a-protein complex of photosystem II did not form in chloroplast membranes. The disassembly of this complex in the mutants AC-121, AC-234 and AC-864 was related to the deficiency of both polypeptides of the reaction centre (30 and 32 kDa) and polypeptides of the water-oxidizing system (18, 23 and 34 kDa). Besides the loss of these polypeptides, the contents of polypeptides with molecular masses of 47 and 51 kDa decreased in the double mutant AC-184. Substantial changes were revealed in the carotenoid composition of the double mutants. We observed the considerable accumulation of carotenes that accompanied alterations in the donor (mutant AC-121) or acceptor (mutant AC-234) sides of PS II. In the first case, beta-carotene predominantly accumulated (87%); in the second case, it was alpha-carotene (52%). Alterations in the PS II reaction centre (mutants AC-184, AC-864) caused accumulation of xanthophylls, mainly lutein (38-41%). We suppose that alterations in different parts of the PS II chloroplast membrane lead to substantial changes in the carotenoid composition.  相似文献   

13.
A collection of 17 monoclonal antibodies elicited against the light-harvesting chlorophyll a/b protein complex which serves photosystem II (LHC-II) of Pisum sativum shows six classes of binding specificity. Antibodies of two of the classes recognize a single polypeptide (the 28- or the 26- kD polypeptides), thereby suggesting that the two proteins are not derived from a common precursor. Other classes of antibodies cross-react with several polypeptides of LHC-II or with polypeptides of both LHC-II and the light-harvesting chlorophyll a/b polypeptides of photosystem I (LHC-I), indicating that there are structural similarities among the polypeptides of LHC-II and LHC-I. The evidence for protein processing by which the 26-, 25.5-, and 24.5-kD polypeptides are derived from a common precursor polypeptide is discussed. Binding studies using antibodies specific for individual LHC-II polypeptides were used to quantify the number of antigenic polypeptides in the thylakoid membrane. 27 copies of the 26-kD polypeptide and two copies of the 28-kD polypeptide were found per 400 chlorophylls. In the chlorina f2 mutant of barley, and in intermittent light-treated barley seedlings, the amount of the 26-kD polypeptide in the thylakoid membranes was greatly reduced, while the amount of 28-kD polypeptide was apparently not affected. We propose that stable insertion and assembly of the 28-kD polypeptide, unlike the 26-kD polypeptide, is not regulated by the presence of chlorophyll b.  相似文献   

14.
Photosystem II is a large pigment-protein complex catalyzing water oxidation and initiating electron transfer processes across the thylakoid membrane. In addition to large protein subunits, many of which bind redox cofactors, photosystem II particles contain a number of low molecular weight polypeptides whose function is only poorly defined. Here we have investigated the function of one of the smallest polypeptides in photosystem II, PsbJ. Using a reverse genetics approach, we have inactivated the psbJ gene in the tobacco chloroplast genome. We show that, although the PsbJ polypeptide is not principally required for functional photosynthetic electron transport, plants lacking PsbJ are unable to grow photoautotrophically. We provide evidence that this is due to the accumulation of incompletely assembled water-splitting complexes, which in turn causes drastically reduced photosynthetic performance and extreme hypersensitivity to light. Our results suggest a role of PsbJ for the stable assembly of the water-splitting complex of photosystem II and, in addition, support a control of photosystem I accumulation through photosystem II activity.  相似文献   

15.
The catalytic site for photosynthetic water oxidation is embedded in a protein matrix consisting of nearly 30 different polypeptides. Residues from several of these polypeptides modulate the properties of the tetrameric Mn cluster and the redox-active tyrosine residue, Y(Z), that are located at the catalytic site. However, most or all of the residues that interact directly with Y(Z) and the Mn cluster appear to be contributed by the D1 polypeptide. This review summarizes our knowledge of the environments of Y(Z) and the Mn cluster as obtained from the introduction of site-directed, deletion, and other mutations into the photosystem II polypeptides of the cyanobacterium Synechocystis sp. PCC 6803 and the green alga Chlamydomonas reinhardtii.  相似文献   

16.
Light stress in plants results in damage to the water oxidizing reaction center, photosystem II (PSII). Redox signaling, through oxidative modification of amino acid side chains, has been proposed to participate in this process, but the oxidative signals have not yet been identified. Previously, we described an oxidative modification, N-formylkynurenine (NFK), of W365 in the CP43 subunit. The yield of this modification increases under light stress conditions, in parallel with the decrease in oxygen evolving activity. In this work, we show that this modification, NFK365-CP43, is present in thylakoid membranes and may be formed by reactive oxygen species produced at the Mn(4)CaO(5) cluster in the oxygen-evolving complex. NFK accumulation correlates with the extent of photoinhibition in PSII and thylakoid membranes. A modest increase in ionic strength inhibits NFK365-CP43 formation, and leads to accumulation of a new, light-induced NFK modification (NFK317) in the D1 polypeptide. Western analysis shows that D1 degradation and oligomerization occur under both sets of conditions. The NFK modifications in CP43 and D1 are found 17 and 14 Angstrom from the Mn(4)CaO(5) cluster, respectively. Based on these results, we propose that NFK is an oxidative modification that signals for damage and repair in PSII. The data suggest a two pathway model for light stress responses. These pathways involve differential, specific, oxidative modification of the CP43 or D1 polypeptides.  相似文献   

17.
18.
The effect of linolenic acid (18:3) on release of the 43 kDa polypeptide and manganese from photosystem II ( PS II ) membranes depleted of extrinsic polypeptides was studied. In both control and NaCl-washed particles which were depleted of the extrinsic 23 and 16 kDa polypeptides, the 18:3 treatment caused a 20% release of the 33 and 43 kDa polypeptides. In CaCl2, (or urea + NaCl)-washed particles, which were depleted of the 33 kDa polypeptide in addition to the 23 and 16 kDa polypeptides, the release of the 43 kDa polypeptide increased to 70%, whereas only 25% of the 47 kDa polypeptide was removed. These findings suggest (i) that the 33 and the 43 kDa polypeptides are neighbows in the photosynthetic membrane and (ii) that the 33 kDa polypeptide shields the 43 kDa polypeptide against the action of 18:3. Incubation of CaCl2, or (urea + NaCI)-treated PSII particles in the presence or absence of 18:3 resulted in the loss of only 2 of the 4 Mn atoms present per reaction center. this indicates that the 2 Mn atoms more firmly associated with PSII are not affected by the removal of the extrinsic 16, 23 and 33 kDa polypeptides, and the intrinsic 43 kDa polypeptide. nor by the treatment with linolenic acid.  相似文献   

19.
In Chlamydomonas reinhardtii the oxygen evolving enhancer protein 1 (OEE1), which is part of the oxygen evolving complex of photosystem II (PS II), is coded for by a single nuclear gene (psb1). The nuclear mutant FuD44 specifically lacks the OEE1 polypeptide and is completely deficient in photosynthetic oxygen evolution. In this mutant a 5 kb DNA insertion into the 5' region of the psb1 gene results in the complete absence of OEE1 mRNA and protein. A revertant, FuD44-R 2, which is capable of 30% of the photosynthetic oxygen evolution of wild-type cells, has lost 4 kb of the 5 kb DNA insert, and accumulates both OEE1 mRNA and protein, although at levels somewhat less than those of wild-type cells. Absence of the OEE1 protein in the FuD44 mutant does not affect the accumulation of other nuclear encoded PS II peripheral polypeptides. OEE1 absence does, however, result in a more rapid turnover of the chloroplast encoded PS II core polypeptides, thus resulting in a substantial deficiency of PS II core polypeptides in FuD44 cells. These PS II core proteins again accumulate in revertant FuD44-R2 cells.  相似文献   

20.
A recent report (Nanba O, Satoh K: Proc. Natl. Acad. Sci. USA 84: 109–112, 1987) described the isolation from spinach of a putative photosystem 2 reaction centre which contained cytochrome b-559 and three other electrophoretically resolvable polypeptide bands, two of which have molecular weights comparable to the D1 and D2 polypeptides. We have used in vivo labelling with radioactive methionine and probed with D1 and D2 monospecific antibodies (raised against synthetically expressed sequences of the psbA and psbD genes) for specific detection of these proteins in a similarly prepared photosystem 2 reaction centre preparation. These techniques identified a 32 000 dalton D1 band, a 30 000 dalton D2 band and a 55 000 dalton D1/D2 aggregate, the latter apparently arising from the detergent treatments employed. Digestions with a lysine-specific protease further confirmed the identification of the lysine-free D1 polypeptide and also confirmed that the D1 molecules in the 55 000 dalton band were in aggregation with other bands and not in self-aggregates. The D1 and D2 polypeptides (including the aggregate) are considerably enriched in the photosystem two reaction centre preparation compared to the other resolved fractions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号