首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The rate of inactivation of poliovirus in water by chlorine is strongly influenced by the pH, which in turn influences the relative amounts of HOCl and OCl- that are present and acting on the virus in the region of pH 6 to 10. The distribution of HOCl and OCl- is influenced to a lesser extent by the addition of NaCl. The major part of the sharp increase in disinfection rate seen with this salt is thought to be due to its effect on the virus itself resulting in an increased chlorine sensitivity, especially at high pH.  相似文献   

2.
Chlorine dioxide and iodine inactivated poliovirus more efficiently at pH 10.0 than at pH 6.0. Sedimentation analyses of viruses inactivated by chlorine dioxide and iodine at pH 10.9 showed that viral RNA separated from the capsids, resulting in the conversion of virions from 156S structures to 80S particles. The RNAs release from both chlorine dioxide- and iodine-inactivated viruses cosedimented with intact 35S viral RNA. Both chlorine dioxide and iodine reacted with the capsid proteins of poliovirus and changed the pI from pH 7.0 to pH 5.8. However, the mechanisms of inactivation of poliovirus by chlorine dioxide and iodine were found to differ. Iodine inactivated viruses by impairing their ability to adsorb to HeLa cells, whereas chlorine dioxide-inactivated viruses showed a reduced incorporation of [14C]uridine into new viral RNA. We concluded, then, that chlorine dioxide inactivated poliovirus by reacting with the viral RNA and impairing the ability of the viral genome to act as a template for RNA synthesis.  相似文献   

3.
A laboratory strain of poliovirus (LSc) became progressively more resistant to chlorine inactivation during a series of repeated sublethal exposures to the halogen.  相似文献   

4.
Current standards, based on cell culture assay, indicate that poliovirus is inactivated by 0.5 mg of free chlorine per liter after 2 min; however, integrated cell culture-PCR detected viruses for up to 8 min of exposure to the same chlorine concentration, requiring 10 min for complete inactivation. Thus, the contact time for chlorine disinfection of poliovirus is up to five times greater than previously thought.  相似文献   

5.
Like the Mahoney strain, the Brunhilde strain of poliovirus aggregated slowly in dilute phosphate-carbonate buffer at pH 6 but not at all at or above pH 7. Infectivity decreased at rates approximately proportional to the concentration of free chlorine present at pH 6 over the entire range of 5 to 40 micrometer. The addition of 0.1 M NaCl to the buffer increased the rate about twofold, but this strain was still twice as resistant as the Mahoney strain. At pH 10, inactivation was much slower than at pH 6, but when 0.1 M NaCl was added, the rate was increased 31-fold, making the OCl- at pH 10 over three times more effective than HOCl at pH 6.  相似文献   

6.
Mechanism of poliovirus inactivation by ammonia.   总被引:11,自引:0,他引:11       下载免费PDF全文
Poliovirus inactivation by ammonia causes a slight reduction in the sedimentation coefficients of viral particles, but has no detectable effect on either the electrophoretic pattern of viral capsid proteins or the isoelectric points of inactivated particles. These virions still attach to cells, but are unable to repress host translation or stimulate the synthesis of detectable amounts of viral RNA. Although ammonia has no detectable effect on naked poliovirus RNA, it causes cleavage of this RNA when still within viral particles. Therefore, the RNA genome appears to be the only component of poliovirus significantly affected by ammonia.  相似文献   

7.
Aberrant inactivation kinetics were observed when monodispersed echovirus type 1 (Farouk) was inactivated with chlorine. An initial 1- to 2-log10-unit decrease in titer was followed by lag period, during which the titer stayed the same or increased, and this was followed by a final decline in titer. First-order kinetics were obtained with poliovirus type 1 under the same conditions. Isoelectric focusing studies of echovirus before chlorine treatment showed that the virus distributed into two pH-dependent and interconvertible isoelectric forms. After chlorine treatment all remaining virus infectivity was associated with a third pH-independent isoelectric form. The complex inactivation kinetics appeared to be due to shifts between these conformational forms during inactivation in certain ionic environments. Under certain conditions the conformational shifts resulted in substantial resistance of monodispersed echovirus to chlorine.  相似文献   

8.
The kinetics of inactivation of six enteric viruses plus simian virus 40 and Kilham rat virus by free available chlorine was studied under carefully controlled laboratory conditions. It was found that the different virus types demonstrated a wide range of susceptibility to chlorine disinfection. The rate of inactivation was greater at pH 6 than at pH 10; however, the relative susceptibilities of the different viruses were affected differently by a change in pH, suggesting that the pH influenced both the species of chlorine present and the susceptibility of the different viruses to chlorine. The presence of potassium chloride also affected the susceptibility of viruses to chlorine.  相似文献   

9.
The mechanism of poliovirus inactivation by BrCl was determined by exposing poliovirus to various concentrations of BrCl and correlating the loss of virus infectivity with structural changes of the virus. Concentrations of 0.3 to 5 mg of BrCl per liter resulted in 95% to total inactivation of poliovirus. However, the inactivated virus retained structural integrity, as determined by buoyant density measurements of poliovirus labeled with radioactivity. However, at concentrations of 10 to 20 mg of BrCl per liter, total inactivation of poliovirus was associated with the degradation of the structural integrity of the virus. Since infectious ribonucleic acid at similar concentrations could be recovered from untreated poliovirus and poliovirus treated with 0.3 mg of BrCl per liter, it was concluded that BrCl as HOBr or bromamines inactivates poliovirus by reacting with the protein coat of the virus. Moreover, this inactivating reaction does not result in the degradation of the structure of the virion, nor does it affect the biological activity of the internal ribonucleic acid of the virus.  相似文献   

10.
Like the Mahoney strain, the Brunhilde strain of poliovirus aggregated slowly in dilute phosphate-carbonate buffer at pH 6 but not at all at or above pH 7. Infectivity decreased at rates approximately proportional to the concentration of free chlorine present at pH 6 over the entire range of 5 to 40 micrometer. The addition of 0.1 M NaCl to the buffer increased the rate about twofold, but this strain was still twice as resistant as the Mahoney strain. At pH 10, inactivation was much slower than at pH 6, but when 0.1 M NaCl was added, the rate was increased 31-fold, making the OCl- at pH 10 over three times more effective than HOCl at pH 6.  相似文献   

11.
Aberrant inactivation kinetics were observed when monodispersed echovirus type 1 (Farouk) was inactivated with chlorine. An initial 1- to 2-log10-unit decrease in titer was followed by lag period, during which the titer stayed the same or increased, and this was followed by a final decline in titer. First-order kinetics were obtained with poliovirus type 1 under the same conditions. Isoelectric focusing studies of echovirus before chlorine treatment showed that the virus distributed into two pH-dependent and interconvertible isoelectric forms. After chlorine treatment all remaining virus infectivity was associated with a third pH-independent isoelectric form. The complex inactivation kinetics appeared to be due to shifts between these conformational forms during inactivation in certain ionic environments. Under certain conditions the conformational shifts resulted in substantial resistance of monodispersed echovirus to chlorine.  相似文献   

12.
Microwave irradiation at 2450 MHz inactivated the cells of Escherichia coli, Staphylococcus aureus and Candida albicans suspended in a phosphate buffer. The rate of cell inactivation was proportional to that of the increase in temperature accompanied by microwave irradiation. The inactivation rates of E. coli and C. albicans were affected by addition of NaCl and KCl, but not by sucrose. The maximal inactivation effect was exerted at concentrations of 0.5-1.0 mol l-1, and the end-point temperature was the highest at the same salt concentrations. Correlation of both the electroconductivity and di-electric loss of ionic solutions with the heating by microwave irradiation was discussed.  相似文献   

13.
The effect of raw and anaerobically digested sludge on heat inactivation of poliovirus was investigated. Raw sludge was found to be very protective of poliovirus plaque-forming ability at all temperatures studied, but digested sludge had variable effects that were highly dependent upon the experimental conditions. In low concentrations and at relatively low inactivation temperatures, digested sludge is nearly as protective of poliovirus as raw sludge. However, at higher tempeatures and concentrations, digested sludge caused a significant acceleration of poliovirus inactivation. The difference between the protective capability of raw and digested sludge is not due to loss of protective material, because this component is present in the solids of digested sludge as well as in those of raw sludge. Instead, the difference is due to a virucidal agent acquired during digestion. Addition of this agent to the solids of either raw or digested sludge reverses the protective potential of these solids during heat treatment of poliovirus.  相似文献   

14.
Heat inactivation of poliovirus in wastewater sludge.   总被引:2,自引:9,他引:2       下载免费PDF全文
The effect of raw and anaerobically digested sludge on heat inactivation of poliovirus was investigated. Raw sludge was found to be very protective of poliovirus plaque-forming ability at all temperatures studied, but digested sludge had variable effects that were highly dependent upon the experimental conditions. In low concentrations and at relatively low inactivation temperatures, digested sludge is nearly as protective of poliovirus as raw sludge. However, at higher tempeatures and concentrations, digested sludge caused a significant acceleration of poliovirus inactivation. The difference between the protective capability of raw and digested sludge is not due to loss of protective material, because this component is present in the solids of digested sludge as well as in those of raw sludge. Instead, the difference is due to a virucidal agent acquired during digestion. Addition of this agent to the solids of either raw or digested sludge reverses the protective potential of these solids during heat treatment of poliovirus.  相似文献   

15.
Comparative inactivation of viruses by chlorine   总被引:1,自引:0,他引:1  
The kinetics of inactivation of six enteric viruses plus simian virus 40 and Kilham rat virus by free available chlorine was studied under carefully controlled laboratory conditions. It was found that the different virus types demonstrated a wide range of susceptibility to chlorine disinfection. The rate of inactivation was greater at pH 6 than at pH 10; however, the relative susceptibilities of the different viruses were affected differently by a change in pH, suggesting that the pH influenced both the species of chlorine present and the susceptibility of the different viruses to chlorine. The presence of potassium chloride also affected the susceptibility of viruses to chlorine.  相似文献   

16.
Mechanism of poliovirus inactivation by bromine chloride   总被引:1,自引:0,他引:1  
The mechanism of poliovirus inactivation by BrCl was determined by exposing poliovirus to various concentrations of BrCl and correlating the loss of virus infectivity with structural changes of the virus. Concentrations of 0.3 to 5 mg of BrCl per liter resulted in 95% to total inactivation of poliovirus. However, the inactivated virus retained structural integrity, as determined by buoyant density measurements of poliovirus labeled with radioactivity. However, at concentrations of 10 to 20 mg of BrCl per liter, total inactivation of poliovirus was associated with the degradation of the structural integrity of the virus. Since infectious ribonucleic acid at similar concentrations could be recovered from untreated poliovirus and poliovirus treated with 0.3 mg of BrCl per liter, it was concluded that BrCl as HOBr or bromamines inactivates poliovirus by reacting with the protein coat of the virus. Moreover, this inactivating reaction does not result in the degradation of the structure of the virion, nor does it affect the biological activity of the internal ribonucleic acid of the virus.  相似文献   

17.
Chlorine concentrations below 0.8 mg/liter inactivated poliovirus without causing separation of the viral components. These results indicate that the release of RNA from the capsids is the result, not the cause, of virus inactivation by chlorine.  相似文献   

18.
Inactivation kinetics of poliovirus type 1 in ozone demand-free water was investigated by utilizing a fast-flow mixing apparatus. Ozonated water and a solution of ozone demand-free water containing a known quantity of poliovirus type 1 were introduced simultaneously into a mixing chamber, both at a constant rate. This mixture was then passed through a narrow tube of known length and diameter into a neutralizing solution. By altering the rate of introduction and/or tube length, different contact periods between ozone and virus could be determined with an accuracy of 0.01 s. Inactivation of the poliovirus occurred in two steps. During the first step, which lasted for 0.2 to 1.0 s, 95 to 99% of the virus was inactivated, depending on the ozone concentration (which ranged from 0.1 to 2.0 mg/liter). The second step apparently continued for several minutes; in this period the remainder of the virus was inactivated. An obvious dose-response relationship was demonstrated during the first step of the inactivation curve. The pH of the water slightly affected the viral inactivation rate, but these small differences seem to have no practical value.  相似文献   

19.
20.
Inactivation kinetics of poliovirus type 1 in ozone demand-free water was investigated by utilizing a fast-flow mixing apparatus. Ozonated water and a solution of ozone demand-free water containing a known quantity of poliovirus type 1 were introduced simultaneously into a mixing chamber, both at a constant rate. This mixture was then passed through a narrow tube of known length and diameter into a neutralizing solution. By altering the rate of introduction and/or tube length, different contact periods between ozone and virus could be determined with an accuracy of 0.01 s. Inactivation of the poliovirus occurred in two steps. During the first step, which lasted for 0.2 to 1.0 s, 95 to 99% of the virus was inactivated, depending on the ozone concentration (which ranged from 0.1 to 2.0 mg/liter). The second step apparently continued for several minutes; in this period the remainder of the virus was inactivated. An obvious dose-response relationship was demonstrated during the first step of the inactivation curve. The pH of the water slightly affected the viral inactivation rate, but these small differences seem to have no practical value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号