首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mesenchymal stem cells (MSCs) contribute to tissue repair in vivo and form an attractive cell source for tissue engineering. Their regenerative potential is impaired by cellular senescence. The effects of oxidative stress on MSCs are still unknown. Our studies were to investigate into the proliferation potential, cytological features and the telomere linked stress response system of MSCs, subject to acute or prolonged oxidant challenge with hydrogen peroxide. Telomere length was measured using the telomere restriction fragment assay, gene expression was determined by rtPCR. Sub-lethal doses of oxidative stress reduced proliferation rates and induced senescent-morphological features and senescence-associated β-galactosidase positivity. Prolonged low dose treatment with hydrogen peroxide had no effects on cell proliferation or morphology. Sub-lethal and prolonged low doses of oxidative stress considerably accelerated telomere attrition. Following acute oxidant insult p21 was up-regulated prior to returning to initial levels. TRF1 was significantly reduced, TRF2 showed a slight up-regulation. SIRT1 and XRCC5 were up-regulated after oxidant insult and expression levels increased in aging cells. Compared to fibroblasts and chondrocytes, MSCs showed an increased tolerance to oxidative stress regarding proliferation, telomere biology and gene expression with an impaired stress tolerance in aged cells.  相似文献   

2.
3.
Oxidative stress has been shown to cause either apoptosis or stress-induced premature senescence (SIPS) in different cell types. At present, it is generally accepted that stem cells have high resistance to oxidative stress; however, data reported by various authors are disputed. In this study, we investigated stress responses of human embryonic stem cells (hESC) and human mesenchymal stem cells (hMESC) derived from desquamated endometrium to hydrogen peroxide (H2O2). Cell viability was evaluated by MTT assay. LD50 were determined as 300–350, 370–400, and 600–700 μM for hESC, human embryonic fibroblasts, and hMESC, respectively. Thus, of the studied cell lines, hMESC exhibited the greatest resistance to increased H2O2 concentration. We found for the first time that a sublethal concentration of H2O2 induced premature senescence phenotype in hMESC, like in HEF, that was characterized by increased expression of cyclin-dependent kinase inhibitor p21Waf1/Cip1, an irreversible cell cycle arrest, the permanent loss of proliferative potential, cell hypertrophy, and the SA-β-Gal staining. Whereas the sublethal H2O2 concentration (200 μM) promoted in hMESC only SIPS, higher H2O2 concentrations also induced apoptosis in a small part of the cell population. On the contrary, in hESC, H2O2, regardless of the tested concentrations (from 50 to 500 μM), triggered apoptosis, which was the only pronounced response of these cells to oxidative damage. The obtained data demonstrate that stem cells of different origins under conditions of oxidative stress use different protective mechanisms: hESC rapidly eliminate damaged cells through apoptosis, whereas hMESC are subjected to premature senescence.  相似文献   

4.
Taxol is an anticancer agent of natural origin with significant activity against a number of human cancers including ovarian and breast carcinomas. Its cytotoxic activity has been attributed to its ability to stabilize microtubules and to promote microtubule assembly. Recently it has become clearer that Taxol has additional activities including effects in cell signaling and gene expression. We have shown previously that Taxol activates ERK 1/2 MAP-kinases and results in the formation of GRB2/SHC complexes in murine macrophage-like RAW 267.4 cells. Here we demonstrate that Taxol activates ERK 1/2 and p38 MAP-kinases in human ovarian carcinoma cells with distinct kinetics. Activation of ERK1/2 has been observed at low concentrations of Taxol (1-100 nM) within 0.5-6 h, whereas longer exposure(24 h) to nanomolar concentrations of Taxol resulted in an abrogation of the ERK1/2 phosphorylation/activation. Higher concentrations (1-10 microM) resulted in a sharp inhibition of ERK1/2 activity. p38 kinase was activated by high concentrations (1-10 microM) of Taxol within 2 h and remained active for more than 24 h. The kinetic studies showed that these effects of Taxol coincided with an inhibition of proliferation, and the onset of apoptosis. The appearance of the fragmented chromatin visualized by DAPI staining, and DNA fragments seen on an agarose gel, coincided with the decrease in ERK1/2 activation and concomitant increase of the level of active p38 MAPK. The inhibitor PD98059 abrogated ERK 1/2 activation and increased the cytotoxic effect of Taxol. An inhibitor of p38 kinase, SB203580, protected the cells partially from Taxol and, unexpectedly, activated ERK 1/2 kinases. We conclude that the alternative use of ERK1/2 and p38 MAP-kinase pathways may be necessary for the transition from proliferation state to Taxol-induced apoptosisin human ovarian carcinoma cells.  相似文献   

5.
Zhu  Xiao  Zhang  Lingyan  Chen  Youming  Chen  Bo  Huang  Haifeng  Lv  Jicheng  Hu  Shidi  Shen  Jie 《Molecular and cellular biochemistry》2019,462(1-2):107-114
Molecular and Cellular Biochemistry - The aim of the work was to study the influence of vaspin on oxidative stress-induced apoptosis of mouse mesenchymal stem cells (MSCs). MSCs originated from...  相似文献   

6.
Periodontitis is a chronic inflammatory disease induced by bacterial pathogens, which not only affect connective tissue attachments but also cause alveolar bone loss. In this study, we investigated the anti-inflammatory effects of Human amnion-derived mesenchymal stem cells (HAMSCs) on human bone marrow mesenchymal stem cells (HBMSCs) under lipopolysaccharide (LPS)-induced inflammatory conditions. Proliferation levels were measured by flow cytometry and immunofluorescence staining of 5-ethynyl-2′-deoxyuridine (EdU). Osteoblastic differentiation and mineralization were investigated using chromogenic alkaline phosphatase activity (ALP) activity substrate assays, Alizarin red S staining, and RT-PCR analysis of HBMSCs osteogenic marker expression. Oxidative stress induced by LPS was investigated by assaying reactive oxygen species (ROS) level and superoxide dismutase (SOD) activity. Here, we demonstrated that HAMSCs increased the proliferation, osteoblastic differentiation, and SOD activity of LPS-induced HBMSCs, and down-regulated the ROS level. Moreover, our results suggested that the activation of p38 MAPK signal transduction pathway is essential for reversing the LPS-induced bone-destructive processes. SB203580, a selective inhibitor of p38 MAPK signaling, significantly suppressed the anti-inflammatory effects in HAMSCs. In conclusion, HAMSCs show a strong potential in treating inflammation-induced bone loss by influencing p38 MAPK signaling.  相似文献   

7.
8.
Human endometrium-derived mesenchymal stem cells (hMESC) under the sublethal oxidative stress induced by H2O2 activate both the p53/p21/Rb and p38/MAPKAPK-2 pathways that are responsible for the induction of hMESC premature senescence (Borodkina et al., 2014). However, the interrelations between the p53/p21/Rb and MAPK signaling pathways, including ERK1/2, p38, and JNK, remain yet unexplored. Here, we used the specific inhibitors—pifithrin-α (PFT), U0126, SB203580, and SP600125 to “switch off” one of the proteins in these cascades and to evaluate the functional status alterations of the rest of the proteins. Each MAPK suppression significantly increased the p53 phosphorylation level, as well as p21 protein expression followed by Rb hypophosphorylation. On the other hand, PFT-induced p53 inhibition enhanced mostly the ERK1/2 activation rather than p38 and JNK. These results suggest the existence of a reciprocal negative regulation between p53- and MAPK-dependent signaling pathways. By analyzing the possible interactions among the members of the MAPK family, we showed that p38 and JNK can function as ERK antagonists: JNK is able to activate ERK, while p38 may block ERK activation. Together, these results demonstrate the existence of complex links between different signaling cascades in stressed hMESC, implicating ERK, p38, and JNK in regulation of premature senescence via the p53/p21/Rb pathway.  相似文献   

9.
Stem cells in adult organism are responsible for cell turnover and tissue regeneration. The study of stem cell stress response contributes to our knowledge on the mechanisms of damaged tissue repair. Previously, we demonstrated that sublethal heat shock (HS) induced apoptosis in human embryonic stem cells. This study aimed to investigate HS response of human adult stem cells. Human mesenchymal stem cells (MSCs) cultivated in vitro were challenged with sublethal HS. It was found that sublethal HS did not affect the cell viability assessed by annexin V/propidium staining. However, MSCs subjected to severe HS exhibited features of stress-induced premature senescence (SIPS): irreversible cell cycle arrest, altered morphology, increased expression of senescence-associated β-galactosidase (SA-β-gal) activity, and induction of cyclin-dependent kinase inhibitor p21 protein. High level of Hsp70 accumulation induced by sublethal HS did not return to the basal level, at least, after 72 h of the cell recovery when most cells exhibited SIPS hallmarks. MSCs survived sublethal HS, and resumed proliferation sustained the properties of parental MSCs: diploid karyotype, replicative senescence, expression of the cell surface markers, and capacity for multilineage differentiation. Our results showed for the first time that in human MSCs, sublethal HS induced premature senescence rather than apoptosis or necrosis. MSC progeny that survived sublethal HS manifested stem cell properties of the parental cells: limited replicative life span and multilineage capacity.  相似文献   

10.
11.
Clinical trials using allogeneic mesenchymal stem cells (MSCs) are ongoing for the purpose of providing therapeutic benefit for a variety of human disorders. Pertinent to their clinical use are the accessibility to sufficient quantities of these cells allowing for repetitive administration, as well as a better understanding of the specific mechanisms by which allogeneic MSCs evade host immune responses that in turn influence their life span following administration. In this report, we sought to characterize and compare human peripheral blood MSCs (hPB-MSCs) with bone marrow-derived MSCs. hPB-MSCs met the established criteria to characterize this cellular lineage, including capacity for self-renewal, differentiation into tissues of mesodermal origin, and expression of phenotypic surface markers. In addition, hPB-MSCs suppressed alloreactive proliferation as well as the production of proinflammatory cytokines. Examination of the mechanisms by which allogeneic MSCs evade the host immune response, which is crucial for their therapeutic use, demonstrated that constitutive expression of serine protease inhibitor 9 (PI-9) on hPB-MSCs and bone marrow-derived MSCs is a major defense mechanism against granzyme B-mediated destruction by NK cells. Similarly, MSCs treated with small interfering RNA for PI-9 increased MSC cellular death, whereas expression of transgenic PI-9 following retroviral transduction protected MSCs. These data significantly advance our understanding of the immunomodulatory role for hPB-MSCs as well as the mechanisms by which they evade host immune responses. These findings contribute to the development of MSC-based therapies for diseases.  相似文献   

12.
13.
Dear Editor, Stem cell therapy holds enormous and revolutionary promise to treat various age-related diseases,such as diabetes,heart failure,and Parkinson's dis...  相似文献   

14.
Human mesenchymal stem cells (hMSCs) are able to both self-replicate and differentiate into a variety of cell types. Fibroblast growth factor-2 (FGF-2) stimulates the growth of hMSCs in vitro, but its mechanisms have not been clarified yet. In this study, we investigated whether cellular senescence was involved in the stimulation of hMSCs growth by FGF-2 and the expression levels of transforming growth factor-beta1 and -beta2 (TGF-betas). Because hMSCs were induced cellular senescence due to long-term culture, FGF-2 decreased the percentage of senescent cells and suppressed G1 cell growth arrest through the suppression of p21(Cip1), p53, and p16(INK4a) mRNA expression levels. Furthermore, the levels of TGF-betas mRNA expression in hMSCs were increased by long-term culture, but FGF-2 suppressed the increase of TGF-beta2 mRNA expression due to long-term culture. These results suggest that FGF-2 suppresses the hMSCs cellular senescence dependent on the length of culture through down-regulation of TGF-beta2 expression.  相似文献   

15.
Cell stress may give rise to insuperable growth arrest, which is defined as cellular senescence. Stenotic kidney (STK) ischemia and injury induced by renal artery stenosis (RAS) may be associated with cellular senescence. Mesenchymal stem cells (MSCs) decrease some forms of STK injury, but their ability to reverse senescence in RAS remains unknown. We hypothesized that RAS evokes STK senescence, which would be ameliorated by MSCs. Mice were studied after 4 weeks of RAS, RAS treated with adipose tissue‐derived MSCs 2 weeks earlier, or sham. STK senescence‐associated β‐galactosidase (SA‐β‐Gal) activity was measured. Protein and gene expression was used to assess senescence and the senescence‐associated secretory phenotype (SASP), and staining for renal fibrosis, inflammation, and capillary density. In addition, senescence was assessed as p16+ and p21+ urinary exosomes in patients with renovascular hypertension (RVH) without or 3 months after autologous adipose tissue‐derived MSC delivery, and in healthy volunteers (HV). In RAS mice, STK SA‐β‐Gal activity increased, and senescence and SASP marker expression was markedly elevated. MSCs improved renal function, fibrosis, inflammation, and capillary density, and attenuated SA‐β‐Gal activity, but most senescence and SASP levels remained unchanged. Congruently, in human RVH, p21+ urinary exosomes were elevated compared to HV, and only slightly improved by MSC, whereas p16+ exosomes remained unchanged. Therefore, RAS triggers renal senescence in both mice and human subjects. MSCs decrease renal injury, but only partly mitigate renal senescence. These observations support exploration of targeted senolytic therapy in RAS.  相似文献   

16.

Background

Mesenchymal Stem Cells (MSC) are important candidates for therapeutic applications due to their ex vivo proliferation and differentiation capacity. MSC differentiation is controlled by both intrinsic and extrinsic factors and actin cytoskeleton plays a major role in the event. In the current study, we tried to understand the initial molecular mechanisms and pathways that regulate the differentiation of MSC into osteocytes or adipocytes.

Results

We observed that actin modification was important during differentiation and differentially regulated during adipogenesis and osteogenesis. Initial disruption of actin polymerization reduced further differentiation of MSC into osteocytes and osteogenic differentiation was accompanied by increase in ERK1/2 and p38 MAPK phosphorylation. However, only p38 MAPK phosphorylation was down regulated upon inhibition of actin polymerization which as accompanied by decreased CD49E expression.

Conclusion

Taken together, our results show that actin modification is a pre-requisite for MSC differentiation into osteocytes and adipocytes and osteogenic differentiation is regulated through p38 MAPK phosphorylation. Thus by modifying their cytoskeleton the differentiation potential of MSC could be controlled which might have important implications for tissue repair and regeneration.  相似文献   

17.
Among the hundreds of oncogenes and tumor suppressors that have been identified in the past 50 years, p53 is probably the best characterized; nevertheless, new functions are constantly being discovered. As a tumor suppressor, p53 regulates cellular responses to different stress stimuli by inducing reversible cell cycle arrest and DNA repair, or triggering senescence or apoptosis. Recent findings on the regulation of stem cell (SC) division and reprogramming suggest the intriguing possibility that p53 also carries out its tumor suppression function by regulating SC homeostasis. Specifically, p53 activation may counteract SC expansion by several emerging mechanisms including restriction of self-renewing divisions, inhibition of symmetric division and block of reprogramming of somatic/progenitor cells into SCs.  相似文献   

18.
Ageing and age-related diseases share some basic origin that largely converges on inflammation. Precisely, it boils down to a common pathway characterised by the appearance of a fair amount of proinflammatory cytokines known as inflammageing. Among the proposed treatment for antiageing, MSCs gained attention in recent years. Since mesenchymal stem cells (MSCs) can differentiate itself into a myriad of terminal cells, previously it was believed that these cells migrate to the site of injury and perform their therapeutic effect. However, with the more recent discovery of huge amounts of paracrine factors secreted by MSCs, it is now widely accepted that these cells do not engraft upon transplantation but rather unveil their benefits through excretion of bioactive molecules namely those involved in inflammatory and immunomodulatory activities. Conversely, the true function of these paracrine changes has not been thoroughly investigated all these years. Hence, this review will describe in detail on ways MSCs may capitalize its paracrine properties in modulating antiageing process. Through a comprehensive literature search various elements in the antiageing process, we aim to provide a novel treatment perspective of MSCs in antiageing related clinical conditions.  相似文献   

19.
The presence within bone marrow of a population of mesenchymal stem cells (MSCs) able to differentiate into a number of different mesenchymal tissues, including bone and cartilage, was first suggested by Friedenstein nearly 40 years ago. Since then MSCs have been demonstrated in a variety of fetal and adult tissues, including bone marrow, fetal blood and liver, cord blood, amniotic fluid and, in some circumstances, in adult peripheral blood. MSCs from all of these sources can be extensively expanded in vitro and when cultured under specific permissive conditions retain their ability to differentiate into multiple lineages including bone, cartilage, fat, muscle, nerve, glial and stromal cells. There has been great interest in these cells both because of their value as a model for studying the molecular basis of differentiation and because of their therapeutic potential for tissue repair and immune modulation. However, MSCs are a rare population in these tissues. Here we tried to identify cells with MSC-like potency in human placenta. We isolated adherent cells from trypsin-digested term placentas and examined these cells for morphology, surface markers, and differentiation potential and found that they expressed several stem cell markers. They also showed endothelial and neurogenic differentiation potentials under appropriate conditions. We suggest that placenta-derived cells have multilineage differentiation potential similar to MSCs in terms of morphology and cell-surface antigen expression. The placenta may prove to be a useful source of MSCs.  相似文献   

20.
Low magnitude high frequency vibration (LMHFV) exhibits effectively anabolic effects on the bone tissue, and can promote osteogenic differentiation of mesenchymal stem cells (MSCs) in vitro. The role of p38 MAPK signaling in LMHFV-induced osteogenesis remains unclear. In this current study, LMHFV loading was applied to BMSCs in vitro, and cell proliferation, alkaline phosphatase (ALP), matrix mineralization, as well as osteogenic genes expression were assayed. The mechanism of mechanical signal transduction was analysed using PCR array, qRT-PCR and Western blot. LMHFV increased cell proliferation in the growth medium, while inhibited proliferation in the osteogenic medium. ALP activity, matrix mineralization and osteogenic genes expression of Runx2, Col-I, ALP, OPN and OC were increased by LMHFV. p38 and MKK6 genes expression, and p38 phosphorylation were promoted in LMHFV-induced osteogenesis. Inhibition of p38 MAPK with SB203580 and targeted p38 siRNA blunted the increased ALP activity and osteogenic genes expression by LMHFV. These findings suggest that LMHFV promotes osteogenic differentiation of BMSCs, and p38 MAPK signaling shows an important function in LMHFV-induced osteogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号