首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 450 毫秒
1.
In this study, human median nerve was exposed to power frequency magnetic fields in order to provide clarification for possibly changeable nerve conduction mechanism. The nerve was exposed to 50 Hz magnetic field by utilizing a special Helmholtz applicator. The experiments were carried out with six healthy human-volunteers. Median motor distal amplitude/proximal amplitude ratios were recorded from adult human median nerve pre-exposure, during, and post-exposure to a 50 Hz, 1 mT magnetic field. The result of 18 measurements shows that median motor distal amplitude/proximal amplitude ratio significantly decreases in pre-exposure state as compare to post exposure of which. The results of this study may be useful for some nerve rehabilitation, excitation, and stimulation in more effective/safe physical therapy. Additionally, 50 Hz, 1 mT sinusoidal magnetic field should not be recognizing as safe for conduction mechanism on a nerve. These mechanisms would be cleared by new advanced engineering models in other future works.  相似文献   

2.
A system is described that is capable of producing extremely low frequency (ELF) magnetic fields for relatively short-term exposure of cultured mammalian cells. The system utilizes a ferromagnetic core to contain and direct the magnetic field of a 1,000 turn solenoidal coil and can produce a range of flux densities and induced electric fields much higher than those produced by Helmholtz coils. The system can generate magnetic fields from the microtesla (μT) range up to 0.14 T with induced electric field strengths on the order of 1.0 V/m. The induced electric field can be accurately varied by changing the sample chamber configuration without changing the exposure magnetic field. This gives the system the ability to separate the bioeffects of magnetic and induced electric fields. In the frequency range of 4–100 Hz and magnetic flux density range of 0.005–0.14 T, the maximum total harmonic distortion of the induced electric field is typically less than 1.0%. The temperature of the samples is held constant to within 0.4°C by constant perfusion of warmed culture medium through the sample chamber. © 1993 Wiley-Liss, Inc.  相似文献   

3.
The physical mechanism by which cells transduce an applied electric field is not well understood. This article establishes for the first time a direct, quantitative model that links the field to cytoskeletal forces. In a previous article, applied electric fields of physiological strength were shown to produce significant mechanical torques at the cellular level. In this article, the corresponding forces exerted on the cytoskeleton are computed and found to be comparable in magnitude to mechanical forces known to produce physiological effects. In addition to the electrical force, the viscous drag force exerted by the surrounding medium and the restoring force exerted by the neighboring structures are considered in the analysis. For an applied electric field of 10 V/m, the force transmitted to the CD44 receptor of a hyaluronan chain in cartilage is about 1 pN at 10 Hz and 7 pN at 1 Hz. For an applied electric field of 100 V/m, the force transmitted to the cytoskeleton at one focus of the glycocalyx is about 0.5 pN at 10 Hz and 1.3 pN at 1 Hz. Mechanical forces of similar magnitude have been observed to produce physiological effects. Hence, this electromechanical transduction process is a plausible mechanism for the production of physiological effects by such electric fields. Bioelectromagnetics 31:77–84, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
传统的电缆方程只能用于描述纵向电场中外周神经的兴奋,无法描述外周神经在横向电场作用下的兴奋,其于两阶段过程模型,提出一种改进的电缆方程,可以描述外周神经在横向电场中的兴奋,其结果和Struijk的离体实验数据相吻合。此改进的电缆方程可用于描述任意电场中外周神经的兴奋。  相似文献   

5.
We observed that particles, suspended in an electrolyte and brought into crossed magnetic and electric fields of low intensities, will deviate in the central part of the electrophoresis chamber of a standard Zeiss Cytopherometer with a component vertical to both fields. The direction and magnitude, however, were sharply at variance with what would be expected by the action of the Lorentz force (EMF) on the surface of the particles. The magnitude of the deviation depends upon the magnetic and electric field strength, the ion concentration of the suspension medium and the geometry of the chamber. The movement of the particles is due to streaming of the electrolyte which is mainly caused by inhomogeneities of the electric field in the electrophoresis chamber. The magnitude of the effect is high enough to occur under physiological conditions. Magneto-electrophoretic streaming might eventually act as a transducer mechanism which could explain the ability of some animals to orientate themselves in the geomagnetic field.  相似文献   

6.
Electromagnetic fields (EMFs) have been demonstrated to enhance mammalian peripheral nerve regeneration in vitro and in vivo. Using an EMF signal shown to enhance neurite outgrowth in vitro, we tested this field in vivo using three different amplitudes. The rat sciatic nerve was crushed. Whole body exposure was performed for 4 h/day for 5 days in a 96-turn solenoid coil controlled by a signal generator and power amplifier. The induced electric field at the target tissue consisted of a bipolar rectangular pulse, having 1 and 0.3 ms durations in each polarity, respectively. Pulse repetition rate was 2 per second. By varying the current, the coils produced fields consisting of sham (no current) and peak magnetic fields of 0.03 mT, 0.3 mT, and 3 mT, corresponding to peak induced electric fields of 1, 10, and 100 microV/cm, respectively, at the tissue target. Walking function was assessed over 43 days using video recording and measurement of the 1-5 toe-spread, using an imaging program. Comparing injured to uninjured hind limbs, mean responses were evaluated using a linear mixed statistical model. There was no difference found in recovery of the toe-spread function between any EMF treatments compared to sham.  相似文献   

7.
We have developed an intermediate frequency (IF) magnetic field exposure system for in vitro studies. Since there are no previous studies on exposure to heating-frequency magnetic fields generated from an induction heating (IH) cook top, there is a strong need for such an exposure system and for biological studies of IF magnetic fields. This system mainly consists of a magnetic-field-generating coil housed inside an incubator, inside which cultured cells can be exposed to magnetic field. Two systems were prepared to allow the experiment to be conducted in a double-blind manner. The level of the generated magnetic field was set to 532 microT rms in the exposure space, 23 kHz, 80 times the value in the International Commission on Non-ionizing Radiation Protection (ICNIRP) guidelines, with a spatial field uniformity better than 3.8%. The waveforms were nearly sinusoidal. It was also confirmed that the parasitic electric field was 157 V/m rms and the induced electric field was 1.9 V/m rms. The temperature was maintained at 36.5 +/- 0.5 degrees C for 2 h. Furthermore, leaked magnetic flux density was 0.7 microT rms or lower at extremely low frequency (ELF) and IF in the stopped system when the other system was being operated, and the environmental magnetic flux density was 0.1 microT rms or lower at the center of the coils. As a result, it was confirmed that this system could be successfully used to evaluate the biological effects of exposure to IF magnetic fields.  相似文献   

8.
Many in vitro experiments on the biological effects of extremely low frequency (ELF) electromagnetic fields utilize a uniform external magnetic flux density (B) to expose biological materials. A significant number of researchers do not measure or estimate the resulting electric field strength (E) or current density (J) in the sample medium. The magnitude and spatial distribution of the induced E field are highly dependent on the sample geometry and its relative orientation with respect to the magnetic field. We have studied the E fields induced in several of the most frequently used laboratory culture dishes and flasks under various exposure conditions. Measurements and calculations of the E field distributions in the aqueous sample volume in the containers were performed, and a set of simple, quantitative tables was developed. These tables allow a biological researcher to determine, in a straightforward fashion, the magnitudes and distributions of the electric fields that are induced in the aqueous sample when it is subjected to a uniform, sinusoidal magnetic field of known strength and frequency. In addition, we present a novel exposure technique based on a standard organ culture dish containing two circular, concentric annular rings. Exposure of the organ culture dish to a uniform magnetic field induces different average electric fields in the liquid medium in the inner and outer rings. Results of experiments with this system, which were reported in a separate paper, have shown the dominant role of the magnetically induced E field in producing specific biological effects on cells, in vitro. These results emphasize the need to report data about the induced E field in ELF in-vitro studies, involving magnetic field exposures. Our data tables on E and J in standard containers provide simple means to enable determination of these parameters.  相似文献   

9.
Summary By using several biophysical approximations and considering man as free space model limiting order-of-magnitude values for external electric and magnetic field strengths which may be hazardous for human beings were calculated. Danger may occur by excitation processes below 30 kHz for field strengths exceeding these limiting values; for frequencies larger than 30 kHz, thermal effects are predominant before excitation occurs. The external electric field strength necessary for causing action potentials in the central nervous system exceeds by far the corona forming level. But excitation is possible by strong alternating magnetic fields.Furthermore, by comparing the electrically and magnetically induced currents with the naturally flowing currents in man caused by the brain's and heart's electrical activity, a lower boundary-line was estimated. Regarding electric or magnetic field strengths undercutting this boundary-line, direct effects on the central nervous system may be excluded. Other mechanisms should be responsible for demonstrated biological effects.  相似文献   

10.
Results are presented of an investigation on electric and magnetic fields leaking from inductive (magnetic) heaters that are used for thermal processing of high-power electron tubes and lasers in an industrial plant. Measurements of electric and magnetic fields were done using both commercially available and laboratory-developed instrumentation. Isotropic H-field sensors were developed to allow quantitative evaluation of high-intensity magnetic fields. Ten induction heaters with nominal A.C. power ranging from 2.5 kW to 15 kW and operating at frequencies between 300 kHz and 790 kHz were surveyed. Electric field strengths up to 8 kV/m and magnetic field strengths up to 20 A/m were measured.  相似文献   

11.
Electroporation is a clinical and laboratory technique for the delivery of molecules to cells. This method imposes electric fields onto cells or tissues through the use of electrodes and a set of electrical parameters to ultimately incorporate molecules into the cells. Clinical applications may include using directional fields to bring therapeutics to the target tissues before triggering an electroporation event. The choice of applicator may also have a significant influence on this molecular flow. Modeling ionic flow in tissues will yield insight into selecting the appropriate parameters or electroporation signature for a desired target application. In this paper, the motion of tissue injected ions was modeled for two common electroporation applicator configurations-the parallel plate, and the four needle electrodes. This electric field induced fluid flow model predicts that the parallel plate applicator ultimately directs the movement of an ionic therapeutic in a forward manner with side motion due only to obstruction, while the four-needle applicator directs anisotropic flow within the field ultimately forcing the therapeutic into a mound at the fringes of the induced electric field.  相似文献   

12.
The purpose of this in vitro study was to assess the potential influence of low frequency, low intensity magnetic fields (rectangular pulse, 5 mT, 30 Hz) applied in therapy on the temperature, contact electric potential, and magnetization in knee endoprosthesis, which might be dangerous for implantation and stability of knee prosthesis, and later slacking it off, causing postoperative complications. The experimental investigation was carried out on a knee endoprosthesis which had been placed in a container with physiological saline. The prosthesis located inside the container was under the exposure of the magnetic field applied by a solenoid. The results indicated that magnetic fields did not influence thermal and electromagnetic properties of knee endoprosthesis in vitro. The magnetic fields of examined parameters should not be dangerous for implantation and stability of knee endoprosthesis. Bioelectromagnetics 30:159–162, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

13.
Mouse astrocytes (glial cells) in primary cultures were exposed to a low-voltage static DC electric field with no current flow and thus with no generation of magnetic fields. The electric field altered the rate of glycolysis, measured by 2-deoxyglucose accumulation. The magnitude and direction of this effect depended on the polarization of the field and the applied voltage. The maximum effect was an increase of ∼30%, which occurred with field across the cells at an intensity that can be calculated to be 0.3 mV/cm or less. Reversal of the polarization converted the stimulation to a small but statistically significant inhibition. Bioelectromagnetics 18:77–80, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

14.
A physically based model for residential magnetic fields from electric transmission and distribution wiring was developed to reanalyze the Los Angeles study of childhood leukemia by London et al. For this exposure model, magnetic field measurements were fitted to a function of wire configuration attributes that was derived from a multipole expansion of the Law of Biot and Savart. The model parameters were determined by nonlinear regression techniques, using wiring data, distances, and the geometric mean of the ELF magnetic field magnitude from 24-h bedroom measurements taken at 288 homes during the epidemiologic study. The best fit to the measurement data was obtained with separate models for the two major utilities serving Los Angeles County. This model's predictions produced a correlation of 0.40 with the measured fields, an improvement on the 0.27 correlation obtained with the Wertheimer-Leeper (WL) wire code. For the leukemia risk analysis in a companion paper, the regression model predicts exposures to the 24-h geometric mean of the ELF magnetic fields in Los Angeles homes where only wiring data and distances have been obtained. Since these input parameters for the exposure model usually do not change for many years, the predicted magnetic fields will be stable over long time periods, just like the WL code. If the geometric mean is not the exposure metric associated with cancer, this regression technique could be used to estimate long-term exposures to temporal variability metrics and other characteristics of the ELF magnetic field which may be cancer risk factors.  相似文献   

15.
The design, construction, and results of evaluation of an animal-exposure system for the study of biological effects of extremely low frequency (ELF) magnetic fields are described. The system uses a square coil arrangement based on a modification of the Helmholtz coil. Due to the cubic configuration of this exposure system, horizontal and vertical magnetic fields as high as 0.3 mT can be generated. Circularly polarized magnetic fields can also be generated by changing the current and phase difference between two sets of coils. Tests were made for uniformity of the magnetic field, stray fields, sham-exposure ratio of stray field, changes of temperature and humidity, light intensity and distribution inside the animal-housing space, and noise due to air-conditioning equipment. Variation of the magnetic field was less than 2% inside the animal housing. The stray-field level inside the sham-exposure system is less than 2% of experimental exposure levels. The system can be used for simultaneous exposure of 48 rats (2 to a cage) or 96 mice (4 to a cage). © 1993 Wiley-Liss. Inc.  相似文献   

16.
Methods utilizing stem cells hold tremendous promise for tissue engineering applications; however, many issues must be worked out before these therapies can be routinely applied. Utilization of external cues for preimplantation expansion and differentiation offers a potentially viable approach to the use of stem cells in tissue engineering. The studies reported here focus on the response of murine neural stem cells encapsulated in alginate hydrogel beads to alternating current electric fields. Cell viability and differentiation was studied as a function of electric field magnitude and frequency. We applied fields of frequency (0.1–10) Hz, and found a marked peak in neural stem cell viability under oscillatory electric fields with a frequency of 1 Hz. We also found an enhanced propensity for astrocyte differentiation over neuronal differentiation in the 1 Hz cultures, as compared to the other field frequencies we studied. Published 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

17.
We suggest an experimental comparison of two directions for applying the time-varying magnetic fields which have been found to speed spontaneous regeneration of injured peripheral nerves and in attempts to repair spinal cord injuries. Time-varying magnetic fields induce currents in a plane perpendicular to the magnetic field direction. The lower conductivity of the spinal cord's sheath (dura matter) or of the myelin sheath of peripheral nerves would seem to confine the induced electric fields and currents to the spinal cord or nerve itself. The proposed comparison could allow choosing between two possible modes of action of the fields: (1) Magnetically-induced electric fields or currents may be encouraging ion flow or otherwise helping enzyme, channel or other interactions at the cell membrane, as is thought to be the case in field stimulation of healing in bone. This mechanism should be independent of field direction. (2) Work in developing organisms and with fields applied to nerve cells in vitro has shown that neurite growth is guided parallel to both endogenous and external electric fields. This mechanism would be effective when induced electric fields are parallel, but not when they are perpendicular to the nerve. Any experimental test should seek to produce as close as possible to the same induced current intensity with both field directions. Possible confounding factors, as well as breakdowns in the assumptions of the simple model presented here, would have to be considered. This proposal was motivated by a recent report in which the authors listed a changed field direction as one of several possible reasons for an unsuccessful experiment.  相似文献   

18.
Electrosurgical units (ESUs) commonly used in operating suites employ radiofrequency (RF) energy for cutting and coagulation, and operate at different frequencies in the range 0.3–5 MHz. Around the electrode and cables, electric and magnetic fields at similar frequencies will be generated, and the surgeon using the ESU will therefore be exposed to these electromagnetic fields. In this study we have measured the levels of RF fields near the lead wires of two electrosurgical units, BARD 3000 operating at a fixed frequency of 0.5 MHz, and ERBE ICC 350 with a frequency range from 0.3 to 1 MHz. Electric fields were measured at distances from 5–30 cm from the lead wire. Measurements were done with the ESU both cutting and coagulating, and power levels ranging from 10–100 W. The magnetic field outside the lead wire was calculated from the measured current through the leads using standard theory. Using those measurements as a base, the calculated local exposure of the surgeon's hand was estimated to exceed 15 kV/m for the electric field and the corresponding value for the magnetic field was 16 µT. These calculations exceed the suggested international reference levels at 0.5 MHz (610 V/m and 4 µT, respectively).  相似文献   

19.
Electric fields induced in a conductive body by the magnetic field of a current-carrying wire were analyzed theoretically and experimentally to assess the dosimetric importance of highly nonuniform, field-exposure conditions. Experimentation revealed that a 60-Hz magnetic field was inversely proportional to the radius of a wire bundle carrying 100 A within a 0.5-m2 test area. A miniaturized electric field probe was used to measure the electric fields induced in 5-cm-deep, saline-filled models. In the theoretical analysis, numerical estimates of induced fields were made by a spreadsheet method. The theoretical calculations and the measured values of induced electric fields were generally in good agreement. The induced fields were in a plane perpendicular to a vertically incident magnetic field; the maximally induced fields were in areas nearest the wire bundle. The strength of the induced field increased with model size: from 96 microV/cm in a 10 x 10 cm model to 176 microV/cm in a 40 x 40 cm model. The strength of the field induced in a 20 x 20 cm model decreased with increasing model-to-wire spacing: from 132 microV/cm for a 1-cm spacing (2-mT maximum, incident field) to 50 microV/cm for a 6-cm spacing (0.33-mT maximum). The results indicate that increases in local values of nonuniformly incident fields produce relatively small increases in induced electric fields. This finding may be important in dosimetric consideration of circumstances, such as use of electric blankets, in which fields of low average strength are accompanied by intense local fields.  相似文献   

20.
C P Bean  A J Bennett 《Biopolymers》1973,12(4):817-824
Employing a simple “all or none” statistical theory, a calculation is given of the phase diagram in electric field–temperature space for the helix–coil transition of a polypeptide with nonpolar residues but charged end groups. The principal results are (i) the transition field extrapolated to absolute zero is on the order of millions of volts per centimeter, (ii) the normal transition temperature of large molecules is predicted to be significantly affected by fields as low as 30,000 V/cm, and (iii) for temperatures just above the helix-coil transition temperature, the application of a field to a large molecule causes an initial transition to the helix state and with a further isothermal increase of field the coil state returns. The theory is extended to the case of the unfolding of a globular protein in an electric field. The fields are somewhat lower than those for the helix-coil transition and are always single-valued at a given temperature. Lastly the effect of including the presence of charged residues is shown to decrease the estimated critical fields but keep them of the same order of magnitude as those given for the case of nonpolar residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号