首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Implantation of bone-marrow-derived MSCs (mesenchymal stem cells) has emerged as a potential treatment modality for liver failure, but in vivo differentiation of MSCs into functioning hepatocytes and its therapeutic effects have not yet been determined. We investigated MSC differentiation process in a rat model of TAA (thioacetamide)-induced liver cirrhosis. Male Sprague-Dawley rats were administered 0.04% TAA-containing water for 8 weeks, MSCs were injected into the spleen for transsplenic migration into the liver, and liver tissues were examined over 3 weeks. Ingestion of TAA for 8 weeks induced micronodular liver cirrhosis in 93% of rats. Injected MSCs were diffusely engrafted in the liver parenchyma, differentiated into CK19 (cytokeratin 19)- and thy1-positive oval cells and later into albumin-producing hepatocyte-like cells. MSC engraftment rate per slice was measured as 1.0-1.6%. MSC injection resulted in apoptosis of hepatic stellate cells and resultant resolution of fibrosis, but did not cause apoptosis of hepatocytes. Injection of MSCs treated with HGF (hepatocyte growth factor) in vitro for 2 weeks, which became CD90-negative and CK18-positive, resulted in chronological advancement of hepatogenic cellular differentiation by 2 weeks and decrease in anti-fibrotic activity. Early differentiation of MSCs to progenitor oval cells and hepatocytes results in various therapeutic effects, including repair of damaged hepatocytes, intracellular glycogen restoration and resolution of fibrosis. Thus, these results support that the in vivo hepatogenic differentiation of MSCs is related to the beneficial effects of MSCs rather than the differentiated hepatocytes themselves.  相似文献   

2.
AIM:To improve hepatic differentiation of human mesenchymal stem cell(MSC)using insulin growth factor 1(IGF-Ⅰ),which has important role in liver development,hepatocyte differentiation and function.METHODS:Bone marrow of healthy donors was aspirated from the iliac crest.The adherent cells expanded rapidly and were maintained with periodic passages until a relatively homogeneous population was established.The identification of these cells was carried out by immunophenotype analysis and differentiation potential into osteocytes and adipocytes.To effectively induce hepatic differentiation,we designed a protocol based on a combination of IGF-Ⅰ and liver specificfactors(hepatocyte growth factor,oncostatin M and dexamethasone).Morphological features,hepatic functions and cytological staining were assessed to evaluate transdifferentiation of human marrow-derived MSCs.RESULTS:Flow cytometric analysis and the differentiation potential into osteoblasts and adipocytes showed that more than 90% of human MSCs which were isolated and expanded were positive by specif ic markers and functional tests.Morphological assessment and evaluation of glycogen storage,albumin and α-feto protein expression,as well as albumin and urea secretion revealed a statistically signif icant difference between the experimental groups and control.CONCLUSION:In vitro differentiated MSCs using IGF-Ⅰwere able to display advanced liver metabolic functions,supporting the possibility of developing them as potential alternatives to primary hepatocytes.  相似文献   

3.
Li Z  Guo X  Guan J 《Biomacromolecules》2012,13(6):1956-1964
A thermosensitive hydrogel capable of differentiating mesenchymal stem cells (MSCs) into cardiomyocyte-like cells was synthesized. The hydrogel was based on N-isopropylacrylamide (NIPAAm), N-acryloxysuccinimide, acrylic acid, and hydroxyethyl methacrylate-poly(trimethylene carbonate). The hydrogel was highly flexible at body temperature with breaking strain >1000% and Young's modulus 45 kPa. When MSCs were encapsulated in the hydrogel and cultured under normal culture conditions (10% FBS and 21% O(2)), the cells differentiated into cardiomyocyte-like cells. However, the differentiation was retarded, and even diminished, under low nutrient and low oxygen conditions, which are typical of the infarcted heart. We hypothesized that enhancing MSC survival under low nutrient and low oxygen conditions would restore the differentiation. To enhance cell survival, a pro-survival growth factor (bFGF) was loaded in the hydrogel. bFGF was able to sustainedly release from the hydrogel for 21 days. Under the low nutrient and low oxygen conditions (1% O(2) and 1% FBS), bFGF enhanced MSC survival and differentiation in the hydrogel. After 14 days of culture, survival of 70.5% of MSCs remained in the bFGF-loaded hydrogel, while only 4.9% of MSCs remained in the hydrogel without bFGF. The differentiation toward cardiomyocyte-like cells was completely inhibited at 1% FBS and 1% oxygen. Loading bFGF in the hydrogel restored the differentiation, as confirmed by the expression of cardiac markers at both the gene (MEF2C and CACNA1c) and protein (cTnI and connexin 43) levels. bFGF loading also up-regulated the paracrine effect of MSCs. VEGF expression was significantly increased in the bFGF-loaded hydrogel. These results demonstrate that the developed bFGF-loaded hydrogel may potentially be used to deliver MSCs into hearts for regeneration of heart tissue.  相似文献   

4.
Differentiation of stem cells is tightly regulated by the microenvironment which is mainly composed of nonparenchymal cells. Herein, we investigated effect of hepatic stellate cells (HSCs) in different states on mesenchymal stem cells (MSCs) differentiation. Rat HSCs were isolated and stayed quiescent within 5 days. Primary HSCs were activated by being in vitro cultured for 7 days or cocultured with Kupffer cells for 5 days. MSCs were cocultured with HSCs of different states. Expression of hepatic lineage markers was analyzed by RT-PCR and immunofluorescence. Glycogen deposition was detected by periodic acid-schiff staining. MSCs cocultured with HSC-T6 or Kupffer cell activated HSCs were morphologically transformed into hepatocyte-like cells. Hepatic-specific marker albumin was expressed in 78.3% of the differentiated MSCs 2 weeks after initiation of coculture. In addition, the differentiated MSCs also expressed alpha-fetoprotein, cytokeratin-18, glutamine synthetase and phosphoenolpyruvate carboxykinase. Glycogen deposition was detectable in 55.4% of the differentiated MSCs 6 weeks after initiation of coculture. However, the quiescent HSCs or culture activated HSCs did not exert the ability to modulate the differentiation of MSCs. Moreover, Kupffer cell activated HSCs rather than culture activated HSCs expressed hepatocyte growth factor mRNA. We draw the conclusion that fully activated HSCs could modulate MSCs differentiation into hepatocyte-like cells.  相似文献   

5.
The ability of MSCs (mesenchymal stem cells) to differentiate between other cell types makes these cells an attractive therapeutic tool for cell transplantation. This project was designed to improve transdifferentiation of human MSCs into liver cells using IGF-I (insulin-like growth factor 1) which, despite its important role in liver development, has not been used for in vitro hepatic differentiation. In the present study, the MSCs derived from healthy human bone marrow samples were cultured and characterized by immunophenotyping and differentiation potential into osteoblast and adipocytes. Transdifferentiation into hepatocyte-like cells was performed in the presence/absence of IGF-I in combination with predefined hepatic differentiation cocktail. To evaluate transdifferentiation, morphological features, immuno-cytochemical staining of specific biological markers and hepatic functions were assessed. Morphological assessment and evaluation of glycogen content, albumin and AFP (α-feto protein) expression as well as albumin and urea secretion revealed statistically significant difference between experimental groups compared with the control. Morphology and function (albumin secretion) of IGF-I-treated cells were significantly better than IGF-I-free experimental group. To the best of our knowledge, our study is the first to demonstrate that the combination of IGF-I with the predefined hepatic differentiation cocktail will significantly improve the morphological features of the differentiated cells and albumin secretion.  相似文献   

6.
7.
Schwann cells are critically important in recovery from injuries to the peripheral nervous system, and their absence from the central nervous system (CNS) may be a critical limiting factor in the CNS regeneration capacity. Various types of stem cells have been investigated for their potential to be induced to develop a Schwann cell phenotype, with mesenchymal stem cells (MSCs) being the most promising among them. The methods for inducing MSCs differentiation into Schwann cell-like cells are presented in detail in this review. The evidence related to successful differentiation of MSCs to Schwann cell-like cells is particularly discussed herein, which includes the changes in morphology, phenotype, function, and proteome. The possible explanations for the differentiation of MSCs to Schwann cell-like cells are also presented. Finally, we suggest future research aims which will need to be fulfilled to elucidate the biology of Schwann cell differentiation and MSC transdifferentiation, to enable clinical application of therapeutic differentiated MSC transplantation into nerve injury sites.  相似文献   

8.
Mesenchymal stem cells (MSCs) respond to a variety of differentiation signal provided by their local environments. A large portion of these signals originate from the extracellular matrix (ECM). At the same time, MSCs secrete various matrix‐altering agents, including proteases, that alter ECM‐encoded differentiation signals. Here we investigated the interactions between MSC and ECM produced by endothelial cells (EC‐matrix), focusing not only on the differentiation signals provided by EC‐matrix, but also on MSC‐alteration of these signals and the resultant affects on MSC differentiation. MSCs were cultured on EC‐matrix modified in one of three distinct ways. First, MSCs cultured on native EC‐matrix underwent endothelial cell (EC) differentiation early during the culture period and smooth muscle cell (SMC) differentiation at later time points. Second, MSCs cultured on crosslinked EC‐matrix, which is resistant to MSC modification, differentiated towards an EC lineage only. Third, MSCs cultured on EC‐matrix pre‐modified by MSCs underwent SMC‐differentiation only. These MSC‐induced matrix alterations were found to deplete the factors responsible for EC‐differentiation, yet activate the SMC‐differentiation factors. In conclusion, our results demonstrate that the EC‐matrix contains factors that support MSC differentiation into both ECs and SMCs, and that these factors are modified by MSC‐secreted agents. By analyzing the framework by which EC‐matrix regulates differentiation in MSCs, we have uncovered evidence of a feedback system in which MSCs are able to alter the very matrix signals acting upon them. J. Cell. Biochem. 107: 706–713, 2009. Published 2009 Wiley‐Liss, Inc.  相似文献   

9.
10.
Mesenchymal stem cells (MSCs) play a crucial role in tissue repair by secretion of tissue nutrient factors such as hepatocyte growth factor (HGF). However, studies examining the effects of HGF on the proliferation and differentiation of MSCs used different concentrations of HGF and reported conflicting conclusions. This study aimed to determine the mechanisms by which different concentrations of HGF regulate MSC proliferation and osteogenic differentiation, and validate the mechanism in an animal model of early stage avascular necrosis of femoral head (ANFH). Our results demonstrate that a low concentration of HGF (20 ng/ml) preferentially promotes MSC osteogenic differentiation through increased c-Met expression and phosphorylation, Akt pathway activation, and increased expression of p27, Runx2 and Osterix. In contrast, a high concentration of HGF (100 ng/ml) strongly induced proliferation by inducing strong activation of the ERK1/2 signalling pathway. As validated by animal experiments, high localized expression of HGF achieved by transplantation of HGF transgenic MSCs into ANFH rabbits increased the number of MSCs. Subsequently, 2 weeks after transplantation, HGF levels decreased and MSCs differentiated into osteoblasts and resulted in efficient tissue repair. Our results demonstrate that sequential concentration changes in HGF control the proliferation and osteogenic differentiation of MSCs in vivo. This phenomenon can be exploited therapeutically to induce bone regeneration and, in turn, improve the efficacy of pharmacological intervention for ANFH treatment.  相似文献   

11.
BACKGROUND: Mesenchymal stem cells (MSCs) can differentiate into cardiomyocytes if an appropriate cellular environment is provided. Notch signals exchanged between neighboring cells through the Notch receptor can eventually dictate cell differentiation. In our study, we show that MSC differentiation into cardiomyocytes is dependent on the Notch signal. METHODS: We created a myocardial infarction model in rat by coronary ligation, administered direct intramyocardial injection of DAPI-labeled MSC immediately, and observed the differentiation of MSCs after 14 days by immunofluorescence staining against troponin T. We cultured MSCs and cardiomyocytes in four ways, respectively, in vitro. (1) MSCs cocultured with cardiomyocytes obtained from neonatal rat ventricles in a ratio of 1:10. (2) The two types of cells were cultured in two chambers separated by a semipermeable membrane as indirect coculture group. (3) Notch receptor-soluble jagged1 protein was added to indirect coculture group. (4) Both jagged1 protein and gamma-secretase inhibitor-DAPT were added to indirect coculture group. Two weeks later, we observed the differentiation percentage, respectively, by immunofluorescence staining. RESULTS: We found the differentiation of MSCs which were close to cardiomyocytes in vivo. The differentiation percentage of the four cell culture group was 30.13+/-2.16%, 12.52+/-1.18%, 26.33+/-2.20%, and 13.08+/-1.15%. CONCLUSIONS: MSCs can differentiate into cardiomyocytes in vitro and in vivo if a cardiomyocyte microenvironment is provided. 2. Cell-to-cell interaction is very important for the differentiation of MSCs into cardiomyocytes. 3. Jagged1 protein can activate Notch signal and enhance the differentiation of MSC into cardiomyocyte, while the effect can be inhibited by DAPT.  相似文献   

12.
Mesenchymal stem cells (MSCs) have the ability to differentiate into a variety of lineages and to renew themselves without malignant changes, and thus hold potential for many clinical applications. However, it has not been well characterized how different the properties of MSCs are depending on the tissue source in which they resided. We previously reported a novel technique for the prospective MSC isolation from bone marrow, and revealed that a combination of cell surface markers (LNGFR and THY-1) allows the isolation of highly enriched MSC populations. In this study, we isolated LNGFR+ THY-1 + MSCs from synovium using flow cytometry. The results show that the synovium tissue contained a significantly larger percentage of LNGFR + THY-1 + MSCs. We examined the colony formation and differentiation abilities of bone marrow-derived MSCs (BM-MSCs) and synovium-derived MSCs (SYN-MSCs) isolated from the same patients. Both types of MSCs exhibited a marked propensity to differentiate into specific lineages. BM-MSCs were preferentially differentiated into bone, while in the SYN-MSC culture, enhanced adipogenic and chondrogenic differentiation was observed. These data suggest that the tissue from which MSCs are isolated should be tailored according to their intended clinical therapeutic application.  相似文献   

13.
《Cytotherapy》2014,16(3):309-318
Background aimsThe protocols for differentiation of hepatocyte-like cells (HLCs) from mesenchymal stromal cells (MSCs) have been well established. Previous data have shown that MSCs and their derived HLCs were able to engraft injured liver and alleviate injuries induced by carbon tetrachloride. The goal of the current study was to determine the differences of MSCs and their derived HLCs in terms of therapeutic functions in liver diseases.MethodsAfter hepatic differentiation of umbilical cord–derived MSCs in vitro, we detected both MSC and HLC expressions of adhesion molecules and chemokine receptor CXCR4 by flow cytometry; immunosuppressive potential and hepatocyte growth factor expression were determined by means of enzyme-linked immunosorbent assay. We compared the therapeutic effect for fulminant hepatic failure in a mouse model.ResultsMSC-derived-HLCs expressed lower levels of hepatocyte growth factor, accompanied by impaired immunosuppression in comparison with MSCs. Furthermore, undifferentiated MSCs showed rescuing potentials superior to those in HLCs for the treatment of fulminant hepatic failure.ConclusionsAfter differentiation, HLCs lost several major properties in comparison with undifferentiated MSCs, which are beneficial for their application in liver diseases. Undifferentiated MSCs may be more appropriate than are HLCs for the treatment of liver diseases.  相似文献   

14.
Telomere length plays an important role in regulating the proliferative capacity of cells, and serves as a marker for cell cycle history and also for their remaining replicative potential. Mesenchymal stromal cells (MSC) are known to be a significant cell source for therapeutic intervention and tissue engineering. To investigate any possible limitations in the replicative potential and chondrogenic differentiation potential of fibroblast growth factor-2-expanded MSCs (FGF(+)MSC), these cells were differentiated at various population doublings (PDs), and telomere length and telomerase activity were measured before and after differentiation. FGF(+)MSC cultured at a relatively low density maintained proliferation capability past more than 80 PD and maintained chondrogenic differentiation potential up to at least 46 PD and long telomeres up to 105 PD, despite expressing low levels of telomerase activity. Interestingly, upon chondrogenic differentiation of these cells, telomeres showed a remarkable reduction in length. This shortening was more extensive when FGF(+)MSC of higher PD levels were differentiated. These findings suggest that telomere length may be a useful genetic marker for chondrogenic progenitor cells.  相似文献   

15.
Bone marrow MSCs (mesenchymal stem cells) can differentiate into various tissue cells, including epithelial cells. This presents interesting possibilities for cellular therapy, but the differentiation efficiency of MSCs is very low. We have explored specific inducing factors to improve the epithelial differentiation efficiency of MSCs. Under inducing conditions, MSCs differentiated into epithelial cells and expressed several airway epithelial markers using RTE (rat tracheal epithelial) cell secretions. Rat cytokine antibody array was used to detect cytokines of the RTE secretion components, in which 32 kinds of protein were found. Seven proteins [TRAIL (tumour necrosis factor-related apoptosis-inducing ligand), VEGF (vascular endothelial growth factor), BDNF (brain-derived neurotrophic factor), TGFβ1 (transforming growth factor β1), MMP-2 (metalloproteinases-2), OPN (osteopontin) and activin A in RTE secretions] were assayed using ELISA kits. The four growth factors (VEGF, BDNF, TGFβ1 and activin A) were involved in regulating stem cell growth and differentiation. We speculated that these four play a vital role in the differentiation of MSCs into epithelial cells by triggering appropriate signalling pathways. To induce epithelial differentiation, MSCs were cultured using VEGF, BDNF, TGFβ1 and activin A. Differentiated MSCs were characterized both morphologically and functionally by their capacity to express specific markers for epithelial cells. The data demonstrated that MSCs can differentiate into epithelial cells induced by these growth factors.  相似文献   

16.
17.
The extracellular matrix (ECM) is a dynamic component of tissue architecture that physically supports cells and actively influences their behavior. In the context of bone regeneration, cell‐secreted ECMs have become of interest as they reproduce tissue‐architecture and modulate the promising properties of mesenchymal stem cells (MSCs). We have previously created an in vitro model of human osteoblast‐derived devitalized ECM that was osteopromotive for MSCs. The aim of this study was to identify ECM regulatory proteins able to modulate MSC differentiation to broaden the spectrum of MSC clinical applications. To this end, we created two additional models of devitalized ECMs with different mineralization phenotypes. Our results showed that the ECM derived from osteoblast‐differentiated MSCs had increased osteogenic potential compared to ECM derived from undifferentiated MSCs and non‐ECM cultures. Proteomic analysis revealed that structural ECM proteins and ribosomal proteins were upregulated in the ECM from undifferentiated MSCs. A similar response profile was obtained by treating osteoblast‐differentiating MSCs with Activin‐A. Extracellular proteins were upregulated in Activin‐A ECM, whereas mitochondrial and membrane proteins were downregulated. In summary, this study illustrates that the composition of different MSC‐secreted ECMs is important to regulate the osteogenic differentiation of MSCs. These models of devitalized ECMs could be used to modulate MSC properties to regulate bone quality.  相似文献   

18.
19.
In this study, we compared the ability of human mesenchymal stem cells (eMSCs) derived from menstrual blood and mesenchymal stem cells (MSCs) from other tissues to differentiate into decidual cells in vitro. It was demonstrated that, during differentiation, secretion of prolactin and insulin-like growth factor binding protein-1 (key decidualization markers) markedly increased in eMSCs slightly augmented in bone marrow MSC (BM-MSCs) and did not change in MSCs from adipose tissue (AT-MSCs). Thus, eMSCs exhibited higher capacity for differentiation into decidual cells than BM-MSCs or AT-MSCs. This makes eMSCs promising for application in cellular therapy of infertility associated with insufficient decidualization of endometrium.  相似文献   

20.
Human mesenchymal stem cells (MSCs) are adult multipotent progenitor cells. They hold an enormous therapeutic potential, but at the moment there is little information on the properties of MSCs, including their surface structures. In the present study, we analyzed the mesenchymal stem cell glycome by using mass spectrometric profiling as well as a panel of glycan binding proteins. Structural verifications were obtained by nuclear magnetic resonance spectroscopy, mass spectrometric fragmentation, and glycosidase digestions. The MSC glycome was compared to the glycome of corresponding osteogenically differentiated cells. More than one hundred glycan signals were detected in mesenchymal stem cells and osteoblasts differentiated from them. The glycan profiles of MSCs and osteoblasts were consistently different in biological replicates, indicating that stem cells and osteoblasts have characteristic glycosylation features. Glycosylation features associated with MSCs rather than differentiated cells included high-mannose type N-glycans, linear poly-N-acetyllactosamine chains and α2-3-sialylation. Mesenchymal stem cells expressed SSEA-4 and sialyl Lewis x epitopes. Characteristic glycosylation features that appeared in differentiated osteoblasts included abundant sulfate ester modifications. The results show that glycosylation analysis can be used to evaluate MSC differentiation state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号