首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Aims

Multicellular organisms maintain vital functions through intercellular communication. Release of extracellular vesicles that carry signals to even distant target organs is one way of accomplishing this communication. MicroRNAs can also be secreted from the cells in exosomes and act as paracrine signalling molecules. In addition, microRNAs have been implicated in the pathogenesis of a large number of diseases, including cardiovascular diseases, and are considered as promising candidate biomarkers due to their relative stability and easy quantification from clinical samples. Pericardial fluid contains hormones secreted by the heart and is known to reflect the cardiac function. In this study, we sought to investigate whether pericardial fluid contains microRNAs and if so, whether they could be used to distinguish between different cardiovascular pathologies and disease stages.

Methods and Results

Pericardial fluid was collected from heart failure patients during open-heart surgery. MicroRNA profiles of altogether 51 patients were measured by quantitative real-time PCR (qPCR) using Exiqon human panels I and II. On the average, 256 microRNAs were detected per sample, and 70 microRNAs out of 742 profiled microRNAs were detected in every sample. The five most abundant microRNAs in pericardial fluid were miR-21-5p, miR-451a, miR-125b-5p, let-7b-5p and miR-16-5p. No specific signatures for cardiovascular pathologies or clinically assessed heart failure stages could be detected from the profiles and, overall, microRNA profiles of the samples were found to be very similar despite the heterogeneity in the study population.

Conclusion

Measured microRNA profiles did not separate the samples according to the clinical features of the patients. However, several previously identified heart failure marker microRNAs were detected. The pericardial fluid microRNA profile appeared to be a result of an active and selective secretory process indicating that microRNAs may act as paracrine signalling factors by mediating the local crosstalk between cardiac cells.  相似文献   

2.
microRNAs are small regulatory RNAs that are currently emerging as new biomarkers for cancer and other diseases. In order for biomarkers to be useful in clinical settings, they should be accurately and reliably detected in clinical samples such as formalin fixed paraffin embedded (FFPE) sections and blood serum or plasma. These types of samples represent a challenge in terms of microRNA quantification. A newly developed method for microRNA qPCR using Locked Nucleic Acid (LNA?)-enhanced primers enables accurate and reproducible quantification of microRNAs in scarce clinical samples. Here we show that LNA?-based microRNA qPCR enables biomarker screening using very low amounts of total RNA from FFPE samples and the results are compared to microarray analysis data. We also present evidence that the addition of a small carrier RNA prior to total RNA extraction, improves microRNA quantification in blood plasma and laser capture microdissected (LCM) sections of FFPE samples.  相似文献   

3.
4.
microRNAs have emerged as the central player in gene expression regulation and have been considered as potent cancer biomarkers for early disease diagnosis. Direct microRNA detection without amplification and labeling is highly desired. Here we present a rapid, sensitive and selective microRNA detection method based on the base stacking hybridization coupling with time-resolved fluorescence technology. Other than planar microarrays, magnetic beads are used as reaction platforms. In this method, one universal tag is used to report all microRNA targets. Its specificity allows for discrimination between microRNAs differing by a single nucleotide, and between precursor and mature microRNAs. This method also provides a high sensitivity down to 20 fM. Moreover, the full protocol can be completed in about 3 h starting from total RNA.  相似文献   

5.
During the recent few years, microRNAs emerged as key molecules in the regulation of mammalian cell functions. It was also shown that their altered expression can promote pathologic conditions, such as cancer and other common diseases. Because environmental exposure to biological, chemical or physical agents may be responsible for human diseases, including cancer, uncovering relationships between exposure to environmental carcinogens and expression of microRNAs may help to disclose early mechanisms of disease and it may potentially lead to the development of useful indicators of toxic exposure or novel biomarkers for carcinogenicity testing. The unique expression profile of microRNAs in different types and at different stages of cancer coupled to their remarkable stability in tissues and in serum/plasma suggests that these little molecules may find application as sensitive biomarkers. This review will concentrate on the alterations in microRNA expression in response to environmental factors in relation to the risk of developing liver cancer.  相似文献   

6.
7.
This study evaluated the applicability of droplet digital PCR (ddPCR) as a tool for maize zygosity determination using quantitative real-time PCR (qPCR) as a reference technology. Quantitative real-time PCR is commonly used to determine transgene copy number or GMO zygosity characterization. However, its effectiveness is based on identical reaction efficiencies for the transgene and the endogenous reference gene. Additionally, a calibrator sample should be utilized for accuracy. Droplet digital PCR is a DNA molecule counting technique that directly counts the absolute number of target and reference DNA molecules in a sample, independent of assay efficiency or external calibrators. The zygosity of the transgene can be easily determined using the ratio of the quantity of the target gene to the reference single copy endogenous gene. In this study, both the qPCR and ddPCR methods were used to determine insect-resistant transgenic maize IE034 zygosity. Both methods performed well, but the ddPCR method was more convenient because of its absolute quantification property.  相似文献   

8.
Serum microRNAs are promising novel biomarkers   总被引:2,自引:0,他引:2  

Background

Circulating nucleic acids (CNAs) offer unique opportunities for early diagnosis of clinical conditions. Here we show that microRNAs, a family of small non-coding regulatory RNAs involved in human development and pathology, are present in bodily fluids and represent new effective biomarkers.

Methods and Results

After developing protocols for extracting and quantifying microRNAs in serum and other body fluids, the serum microRNA profiles of several healthy individuals were determined and found to be similar, validating the robustness of our methods. To address the possibility that the abundance of specific microRNAs might change during physiological or pathological conditions, serum microRNA levels in pregnant and non pregnant women were compared. In sera from pregnant women, microRNAs associated with human placenta were significantly elevated and their levels correlated with pregnancy stage.

Conclusions and Significance

Considering the central role of microRNAs in development and disease, our results highlight the medically relevant potential of determining microRNA levels in serum and other body fluids. Thus, microRNAs are a new class of CNAs that promise to serve as useful clinical biomarkers.  相似文献   

9.
Krol J  Krzyzosiak WJ 《IUBMB life》2004,56(2):95-100
One of the biggest surprises at the beginning of the 'post-genome era' was the discovery of numerous genes encoding microRNAs. They were found in genomes of such diverse organisms as Caenorhabditis elegans, Drosophila melanogaster, Arabidopsis thaliana, and Homo sapiens which implies their important role in multicellular life evolution. The number of microRNA genes is estimated to be nearly 1% of that of protein-coding genes. Their products, tiny RNAs, are thought to regulate gene expression during development, organogenesis, and very likely during many other processes, by hybridizing to their target mRNAs. The cellular functions of mRNAs that are regulated by microRNAs are only beginning to be revealed, and details of this regulation mechanism are still poorly understood. In this article we discuss the possible mechanisms of microRNA biogenesis with special emphasis on their structural aspects. We have focused on the factors and effects that may be responsible for the existing length differences between different microRNAs, and for the observed length heterogeneity within some individual microRNA species.  相似文献   

10.
The first step in biomarkers discovery is to identify the best protocols for their purification and analysis. This issue is critical when considering peripheral blood samples (plasma and serum) that are clinically interesting but meet several methodological problems, mainly complexity and low biomarker concentration. Analysis of small molecules, such as circulating microRNAs, should overcome these disadvantages. The present study describes an optimal RNA extraction method of microRNAs from human plasma samples. Different reagents and commercially available kits have been analyzed, identifying also the best pre-analytical conditions for plasma isolation. Between all of them, the column-based approaches were shown to be the most effective. In this context, miRNeasy Serum/Plasma Kit (from Qiagen) rendered more concentrated RNA, that was better suited for microarrays studies and did not require extra purification steps for sample concentration and purification than phenol based extraction methods. We also present evidences that the addition of low doses of an RNA carrier before starting the extraction process improves microRNA purification while an already published carrier dose can result in significant bias over microRNA profiles. Quality controls for best protocol selection were developed by spectrophotometry measurement of contaminants and microfluidics electrophoresis (Agilent 2100 Bioanalyzer) for RNA integrity. Selected donor and patient plasma samples and matched biopsies were tested by Affymetrix microarray technology to compare differentially expressed microRNAs. In summary, this study defines an optimized protocol for microRNA purification from human blood samples, increasing the performance of assays and shedding light over the best way to discover and use these biomarkers in clinical practice.  相似文献   

11.
MicroRNAs have a revolutionary impact on cancer research over recent years. They emerge as important players in tumorigenesis, leading to a paradigm shift in oncology. The widespread and comprehensive use of microRNA microarrays has enabled the identification of a number of microRNAs as potential biomarkers for cancer. It is encouraging to report that microRNAs have remarkable stability in both formalin-fixed tissue and blood. Many microRNAs have been identified to act as oncogenes, tumor suppressors, or even modulators of cancer stem cells and metastasis. Some studies not only reported the identified microRNA biomarkers, but also deciphered their target genes and the underlying mechanisms. The rapid discovery of many microRNA targets and their relevant pathways has contributed to the development of microRNA-based therapeutics, but the developing progress of antisense or siRNA drugs has been hampered by stability, specificity and delivery problems. This review summarizes the most significant and latest findings of original researches on microRNAs involvement in cancer, focusing on the potential of cancer-related microRNAs as biomarkers for diagnosis, prognosis and targets for therapy.  相似文献   

12.
13.
The importance of microRNAs as key molecular components of cellular processes is now being recognized. Recent reports have shown that microRNAs regulate processes as diverse as protein expression and nuclear functions inside cells and are able to signal extracellularly, delivered via exosomes, to influence cell fate at a distance. The versatility of microRNAs as molecular tools inspires the design of novel strategies to control gene expression, protein stability, DNA repair and chromatin accessibility that may prove very useful for therapeutic approaches due to the extensive manageability of these small molecules. However, we still lack a comprehensive understanding of the microRNA network and its interactions with the other layers of regulatory elements in cellular and extracellular functions. This knowledge may be necessary before we exploit microRNA versatility in therapeutic settings. To identify rules of interactions between microRNAs and other regulatory systems, we begin by reviewing microRNA activities in a single cell type: the melanocyte, from development to disease.  相似文献   

14.
15.
Kuo TY  Hsi E  Yang IP  Tsai PC  Wang JY  Juo SH 《PloS one》2012,7(2):e31587
Colorectal cancer (CRC) is one of the leading malignant cancers with a rapid increase in incidence and mortality. The recurrences of CRC after curative resection are sometimes unavoidable and often take place within the first year after surgery. MicroRNAs may serve as biomarkers to predict early recurrence of CRC, but identifying them from over 1,400 known human microRNAs is challenging and costly. An alternative approach is to analyze existing expression data of messenger RNAs (mRNAs) because generally speaking the expression levels of microRNAs and their target mRNAs are inversely correlated. In this study, we extracted six mRNA expression data of CRC in four studies (GSE12032, GSE17538, GSE4526 and GSE17181) from the gene expression omnibus (GEO). We inferred microRNA expression profiles and performed computational analysis to identify microRNAs associated with CRC recurrence using the IMRE method based on the MicroCosm database that includes 568,071 microRNA-target connections between 711 microRNAs and 20,884 gene targets. Two microRNAs, miR-29a and miR-29c, were disclosed and further meta-analysis of the six mRNA expression datasets showed that these two microRNAs were highly significant based on the Fisher p-value combination (p = 9.14 × 10(-9) for miR-29a and p = 1.14 × 10(-6) for miR-29c). Furthermore, these two microRNAs were experimentally tested in 78 human CRC samples to validate their effect on early recurrence. Our empirical results showed that the two microRNAs were significantly down-regulated (p = 0.007 for miR-29a and p = 0.007 for miR-29c) in the early-recurrence patients. This study shows the feasibility of using mRNA profiles to indicate microRNAs. We also shows miR-29a/c could be potential biomarkers for CRC early recurrence.  相似文献   

16.
17.
18.
19.
An analysis of human microRNA and disease associations   总被引:2,自引:0,他引:2  
Lu M  Zhang Q  Deng M  Miao J  Guo Y  Gao W  Cui Q 《PloS one》2008,3(10):e3420
It has been reported that increasingly microRNAs are associated with diseases. However, the patterns among the microRNA-disease associations remain largely unclear. In this study, in order to dissect the patterns of microRNA-disease associations, we performed a comprehensive analysis to the human microRNA-disease association data, which is manually collected from publications. We built a human microRNA associated disease network. Interestingly, microRNAs tend to show similar or different dysfunctional evidences for the similar or different disease clusters, respectively. A negative correlation between the tissue-specificity of a microRNA and the number of diseases it associated was uncovered. Furthermore, we observed an association between microRNA conservation and disease. Finally, we uncovered that microRNAs associated with the same disease tend to emerge as predefined microRNA groups. These findings can not only provide help in understanding the associations between microRNAs and human diseases but also suggest a new way to identify novel disease-associated microRNAs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号