首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Spermatogenesis is a complex series of processes that involves (1) the maintenance of a renewable pool of diploid stem cells within a niche, (2) the mitotic expansion of a subpopulation of stem cells committed to the spermatogenic pathway, and (3) the differentiation of diploid cells into highly specialized, haploid spermatozoa through meiotic and post-meiotic cellular transformations. Drosophila melanogaster is a desirable model for studying spermatogenesis, as similarities exist between mammalian and fly spermatogenesis. Like mammals, flies maintain a spermatogenic stem cell niche; the steps involved in mammalian spermatogenesis are mimicked in flies, with the main difference being that fly sperm develop within cysts rather than an epithelial cell layer. Here, we report a reliable robust system for culturing whole testes and individual spermatogenic cysts obtained from mid- to late-pupal stages of Drosophila pseudoobscura. D. pseudoobscura testes can be easily distinguished in later pupal stages because of their intense red pigmentation and are easily handled because of their simple ellipsoidal morphology. Cultured cysts are comparable in length to cysts obtained from adult flies, and motility is consistently achieved in vitro. This system not only offers a method for dissecting the mechanisms involved in meiotic and post-meiotic cellular transformations, but also can be used for the study of signaling during spermatogenesis.  相似文献   

3.
Specific features of spermatogenesis were studied in senescence-accelerated mice of the strain SAMP1 after one-time injection of the chemical mutagen dipin. Quantitative and histomorphological changes in the spermatogenic epithelium proved to develop gradually. Cell loss and disorganization of spermatogenesis reached the peak as late as on days 28 and 35 after the injection. Differentiating spermatogonia manifested increased sensitivity to dipin. In prophase I of meiosis, developing spermatocytes proved to be less sensitive to the cytotoxic action of dipin at the pachytene than at the preleptotene-leptotene stages. Spermatogenesis in most seminiferous tubules was restored by day 56 after dipin treatment. At the end of the experiment (day 100), both quantitative parameters and morphological pattern of spermatogenesis did not differ significantly from those in the control. Thus, the cytotoxic action of dipin does not lead to irreversible structural disorganization of the spermatogenic epithelium in SAMP1 mice. Radioautography revealed a large proportion of highly differentiated Sertoli cells with 3H-thymidine-labeled nuclei in experimental animals. In some cases, structures resembling embryonic seminiferous tubules were revealed in the vicinity of rete testis in histological sections of testes of experimental mice. These structures contained the cells morphologically similar to gonocytes and immature Sertoli cells.  相似文献   

4.
A cell population enriched with type A spermatogonia has been isolated from the boar testes. Cell types occurring during isolation were morphologically characterized, factors maintaining the cultured spermatogonia in the undifferentiated state were studied, and these cells were transferred to sterile recipients preliminarily treated with busulfan. The cells of spermatogenic epithelium cultivated in vitro for 24 h were used for transfer experiments. The transfer efficiency was estimated within 27 and 29 days according to the histological picture of the testes and the isolated cultures. Spermatogenic cells at various developmental stages and a few Sertoli cells and spermatozoa were found on sections and in cell suspensions. Sperm samples could be taken from recipient boars within nine months after the transfer. Microsatellite analysis of DNA showed the endogenous pattern of spermatogenesis. Thus, it was shown that spermatogenic donor cells can restore and maintain spermatogenesis of a recipient for at least 30 days. However, the donor cells were fully forced by the recipient reserve cells, type A0 spermatogonia, within eight to nine months.  相似文献   

5.
A cell population enriched with type A spermatogonia has been isolated from the boar testes. Cell types occurring during isolation were morphologically characterized, factors maintaining the cultured spermatogonia in the undifferentiated state were studied, and these cells were transferred to sterile recipients preliminarily treated with busulfan. The cells of spermatogenic epithelium cultivated in vitro for 24 h were used for transfer experiments. The transfer efficiency was estimated within 27 and 29 days according to the histological picture of the testes and the isolated cultures. Spermatogenic cells at various developmental stages and a few Sertoli ells and spermatozoa were found on sections and in cell suspensions. Sperm samples could be taken from recipient boars within nine months after the transfer. Microsatellite analysis of DNA showed the endogenous pattern of spermatogenesis. Thus, it was shown that spermatogenic donor cells can restore and maintain spermatogenesis of a recipient for at least 30 days. However, the donor cells were fully forced by the recipient reserve cells, type A0 spermatogonia, within eight to nine months.  相似文献   

6.
7.
Regulatory effect of surfagon—a synthetic analog of gonadotropin-releasing hormone—on the gonad state of rainbow trout (Kamchatka steelhead Parasalmo mykiss (=Oncorhynchus mykiss)) juveniles is investigated. The juveniles were 2.5 months old and were exposed to brief (4 days) heat stress (19–20°C). The increase of water temperature was followed by anomalies of gonads after 1 month (destruction of sex cells and hypertrophy of connective tissue). In females, the increased water temperature activates sex redetermination: in ovaries, cysts containing destroyed spermatogonia are found. In 1.5 months, the exogenous application of surfagon was followed by acceleration of spermatogenesis in gonads of experimental fish (2.5 months old) and by a slight decrease of fraction of anomalies in structure of their testes compared with the gonads of fish not exposed to surfagon. Exposure of rainbow trout to surfagon prior to sex differentiation is more efficient than after it is completed.  相似文献   

8.
Androgens are required for normal male sex differentiation and development of male secondary sexual characteristics. Mutations in AR gene are known to cause defects in male sexual differentiation. In current study, we enrolled a 46,XY phenotypically female patient bearing testes in inguinal canal. DNA sequencing of the AR gene detected a missense mutation C.1715A?>?G (p. Y572C) in exon 2 which is already known to cause complete androgen insensitivity syndrome (CAIS). We focused on the effects of this mutation on the testicular histopathology of the patient. Surface spreading of testicular tissues showed an absence of spermatocytes while H&E staining showed that seminiferous tubules predominantly have only Sertoli cells. This meiotic failure is likely due to the effect of the AR mutation which ultimately leads to Sertoli cell only syndrome. Tubules were stained with SOX9 and AMH which revealed Sertoli cells maturation arrest. Western blot and realtime PCR data showed that patient had higher levels of AMH, SOX9 and inhibin-B in the testis. Therefore, we suggest that the dysfunctioning of AR by mutation enhances AMH expression which ultimately leads to the failure in maturation of Sertoli cells.  相似文献   

9.
Noncycling and terminally differentiated (TD) cells display differences in radiosensitivity and DNA damage response. Unlike other TD cells, Sertoli cells express a mixture of proliferation inducers and inhibitors in vivo and can reenter the cell cycle. Being in a G1-like cell cycle stage, TD Sertoli cells are expected to repair DSBs by the error-prone nonhomologous end-joining pathway (NHEJ). Recently, we have provided evidence for the involvement of Ku-dependent NHEJ in protecting testis cells from DNA damage as indicated by persistent foci of the DNA double-strand break (DSB) repair proteins phospho-H2AX, 53BP1, and phospho-ATM in TD Sertoli cells of Ku70-deficient mice. Here, we analyzed the kinetics of 53BP1 foci induction and decay up to 12 h after 0.5 Gy gamma irradiation in DNA-PKcs-deficient (Prkdc scid ) and wild-type Sertoli cells. In nonirradiated mice and Prkdc scid Sertoli cells displayed persistent DSBs foci in around 12 % of cells and a fivefold increase in numbers of these DSB DNA damage-related foci relative to the wild type. In irradiated mice, Prkdc scid Sertoli cells showed elevated levels of DSB-indicating foci in 82 % of cells 12 h after ionizing radiation (IR) exposure, relative to 52 % of irradiated wild-type Sertoli cells. These data indicate that Sertoli cells respond to and repair IR-induced DSBs in vivo, with repair kinetics being slow in the wild type and inefficient in Prkdc scid . Applying the same dose of IR to Prdkc ?/? and Ku ?/? mouse embryonic fibroblast (MEF) cells revealed a delayed induction of 53BP1 DSB-indicating foci 5 min post-IR in Prdkc ?/? cells. Inefficient DSB repair was evident 7 h post-IR in DNA-PKcs-deficient cells, but not in Ku ?/? MEFs. Our data show that quiescent Sertoli cells repair genotoxic DSBs by DNA-PKcs-dependent NEHJ in vivo with a slower kinetics relative to somatic DNA-PKcs-deficient cells in vitro, while DNA-PKcs deficiency caused inefficient DSB repair at later time points post-IR in both conditions. These observations suggest that DNA-PKcs contributes to the fast and slow repair of DSBs by NHEJ.  相似文献   

10.
Lactate produced by Sertoli cells plays an important role in spermatogenesis, and heat stress induces lactate production in immature boar Sertoli cells. Extracellular signaling regulated kinase 1 and 2 (ERK1/2) participates in heat stress response. However, the effect of ERK1/2 on heat stress-induced lactate production is unclear. In the present study, Sertoli cells were isolated from immature boar testis and cultured at 32 °C. Heat stress was induced in a 43 °C incubator for 30 min. Proteins and RNAs were detected by western blotting and RT-PCR, respectively. Lactate production and lactate dehydrogenase (LDH) activity were detected using commercial kits. Heat stress promoted ERK1/2 phosphorylation, showing a reducing trend with increasing recovery time. In addition, heat stress increased heat shock protein 70 (HSP70), glucose transporter 3 (GLUT3), and lactate dehydrogenase A (LDHA) expressions, enhanced LDH activity and lactate production at 2-h post-heat stress. Pretreatment with U0126 (1?×?10?6 mol/L), a highly selective inhibitor of ERK1/2 phosphorylation, reduced HSP70, GLUT3, and LDHA expressions and decreased LDH activity and lactate production. Meanwhile, ERK2 siRNA1 reduced the mRNA level of ERK2 and weakened ERK1/2 phosphorylation. Additionally, ERK2 siRNA1 reduced HSP70, GLUT3, and LHDA expressions decreased LDH activity and lactate production. Furthermore, HSP70 siRNA3 downregulated GLUT3 and LDHA expressions and decreased LDH activity and lactate production. These results show that activated ERK1/2 increases heat stress-induced lactate production by enhancing HSP70 expression to promote the expressions of molecules related to lactate production (GLUT3 and LDHA). Our study reveals a new insight in reducing the negative effect of heat stress in boars.  相似文献   

11.
The study was an examination of the effects of spinal cord injury (SCI) on spermatogenesis and Sertoli cell functions in adult rats with Sertoli cell-enriched (SCE) testes. The effects of SCI on the seminiferous epithelium were characterized by abnormalities in the remaining spermatogenic cells during the first month after SCI. Three days after SCI, serum testosterone levels were 80% lower, while serum FSH and LH levels were 25% and 50% higher, respectively, than those of sham control SCE rats. At this time, the levels of mRNA for androgen receptor (AR), FSH receptor (FSH-R), and androgen-binding protein (ABP) were normal whereas those for transferrin (Trf) had decreased by 40%. Thereafter, serum testosterone levels increased, but they remained lower than those of the sham control rats 28 days after SCI; and serum FSH and LH levels returned to normal. The levels of mRNA for AR, ABP, and Trf exhibited a biphasic increase 7 days after SCI and remained elevated 28 days after SCI. FSH-R mRNA levels were also elevated 90 days after SCI. Unexpectedly, active spermatogenesis, including qualitatively complete spermatogenesis, persisted in > 40% of the tubules 90 days after SCI. These results suggest that the stem cells and/or undifferentiated spermatogonia in SCE testes are less susceptible to the deleterious effects of SCI than the normal testes and that they were able to proliferate and differentiate after SCI. The presence of elevated levels of mRNA for Sertoli cell FSH-R and AR, as well as of that for the Sertoli cell proteins, in the SCE testes during the chronic stage of SCI suggests a modification of Sertoli cell physiology. Such changes in Sertoli cell functions may provide a beneficial environment for the proliferation of the stem cells and differentiation of postmeiotic cells, thus resulting in the persistence of spermatogenesis in these testes.  相似文献   

12.
13.

Background

Gonadal sex determination (GSD) in humans is a complex biological process that takes place in early stages of embryonic development when the bipotential gonadal primordium (BGP) differentiates towards testes or ovaries. This decision is directed by one of two distinct pathways embedded in a GSD network activated in a population of coelomic epithelial cells, the Sertoli progenitor cells (SPC) and the granulosa progenitor cells (GPC). In males, the pathway is activated when the Sex-Determining Region Y (SRY) gene starts to be expressed, whereas in females the WNT4/ β-catenin pathway promotes the differentiation of the GPCs towards ovaries. The interactions and dynamics of the elements that constitute the GSD network are poorly understood, thus our group is interested in inferring the general architecture of this network as well as modeling the dynamic behavior of a set of genes associated to this process under wild-type and mutant conditions.

Methods

We reconstructed the regulatory network of GSD with a set of genes directly associated with the process of differentiation from SPC and GPC towards Sertoli and granulosa cells, respectively. These genes are experimentally well-characterized and the effects of their deficiency have been clinically reported. We modeled this GSD network as a synchronous Boolean network model (BNM) and characterized its attractors under wild-type and mutant conditions.

Results

Three attractors with a clear biological meaning were found; one of them corresponding to the currently known gene expression pattern of Sertoli cells, the second correlating to the granulosa cells and, the third resembling a disgenetic gonad.

Conclusions

The BNM of GSD that we present summarizes the experimental data on the pathways for Sertoli and granulosa establishment and sheds light on the overall behavior of a population of cells that differentiate within the developing gonad. With this model we propose a set of regulatory interactions needed to activate either the SRY or the WNT4/ β-catenin pathway as well as their downstream targets, which are critical for further sex differentiation. In addition, we observed a pattern of altered regulatory interactions and their dynamics that lead to some disorders of sex development (DSD).
  相似文献   

14.
Neural crest stem cells (NCSCs) are the source of mature Schwann cells in the peripheral nervous system (PNS). The NCSC population resides in the bulge of hair follicles and in the dermis. Recently, it was shown that 2–3% of the human dermis mesenchymal stem cell (MSC) population expresses the NCSC marker CD271, thus enabling the use of skin MSCs for studying Schwann cell differentiation in vitro. The aims of this study were to establish a protocol for human skin MSC differentiation towards Schwann cell-like cells (SC-lcs) and to analyse the expression of sigma-1 receptor (S1R) in SC-lcs. The impact of S1R ligands, namely the selective agonist PRE-084, the positive allosteric modulator E1R and the selective antagonist NE-100, on Schwann cell differentiation was assessed. The expression of the neuron-specific genes Tubulin-βIII and Integrin-6α, the Schwann cell-specific gene S100b, MBP and the NCSC-specific genes p75NTR, Sox10, Notch1, Integrin-4α, Ap2α and Pax6 was analysed in MSCs and SC-lcs by real-time RT-PCR. BDNF secretion was evaluated by ELISA. The effect of S1R ligands on SC-lc differentiation was measured using BDNF ELISA and MBP flow cytometry. After MSC differentiation, NCSC markers p75NTR and Integrin-4α were downregulated 3.5-fold and 2-fold, respectively. To the contrary, MBP and S100b were significantly upregulated in SC-lcs. S1R ligands showed a tendency to increase the secretion of BDNF by the SC-lc population. PRE-084 and E1R increased MBP expression in the SC-lc population, whereas 3 μM NE-100 inhibited MBP expression in SC-lcs. In conclusion, our data demonstrate that S1R plays an important role in skin MSC differentiation towards myelinating Schwann cells.  相似文献   

15.
Recent advances in wound healing have made cell therapy a potential approach for the treatment of various types of skin defects such as trauma, burns, scars and diabetic leg ulcers. Cultured keratinocytes have been applied to burn patients since 1981. Patients with acute and chronic wounds can be treated with autologous/allograft cultured keratinocytes. There are various methods for cultivation of epidermal keratinocytes used in cell therapy. One of the important properties of an efficient cell therapy is the preservation of epidermal stem cells. Mesenchymal Stem Cells (MSCs) are major regulatory cells involved in the acceleration of wound healing via induction of cell proliferation, angiogenesis and stimulating the release of paracrine signaling molecules. Considering the beneficial effects of MSCs on wound healing, the main aim of the present study is investigating paracrine effects of Adipose-derived Mesenchymal Stem Cell (Ad-MSCs) on cultivation of keratinocytes with focusing on preservation of stem cells and their differentiation process. We further introduced a new approach for culturing isolated keratinocytes in vitro in order to generate epidermal keratinocyte sheets without using a feeder layer. To do so, Ad-MSC conditioned medium was applied as an alternative to commercial media for keratinocyte cultivation. In this study, the expression of several stem/progenitor cell (P63, K19 and K14) and differentition (K10, IVL and FLG) markers was examined using real time PCR on days 7, 14 and 21 of culture in keratinocytes in Ad-MSC conditioned medium. P63 and α6 integrin expression was also evaluated via flow cytometry. The results were compared with control group including keratinocytes cultured in EpiLife medium and our data indicated that this Ad-MSC conditioned medium is a good alternative for keratinocyte cultivation and producing epidermal sheets for therapeutic and clinical purposes. The reasons are the expression of stem cell and differentiation markers and overcoming the requirement for feeder layer which leads to a xenograft-free transplantation. Besides, this approach has low cost and is easier to perform. However, more in vitro and in vivo experiments as well as safety evaluation required before clinical applications.  相似文献   

16.
Vimentin is an intermediate filament (also known as nanofilament) protein expressed in several cell types of the central nervous system, including astrocytes and neural stem/progenitor cells. Mutation of the vimentin serine sites that are phosphorylated during mitosis (VIM SA/SA ) leads to cytokinetic failures in fibroblasts and lens epithelial cells, resulting in chromosomal instability and increased expression of cell senescence markers. In this study, we investigated morphology, proliferative capacity, and motility of VIM SA/SA astrocytes, and their effect on the differentiation of neural stem/progenitor cells. VIM SA/SA astrocytes expressed less vimentin and more GFAP but showed a well-developed intermediate filament network, exhibited normal cell morphology, proliferation, and motility in an in vitro wound closing assay. Interestingly, we found a two- to fourfold increased neuronal differentiation of VIM SA/SA neurosphere cells, both in a standard 2D and in Bioactive3D cell culture systems, and determined that this effect was neurosphere cell autonomous and not dependent on cocultured astrocytes. Using BrdU in vivo labeling to assess neural stem/progenitor cell proliferation and differentiation in the hippocampus of adult mice, one of the two major adult neurogenic regions, we found a modest increase (by 8%) in the fraction of newly born and surviving neurons. Thus, mutation of the serine sites phosphorylated in vimentin during mitosis alters intermediate filament protein expression but has no effect on astrocyte morphology or proliferation, and leads to increased neuronal differentiation of neural progenitor cells.  相似文献   

17.
18.

Background

The swine-adapted serovar Choleraesuis of Salmonella enterica subspecies enterica is found rarely in domestic pigs in Germany. However, a considerable and increasing number of S. Choleraesuis organisms have been isolated from wild boars in Germany in recent years. To investigate a possible epidemiological context, S. Choleraesuis strains from a regional German wild boar population and other hosts were characterised by genotyping methods.

Results

Macrorestriction analysis, biochemical differentiation and antimicrobial susceptibility typing enabled the identification of several clusters of S. Choleraesuis. Some clusters occurred almost permanently in a certain district, whereas other groups circulated among different wild boar herds in larger regions. Non-porcine hosts were infected with the same cluster as the wild boars.

Conclusions

The emergence of S. Choleraesuis in wild boars might be caused by a higher prevalence in the wild boar population, but also the higher awareness to infections with African swine fever may have resulted in a higher number of examined animals. Separation of wild boar populations and, as a result, also the diverse S. Choleraesuis organisms might be due to natural barriers and artificial barriers like arterial roads. The findings of S. Choleraesuis in domestic pigs emphasize the importance of strict biosecurity measures to prevent transmission from wild boars of this but also other pathogens. To avoid risks for humans by zoonotic pathogens regular inspections of meat from wildlife need to be conducted.
  相似文献   

19.
Neural stem cells (NSCs) serve as the source of both neurons and support cells, and neurogenesis is reportedly linked to the circadian clock. This study aimed to clarify the functional role of the circadian rhythm-related nuclear receptor, REV-ERBβ, in neurogenesis of NSCs from adult brain. Accordingly, Rev-erbβ expression and the effect of Rev-erbβ gene-specific knockdown on neurogenesis in vitro was examined in adult rodent NSCs. Initial experiments confirmed REV-ERBβ expression in cultured adult NSCs, while subsequent gene expression and gene ontogeny analyses identified functional genes upregulated or downregulated by REV-ERBβ. In particular, expression levels of factors associated with proliferation, stemness, and neural differentiation were affected. Knockdown of Rev-erbβ showed involvement of REV-ERBβ in regulation of cellular proliferation and self-renewal of cultured adult NSCs. Moreover, Rev-erbβ-knockdown cells formed neurons with a slightly shrunken morphology, fewer new primary neurites, and reduced length and branch formation of neurites. Altogether, this suggests that REV-ERBβ is involved in neurite formation during neuronal differentiation of cultured adult NSCs. In summary, REV-ERBβ is a known circadian regulatory protein that appears to be involved in neurogenesis via regulation of networks for cell proliferation and neural differentiation/maturation in adult NSCs.  相似文献   

20.
Spermatogenesis in vitro has been demonstrated using spermatogonial stem cells (SSCs) in monolayer culture or testis tissue fragments in agarose-constructed three-dimensional (3-D) conditions. However, the low efficiency of gamete maturation and the lack of a novel induction platform have limited the progress of its use in further research and clinical applications. Here, we provide modified stage-specific induction approaches for spermatogenesis in in vitro culture with cells possessing a totipotent status. With this stage-specific propagation in a monolayer condition and a changing cytokine combination, we obtained spermatogenic cells in the forward to late meiosis stages with haploid features. Based on this technical platform, we refined a novel serum-free culture system with various cytokines in 3-D Matrigel for spermatogenesis that promote totipotent embryonic stem cells to meiosis stage with distinct SCP3 expression. And we also explored the effects of coculture with fibroblasts, the mutual interactions in the induction conditions promote the mouse embryonic fibroblasts underwent stromal cells differentiation. In further overexpression of spermatogenic gene Dazl in mouse embryonic fibroblasts, we found early stage initiation for spermatogenesis, and that will enhanced if cocultured with embryonic stem cells in the induction condition. Our results provide alternative approaches for effective spermatogenesis and support the development of promising avenues for infertility therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号