首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Honeybees have a dance language by which successful foragers inform nestmates about attractive food patches. The classical concept of dialects in the dance language of honeybees points to two differences in the dances by different species and races, firstly in the flight distance at which the dancers start performing waggle dances instead of round dances, and secondly in the circuit duration of the waggle dance performed for a given flight distance. However, recent findings have indicated that the dance language is influenced and affected by a number of parameters, both genetic and environmental. The current study was carried out to see whether the distance at which dancers change from round dances to waggle dances is statistically different in two different species, Apis mellifera carnica and A. florea and to develop a set of definitions for such comparative studies. Results show that the two species do not differ in the relative proportion of waggle dances and round dances performed at a given distance. Thus, this study points to the need of addressing the dialect question again.  相似文献   

2.
Successful honeybee foragers perform dances on the surface of the comb where they interact with nectar receivers and dance followers. We have recorded the sites at which dances take place in large ten-frame hives and in two-frame observation hives. We find that dancing bees are most commonly found on particular combs in large hives and in particular areas on the combs in the observation hives. Although the site where dances take place may change from day to day, dancers will keep to the same site during the foraging period in any one day. Furthermore, if an established dance site is artificially relocated in the hive during the day, dancers seek these sites out before commencing their dances. We conclude that the dance sites are labelled in some way and so promote the congregation of both dancers and dance followers at the same site. Accepted: 27 November 1996  相似文献   

3.
Summary Early studies of dance communication inApis florea had shown that waggle dances are not performed on a vertical plane and oriented to gravity, as in the other species ofApis, but instead take place on the flattened top of the exposed comb and are oriented to celestial cues directly. More recent experiments showed thatA. florea can dance in the absence of a view of the sun or blue sky, but did not establish what mechanism permitted this orientation. I now report that dances can be oriented directly to landmarks visible from the nest, the first evidence of an environmental feature other than celestial cues or gravity being involved in dance orientation. Landmarks near the nest are probably used to refer to celestial cues, in a fashion analogous to the use of broad features of the landscape by honeybees in order to learn the sun's course, which permits them to determine their flight angle on overcast days or at night, and to compensate accurately for solar movement.Apis florea may therefore be able to learn the sun's course with respect to two sets of landmarks.In other experiments I have examined the influence of slope onA. florea's dance orientation to visual references. In the first extensive observations of its dances on a vertical plane, I have amply confirmed that this species cannot transpose light and gravity in setting its dance angle, as the other species ofApis can. Nor do dancers orient so as to match visual information seen during the dance with that remembered from the flight. Patterns in the data when the same patch of sky was presented from different angles suggest instead thatA. florea continues to orient to projections of celestial cues onto the horizontal plane even when dancing on a steep slope. This compensation for slope may involve an ability to detect gravity and factor it out in aligning the dance to celestial cues.These insights suggest thatA. florea's dance orientation system has been adapted to requirements imposed by its nesting behavior, and has diverged sharply from the system shared by the other species ofApis.  相似文献   

4.
Summary Experiments with two species of honey bees (Apis mellifera andA. cerana) have revealed that bees form a detailed memory of the spatial and temporal pattern of the sun's azimuthal movement, using local landmarks as a reference for the learning. These experiments were performed on overcast days, and consisted of removing a hive from one site in which bees had been trained to find food by flying along a prominent landmark, and displacing it to a similar site in which the landmark was aligned in a different compass direction. On overcast days, bees which flew along the landmark in the new site oriented their waggle dances in the hive as if they had actually flown in the training site. Thus, they confused the two sets of landmarks and set their dance angles according to a memory of the sun's position relative to the original landmarks. Furthermore, the dances changed in correspondence with the sun's azimuthal shift over several hours, even reflecting (approximately) the regular temporal variations in the rate of shift; such features of the sun's course must therefore be stored in memory. The primary mechanism underlying the learning of this pattern is probably similar to that proposed by New and New (1962): bees store in memory several time-linked solar azimuthal positions relative to features of the landscape, and refer to this stored array when they need to determine an unknown azimuth intermediate between two known positions.During the cloudy-day displacement experiments, celestial cues often appeared to bees in the new site, contradicting the stored information on which they had been basing their dances. Although most bees quickly adopted the dance angle reflecting their actual direction of flight relative to the sun, some later reverted to the original dance angle, indicating that the information on which it was based had remained in memory when the new information was being expressed; other bees performed bimodal dances which expressed both sets of information in alternate waggle runs. The separation in memory implied by these behaviors may reflect a neural strategy for updating a previously stored relationship between celestial and terrestrial references with new information presented by seasonal changes in the sun's course or by newly learned landmarks.  相似文献   

5.
Forager honey bees communicate the distance of food sources to nest mates through waggle dances, but how do bees measure these distances? Recent work suggests that bees measure distance flown in terms of the extent of image motion (integrated optic flow) that is experienced during flight. However, it is known that optic flow also regulates the speed of flight. Therefore, the duration of the flight to a destination is likely to co-vary with the optic flow that is experienced en route. This makes it difficult to tease apart the potential roles of flight duration and optic flow as cues in estimating distance flown. Here we examine whether flight duration alone can serve as an indicator of distance. We trained bees to visit feeders at two sites located in optically different environments, but positioned such that the flight durations to the two sites were similar. The distance estimates for the two sites, as reported in the waggle dance, were compared. We found that dances differed significantly between the two sites, even though flight times were similar. Flight time perse was a poor predictor of waggle dance behaviour. We conclude that foraging bees do not simply signal flight time as their measure of distance in the waggle dance; the environment through which they fly plays a dominant role. Received 11 April 2005; revised 16 May 2005; accepted 3 June 2005.  相似文献   

6.
Multimodal communication plays an important role in pollination biology. Bees have evolved multimodal communication to recruit nestmates to rewarding food sources. Highly social bees can use visual and chemical information to recruit nestmates to rich food sources. However, no studies have determined if this information is redundant or has an additive effect such that multimodal information is more attractive than either modality presented by itself to free-flying bees. We tested the effect of two modalities, forager-deposited odor marks and the visual presence of foragers, on the orientation of stingless bee (Scaptotrigona mexicana) recruits. Our results show that odor marks alone were significantly more attractive than multimodal information, and that multimodal information was significantly more attractive than visual forager presence alone. Given the high olfactory sensitivity and limited visual acuity of insects, odor marks likely attracted recruits over a greater distance than the visual presence of nestmates. Thus, multimodal information in S. mexicana is redundant, not additive, in terms of orientation to food sources.  相似文献   

7.
Honey bee foragers communicate the direction and distance of both food sources and new nest sites to nest mates by means of a symbolic dance language. Interestingly, the precision by which dancers transfer directional information is negatively correlated with the distance to the advertised food source. The ‘tuned-error’ hypothesis suggests that colonies benefit from this imprecision as it spreads recruits out over a patch of constant size irrespective of the distance to the advertised site. An alternative to the tuned-error hypothesis is that dancers are physically incapable of dancing with great precision for nearby sources. Here we revisit the tuned-error hypothesis by studying the change in dance precision with increasing foraging distance over relatively short distances while controlling for environmental influences. We show that bees indeed increase their dance precision with the increase in foraging distance. However, we also show that dances performed by swarm-scouts for a nearby (30 m) nest site, where there could be no benefit to imprecision, are either without or with only limited directional information. This result suggests that imprecision in dance communication is caused primarily by physical constraints in the ability of dancers to turn around quickly enough when the advertised site is nearby.  相似文献   

8.
The vibration dance was investigated in queenless (QL) colonies of honey bees. Workers performing the dance had significantly less-developed ovaries than recipients. Vibrators were more likely to be mauled by nestmates (an aggressive act) and were more strongly associated with foraging than were nonvibrating controls. Recipients responded to the dance by increasing the amount of time spent performing tasks. The vibration dance may therefore be associated with aggression in QL colonies and may give workers with less-developed ovaries a degree of control over the behavior of bees with greater ovarian development.  相似文献   

9.
In the vicinity of a dancer, a honeybee can become a dance follower after touching the dancer or a dance follower with an antenna. If the attraction occurs without such antennal contact, the strength of the attraction over distance depends on several factors: the kind of dance floor (empty open cells versus capped brood cells); whether dancers and dance followers stand on the same substratum or on separate substrata; the position and direction of the attracted bee relative to the dancer bee; the size of the dance group (the dancer plus follower bees); and the light conditions under which the dance takes place. Dances on open cells are significantly more attractive than dances on sealed cells. Dancers on open cells attracted 90% of all followers from within 27 mm (about five to six cell diameters). Dancers on sealed cells attracted 90% of all followers within 18 mm (about three cell diameters). The majority of bees that were attracted by the dancer were standing laterally to the dancer. Dances illuminated by artificial visible light are significantly more attractive than dances illuminated by infrared light. As a group, “glassplate bees” (bees standing mechanically isolated from the dancer bee) were least attracted. Accepted: 11 August 1998  相似文献   

10.
Informational conflicts created by the waggle dance   总被引:1,自引:0,他引:1  
The honeybee (Apis mellifera) waggle dance is one of the most intriguing animal communication signals. A dancing bee communicates the location of a profitable food source and its odour. Followers may often experience situations in which dancers indicate an unfamiliar location but carry the scent of a flower species the followers experienced previously at different locations. Food scents often reactivate bees to resume food collection at previously visited food patches. This double function of the dance creates a conflict between the social vector information and the private navigational information. We investigated which kind of information followers with field experience use in this situation and found that followers usually ignored the spatial information encoded by the waggle dance even if they followed a dance thoroughly (five waggle runs or more). They relied on private information about food source locations instead (in 93% of all cases). Furthermore, foragers preferred to follow dancers carrying food odours they knew from previous field trips, independently of the spatial information encoded in the dance. Surprisingly, neither odour identity nor the location indicated by the dancer was an important factor for the reactivation success of a dance. Our results contrast with the assumption that (i) followers usually try to decode the vector information and (ii) dances indicating an unfamiliar location are of little interest to experienced foragers.  相似文献   

11.
Apis mellifera foragers perform waggle dances to communicate the presence of highly desirable nectar sources to their forager-mates. Each waggle dance consists of several waggle-runs (straight movements of the dancer closely aligned on the comb surface) that carry spatial information that the dance followers can use to locate the food source being advertised. To address how this complex motor display responds to unpredictable fluctuations in its main triggering stimulus, i.e., sucrose stimulation, we analyzed the effects of an increase in reward on the direction of consecutive waggle-runs as well as other components of the waggle dance. Results show that a sudden increase in reward may increase the directional scatter among consecutive waggle-runs, especially those performed at the beginning of the dance. However, a simultaneous and rapid increase in the duration of the signal—together with a more regular alignment of the later waggle-runs within the signal— seems to compensate the initial increase in directional scatter so that the transfer of directional information remains effective. These results point out that the regulation of dance maneuvers depends on the dancers motivation to forage.  相似文献   

12.
The directional information encoded in the waggle dances of absconding colonies of Apis florea shows how different sites are advertised during decision-making. Colonies of A. florea were observed from the inception of absconding until the swarm settled at a new nest site. The number of waggle dancers at the beginning of the absconding sequence was low, gradually increased and then declined shortly before liftoff. During the last 2 to 0.5?h before liftoff, the dances still indicated different directions. This significantly decreased in the last 0.5?h until only one or two dance directions were being advertised. All colonies reached a near consensus in the last 20 dances before liftoff. The swarm flight path is meandering so the actual distance flown is about twice that indicated by the dances. During the last 3?min the waggle dance in most colonies showed nest target angles that were closely clustered indicating that the final directions advertised were close to the chosen target site. In all absconding/migratory species of honeybees thus far studied, there is a special dance associated with absconding that appears not to select specific destinations but rather a particular direction in search of a new nesting area.  相似文献   

13.
The dance language of honey bees (Apis mellifera) indicates with good accuracy the distance and direction of a food source. When the direction of a food source is moved, however, the dances of returning foragers indicate the former location rather than the new direction just visited. After subsequent trips the dancers slowly accommodate to the change, and full compensation is achieved only after about 40 min. These and other equally curious results suggest that a running-average processing system may be at work in honey bee navigation.  相似文献   

14.
Individual behavioural differences in responding to the same stimuli is an integral part of division of labour in eusocial insect colonies. Amongst honey bee nectar foragers, individuals strongly differ in their sucrose responsiveness, which correlates with strong differences in behavioural decisions. In this study, we explored whether the mechanisms underlying the regulation of foraging are linked to inter‐individual differences in the waggle dance activity of honey bee foragers. We first quantified the variation in dance activity amongst groups of foragers visiting an artificial feeder filled consecutively with different sucrose concentrations. We then determined, for these foragers, the sucrose responsiveness and the brain expression levels of three genes associated with food search and foraging; the foraging gene Amfor, octopamine receptor gene AmoctαR1 and insulin receptor AmInR‐2. As expected, foragers showed large inter‐individual differences in their dance activity, irrespective of the reward offered at the feeder. The sucrose responsiveness correlated positively with the intensity of the dance activity at the higher reward condition, with the more responsive foragers having a higher intensity of dancing. Out of the three genes tested, Amfor expression significantly correlated with dance activity, with more active dancers having lower expression levels. Our results show that dance and foraging behaviour in honey bees have similar mechanistic underpinnings and supports the hypothesis that the social communication behaviour of honey bees might have evolved by co‐opting behavioural modules involved in food search and foraging in solitary insects.  相似文献   

15.
Even as demand for their services increases, honey bees (Apis mellifera) and other pollinating insects continue to decline in Europe and North America. Honey bees face many challenges, including an issue generally affecting wildlife: landscape changes have reduced flower-rich areas. One way to help is therefore to supplement with flowers, but when would this be most beneficial? We use the waggle dance, a unique behaviour in which a successful forager communicates to nestmates the location of visited flowers, to make a 2-year survey of food availability. We “eavesdropped” on 5097 dances to track seasonal changes in foraging, as indicated by the distance to which the bees as economic foragers will recruit, over a representative rural-urban landscape. In year 3, we determined nectar sugar concentration. We found that mean foraging distance/area significantly increase from springs (493 m, 0.8 km2) to summers (2156 m, 15.2 km2), even though nectar is not better quality, before decreasing in autumns (1275 m, 5.1 km2). As bees will not forage at long distances unnecessarily, this suggests summer is the most challenging season, with bees utilizing an area 22 and 6 times greater than spring or autumn. Our study demonstrates that dancing bees as indicators can provide information relevant to helping them, and, in particular, can show the months when additional forage would be most valuable.  相似文献   

16.
Tetragonisca angustula stingless bees are considered as solitary foragers that lack specific communication strategies. In their orientation towards a food source, these social bees use chemical cues left by co-specifics and the information obtained in previous foraging trips by the association of visual stimuli with the food reward. Here, we investigated their ability to learn the association between odors and reward (sugar solution) and the effect on learning of previous encounters with scented food either inside the hive or during foraging. During food choice experiments, when the odor associated with the food was encountered at the feeding site, the bees’ choice is biased to the same odor afterwards. The same was not the case when scented food was placed inside the nest. We also performed a differential olfactory conditioning of proboscis extension response with this species for the first time. Inexperienced bees did not show significant discrimination levels. However, when they had had already interacted with scented food inside the hive, they were able to learn the association with a specific odor. Possible olfactory information circulation inside the hive and its use in their foraging strategies is discussed.  相似文献   

17.
Summary When bees dance on a horizontal comb in an enclosed hive, they set the direction of their waggle runs with reference to an artificial light source. If this light contains wavelengths long enough to excite the blue or green receptors in the bee's eye, the dance direction relative to the lamp is the same as it would be relative to the sun. But if the emitted light excites only the UV receptors the bee dances in the opposite direction. Evidently the bee interprets the UV-colored light source as a part of the sky with azimuth opposite to that of the sun.  相似文献   

18.
Recruitment-related behaviours such as waggle dances enable honey bee foragers to inform their nestmates about the location of important resources. However, it is still not known how the information contained in a dance performed in the darkness of the nest is transferred to followers. Although, there are findings indicating that dancing honey bees produce airborne sounds which may convey the information, there has only been indirect evidence that moving wings are the source of these airborne sounds. In this study, honey bee dances were recorded using a high-speed camera in order to directly observe and precisely measure the frequency of wing beats and abdomen wags of dancers. Dancing bees moved their wings for 40.4% of the duration of a waggle run and for only 8.1% of the duration of a circle run. The episodes of wing movements consisted of one to five wing beats and were separated by intervals of motionless wings. The mean frequency of wing beats was 167.0 Hz and significantly differed depending on the number of wing beats in one episode (p < 0.001) and the position of the wings (p = 0.007). The mean frequency of abdomen wags was 14.6 Hz. The mean number of followers was 7.9 and significantly more of them gathered around the abdomens of dancers than around their heads and thoraxes (p = 0.001). The results of this study support the assumption that moving wings are the source of airborne sounds emitted during honey bee dances.  相似文献   

19.
The mechanism by which female Xylocopa pubescenslocate their nest in a nesting aggregation was investigated. The bees were induced to nest in canes to which uniform nest entrances were attached. The results of nest displacement experiments revealed that the bees use visual cues for proximate orientation,but at very close range they also use olfactory cues. This conclusion was corroborated by the results of experiments in which the nest entrances were either removed or exchanged for alien nest entrances. Moreover, habituation experiments strongly indicated that the bees impart their individual marking at the nest entrance and that they can learn and memorize the individual odors of the neighboring bees.  相似文献   

20.
Summary The building decision process of the paper wasp,Polistes fuscatus, was studied by 1) analyzing the search pattern of the wasps prior to the addition of pulp to different areas of the nest, 2) comparing the pulp addition needs of the cell chosen for lengthening to those of other cells in the nest, and 3) presenting the wasps with eight types of dichotomous building choices, which provided information about the relative influence of different building cues. Wasps conduct a hierarchical search prior to pulp addition, which means that they search the comb face and petiole disproportionately more often and more thoroughly than the comb back and sides. Once a particular nest area triggers closer scrutiny, comparisons are made with adjoining areas. The most needy location is then chosen based on nest cues. When lengthening a cell, the development of the brood and relative cell length have a strong influence on which cell is chosen at all times, while distance of the brood from the cell mouth becomes important during the later stages of brood development. The results indicate that there is no simple hierarchical weighting of cues. The decision process involves comparisons among multiple cues, which for the most part have an additive influence when variation in relative cue strength is considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号