首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
Robinson H  Ang MC  Gao YG  Hay MT  Lu Y  Wang AH 《Biochemistry》1999,38(18):5677-5683
The X-ray structure of an engineered purple CuA center in azurin from Pseudomonas aeruginosa has been determined and refined at 1.65 A resolution. Two independent purple CuA azurin molecules are in the asymmetric unit of a new P21 crystal, and they have nearly identical conformations (rmsd of 0.27 A for backbone atoms). The purple CuA azurin was produced by the loop-engineering strategy, and the resulting overall structure is unperturbed. The insertion of a slightly larger Cu-binding loop into azurin causes the two structural domains of azurin to move away from each other. The high-resolution structure reveals the detailed environment of the delocalized mixed-valence [Cu(1.5).Cu(1.5)] binuclear purple CuA center, which serves as a useful reference model for other native proteins, and provides a firm basis for understanding results from spectroscopic and functional studies of this class of copper center in biology. The two independent Cu-Cu distances of 2.42 and 2.35 A (with respective concomitant adjustments of ligand-Cu distances) are consistent with that (2.39 A) obtained from X-ray absorption spectroscopy with the same molecule, and are among the shortest Cu-Cu bonds observed to date in proteins or inorganic complexes. A comparison of the purple CuA azurin structure with those of other CuA centers reveals an important relationship between the angular position of the two His imidazole rings with respect to the Cu2S2(Cys) core plane and the distance between the Cu and the axial ligand. This relationship strongly suggests that the fine structural variation of different CuA centers can be correlated with the angular positions of the two histidine rings because, from these positions, one can predict the relative axial ligand interactions, which are responsible for modulating the Cu-Cu distance and the electron transfer properties of the CuA centers.  相似文献   

3.
The experimentally determined electronic structures of mononuclear blue Cu and binuclear Cu(A) centers are summarized and their relation to intra- and inter-protein electron transfer (ET) kinetics are described. Specific contributions of the electronic structures of these two broad classes of Cu ET proteins to H(AB), lambda, and deltaE degrees are discussed. Also, the role of the protein structure in determining key geometric features which define the electronic structures of the metal sites in these proteins is considered.  相似文献   

4.
Amicyanin: an electron acceptor of methylamine dehydrogenase   总被引:5,自引:0,他引:5  
A type I blue copper protein, “amicyanin”, was purified from a cell-free extract of methylamine-grown Pseudomonas AM1. It was found that amicyanin is able to serve as a primary electron acceptor of methylamine dehydrogenase. Amicyanin was reduced by the addition of both methylamine dehydrogenase and methylamine. Cytochromes c could not be directly reduced but could be reduced with the addition of amicyanin. The results strongly suggest that amicyanin participates as an electron carrier between methylamine dehydrogenase and cytochrome c in the electron transport chain of the methylamine-grown cell.  相似文献   

5.
Macromolecular biological systems performing directed electron transfer are nano-sized structures. The distance between carrier molecules (cofactors), which represent practically isolated electron localization centers, reaches tens of angstroms. The electron transfer theory based on the concept of delocalized electron states, which is conventionally used in biophysics, is unable to adequately interpret the results of concrete observations in many cases. On the basis of the theory of electronic transitions in the case of localized states, developed in the physics of disordered matter, a mechanism of long-distance electron transfer in biological systems is suggested. The molecular relaxation of the microenvironment of electron localization centers that accompanies the electron transfer process is also considered.  相似文献   

6.
Intra- and intermolecular electron transfer processes in redox proteins   总被引:2,自引:0,他引:2  
Initial velocity and product inhibition experiments were performed to characterize the kinetic mechanism of branched chain ketoacid dehydrogenase (the branched chain complex) activity. The results were directly compared to predicted patterns for a three-site ping-pong mechanism. Product inhibition experiments confirmed that NADH is competitive versus NAD+ and isovaleryl CoA is competitive versus CoA. Furthermore, both NADH and isovaleryl CoA were uncompetitive versus ketoisovaleric acid. These results are consistent with a ping-pong mechanism and are similar to pyruvate dehydrogenase and alpha-ketoglutarate dehydrogenase. However, inhibition patterns for isovaleryl CoA versus NAD+ and NADH versus CoA are not consistent with a ping-pong mechanism. These patterns may result from a steric interaction between the flavoprotein and transacetylase subunits of the complex. To determine the kinetic mechanism of the substrates and feedback inhibitors (NADH and isovaleryl CoA) of the branched chain complex, it was necessary to define the interaction of the inhibitors at nonsaturating fixed substrate (CoA and NAD+) concentrations. While the competitive inhibition patterns were maintained, slope replots for NADH versus NAD+ at nonsaturating CoA concentrations were parabolic. This unexpected finding resembles a linear mixed type of inhibition where the inhibition is a combination of pure competitive and noncompetitive inhibition.  相似文献   

7.
Electromagnetic acceleration of electron transfer reactions   总被引:3,自引:0,他引:3  
The Moving Charge Interaction (MCI) model proposes that low frequency electromagnetic (EM) fields affect biochemical reactions through interaction with moving electrons. Thus, EM field activation of genes, and the synthesis of stress proteins, are initiated through EM field interaction with moving electrons in DNA. This idea is supported by studies showing that EM fields increase electron transfer rates in cytochrome oxidase. Also, in studies of the Na,K-ATPase reaction, estimates of the speed of the charges accelerated by EM fields suggest that they too are electrons. To demonstrate EM field effects on electron transfer in a simpler system, we have studied the classic oscillating Belousov--Zhabotinski (BZ) reaction. Under conditions where the BZ reaction oscillates at about 0.03 cycles/sec, a 60 Hz, 28 microT (280 mG) field accelerates the overall reaction. As observed in earlier studies, an increase in temperature accelerates the reaction and decreases the effect of EM fields on electron transfer. In all three reactions studied, EM fields accelerate electron transfer, and appear to compete with the intrinsic chemical forces driving the reactions. The MCI model provides a reasonable explanation of these observations.  相似文献   

8.
A CUA center engineered into Pseudomonas aeruginosa azurin was studied by metal substitution. Metal-binding properties were determined by electronic absorption (UV-vis) and electrospray ionization mass spectrometry (ESI-MS). The metal-binding site readily binds thiophilic metal ions, such as Hg(II), Ag(I), Cu(I), Cd(II), and Au(I). Harder metal ions, like Co(II), bind to apo-CuA-azurin only under basic conditions (pH 9.1-9.2). The results obtained from these studies indicate that two factors influence metal binding in CuA azurin: (1) the site favors metal combinations which produce an overall +3 charge, and (2) the site binds soft, thiophilic metal ions. The results demonstrate the remarkable ability of the CuA center to maintain valence delocalization of its native metal ions and to ensure redox accessibility of only one of the two redox couples (i.e., [Cu(1.5)...Cu(1.5)]<==> [Cu(I)...Cu(I)]) under physiological conditions. These findings may lead to the preparation of new metal ion derivatives and can serve as a basis for understanding this efficient electron transfer center.  相似文献   

9.
One-electron reduction and oxidation induced by vanadium complexes are demonstrated to be useful in oxidative and reductive transformations of carbonyl compounds. The redox interaction between vanadium complexes and redox-active ligands is achieved with coenzyme PQQ and polyanilines that afford the corresponding redox systems.  相似文献   

10.
The arrangement of base-sequences in the chloroplast deoxyribonucleic acid from Euglena gracilis Z was investigated by analyzing the bimodal profile of chloroplast deoxyribonucleic acid in an alkaline CsCl density gradient. The three main fractions in the alkaline gradient contain both single-stranded self-complementary base-sequences and base-sequences that are not self-complementary. Four single-stranded self-complementary deoxyribonucleic acid components were isolated from alkaline CsCl preparative density gradients. A fifth component was derived by annealing two fractions containing deoxyribonucleic acid that was not self-complementary. The five fractions corresponded to the five components of total chloroplast deoxyribonucleic acid that exhibited differential thermal denaturation. The results indicate that these five components are not interspersed throughout the genome in small segments but that they exist as relatively large segments. This implies that the chloroplast deoxyribonucleic acid contains tandemly arranged segments differing in base-composition.  相似文献   

11.
A theoretical formulation for proton-coupled electron transfer (PCET) is described. This theory allows the calculation of rates and kinetic isotope effects and provides insight into the underlying fundamental principles of PCET reactions. Applications of this theory to PCET reactions in iron bi-imidazoline complexes, oxoruthenium polypyridyl complexes, osmium-benzoquinone systems, amidinium-carboxylate salt bridges, DNA-acrylamide complexes, and ruthenium polypyridyl-tyrosine systems are summarized. The mechanistic insight gained from theoretical calculations on these model systems is relevant to PCET in more complex biological processes such as photosynthesis and respiration.  相似文献   

12.
Isotope effects on electron transfer reactions are discussed in terms of the multiphonon radiationless transition theory. The D20 substitution effect on the oxidation of cytochrome c (Kihara &; McCray, 1973) is analyzed. On the basis of these results the molecular mechanism for cytochrome c oxidation is proposed.  相似文献   

13.
Intramolecular electron transfer between CuA and heme a in solubilized bacterial (Paracoccus denitrificans) cytochrome c oxidase was investigated by pulse radiolysis. CuA, the initial electron acceptor, was reduced by 1-methylnicotinamide radicals in a diffusion-controlled reaction, as monitored by absorption changes at 825 nm, followed by partial restoration of the absorption and paralleled by an increase in the heme a absorption at 605 nm. The latter observations indicate partial reoxidation of the CuA center and the concomitant reduction of heme a. The rate constants for heme a reduction and CuA reoxidation were identical within experimental error and independent of the enzyme concentration and its degree of reduction, demonstrating that a fast intramolecular electron equilibration is taking place between CuA and heme a. The rate constants for CuA --> heme a ET and the reverse heme a --> CuA process were found to be 20,400 s(-1) and 10,030 s(-1), respectively, at 25 degrees C and pH 7.5, which corresponds to an equilibrium constant of 2.0. Thermodynamic and activation parameters of these intramolecular ET reactions were determined. The significance of the results, particularly the low activation barriers, is discussed within the framework of the enzyme's known three-dimensional structure, potential ET pathways, and the calculated reorganization energies.  相似文献   

14.
It has been shown that efficient functioning of photosynthesis and respiration in the cyanobacterium Synechocystis PCC 6803 requires the presence of either cytochrome c6 or plastocyanin. In order to check whether the blue copper protein plastocyanin can act as electron donor to cytochrome c oxidase, we investigated the intermolecular electron transfer kinetics between plastocyanin and the soluble CuA domain (i.e. the donor binding and electron entry site) of subunit II of the aa3-type cytochrome c oxidase from Synechocystis. Both copper proteins were expressed heterologously in Escherichia coli. The forward and the reverse electron transfer reactions were studied yielding apparent bimolecular rate constants of (5.1+/-0.2) x 10(4) M(-1) s(-1) and (8.5+/-0.4) x 10(5) M(-1) s(-1), respectively (20 mM phosphate buffer, pH 7). This corresponds to an apparent equilibrium constant of 0.06 in the physiological direction (reduction of CuA), which is similar to Keq values calculated for the reaction between c-type cytochromes and the soluble fragments of other CuA domains. The potential physiological role of plastocyanin in cyanobacterial respiration is discussed.  相似文献   

15.
Chiral induction has been examined in the four diastereomeric products formed in a series of outer-sphere electron transfer reactions between the oxidants [Co(ox)3]3−, [Co(edta)], [Co(gly)(ox)2]2−, C1-cis(N)-[Co(gly)2(ox)], [Co(en)(ox)2], C2-cis(N)-[Co(gly)2(ox)] and trans(N)-[Co(gly)2(ox)] with [Co((RR,SS)-chxn)3]2+ and [Co((R, S)-pn)3]2+ as reductants. The products; [Co((RR,SS)-chxn)3-lel3]3+, [Co((RR,SS)-chxn)3-lel2ob]3+, [Co((RR,SS)-chxn)3-lelob2]3+, [Co((RR,SS)-chxn)3-ob3]3+ and corresponding species for [Co((R, S)-pn)3]3+ show patterns of selectivity which are analyzed in terms of the size and structure of the reactants. The presence of a pseudo-C3 carboxylate face on the oxidant enhances selectivity but the pattern is quite different for those oxidants that contain oxalate as one of their ligands compared with non-oxalate containing species such as [Co(edta)]. A very simple model is developed in which the reductant employs a limited set of interactions corresponding to the major symmetry axes. The unrestricted reductant has very low aggregate selectvity. Steric and hydrogen bonding patterns in both oxidant and reductant enhance individual interactions resulting in the observed selectivities.  相似文献   

16.
17.
A novel method to generate organic radicals in enzymatic reactions is described, which is similar to electron transfer in nitrogenase. Component A of 2-hydroxyglutaryl-CoA dehydratase contains a [4Fe-4S] cluster located at the interface between its two identical subunits. The cluster is reduced by one electron derived from ferredoxin or flavodoxin. Hydrolysis of two ATP bound to component A, one to each subunit, enhances the reductive power of the electron and transfers it to component D, the actual dehydratase, where a low potential [4Fe-4S](2+) cluster is probably reduced. Further transfer to the substrate (R)-2-hydroxyglutaryl-CoA probably generates a substrate-derived ketyl radical anion, which expels the adjacent hydroxyl group. The resulting enoxy radical is deprotonated to a product-related ketyl radical anion. Finally the electron is removed by the next incoming substrate leading to the product glutaconyl-CoA and starting a new turnover. A similar, but stoichiometric rather than catalytic electron transfer has been established for the related benzoyl-CoA reductase.  相似文献   

18.
19.
Laser flash photolysis has been used to investigate the kinetics of reduction of trimethylamine dehydrogenase by substoichiometric amounts of 5-deazariboflavin semiquinone, and the subsequent intramolecular electron transfer from the FMN cofactor to the Fe4S4 center. The initial reduction event followed second-order kinetics (k = 1.0 x 10(8) M-1 s-1 at pH 7.0 and 6.4 x 10(7) M-1 s-1 at pH 8.5) and resulted in the formation of the neutral FMN semiquinone and the reduced iron-sulfur cluster (in a ratio of approximately 1:3). Following this, a slower, protein concentration independent (and thus intramolecular) electron transfer was observed corresponding to FMN semiquinone oxidation and iron-sulfur cluster reduction (k = 62 s-1 at pH 7.0 and 30 s-1 at pH 8.5). The addition of the inhibitor tetramethylammonium chloride to the reaction mixture had no effect on these kinetic properties, suggesting that this compound exerts its effect on the reduced form of the enzyme. Treatment of the enzyme with phenylhydrazine, which introduces a phenyl group at the 4a-position of the FMN cofactor, decreased both the rate constant for reduction of the protein and the extent of FMN semiquinone production, while increasing the amount of iron-sulfur center reduction, consistent with the results obtained with the native enzyme. Experiments in which the kinetics of reduction of the enzyme were determined during various stages of partial reduction were also consistent with these results, and further indicated that the FMN semiquinone form of the enzyme is more reactive toward the deazariboflavin reductant than is the oxidized FMN.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
To investigate the contribution of tryptophan-121 (Trp121) residue to the structure and function of soluble CuA domain of cytochrome c oxidase, three mutant proteins, Trp121Tyr, Trp121Leu and Trp121-deleted mutant of the soluble domain of Paracoccus versutus cytochrome c oxidase, were constructed and expressed in Escherichia coli BL21 (DE3). Optical spectral studies showed that both the coordination structure of the CuA center and the secondary structure of the protein were changed significantly in the Leu substitution and deletion mutants of Trp121. Their electron transfer activity with cytochrome c was inhibited severely, as shown in stopped-flow kinetic studies. However, the CuA center can be reconstructed in the Trp121Tyr mutant although its stability decreases compared with the wild-type protein. This mutant keeps the same secondary structure as the wild-type protein, but can only transfer electrons with cytochrome c at a rate of one-seventh-fold. Based on the information on the structure, we also investigated and analyzed the possible factors that affect electron transfer. It appears that the aromatic ring, the size of the side chain and the hydrogen bonding ability of the Trp121 are crucial to the structure and function of the soluble CuA domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号