首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A target-specific MRI contrast agent for tumor cells expressing high affinity folate receptor was synthesized using generation five (G5) ofpolyamidoamine (PAMAM) dendrimer. Surface modified dendrimer was functionalized for targeting with folic acid (FA) and the remaining terminal primary amines of the dendrimer were conjugated with the bifunctional NCS-DOTA chelator that forms stable complexes with gadolinium (Gd III). Dendrimer-DOTA conjugates were then complexed with GdCl3 followed by ICP-OES as well as MRI measurement of their longitudinal relaxivity (T1 s(-1) mM(-1)) of water. In xenograft tumors established in immunodeficient (SCID) mice with KB human epithelial cancer cells expressing folate receptor (FAR), the 3D MRI results showed specific and statistically significant signal enhancement in tumors generated with targeted Gd(III)-DOTA-G5-FA compared with signal generated by non-targeted Gd(III)-DOTA-G5 contrast nanoparticle. The targeted dendrimer contrast nanoparticles infiltrated tumor and were retained in tumor cells up to 48 hours post-injection of targeted contrast nanoparticle. The presence of folic acid on the dendrimer resulted in specific delivery of the nanoparticle to tissues and xenograft tumor cells expressing folate receptor in vivo. We present the specificity of the dendrimer nanoparticles for targeted cancer imaging with the prolonged clearance time compared with the current clinically approved gadodiamide (Omniscan) contrast agent. Potential application of this approach may include determination of the folate receptor status of tumors and monitoring of drug therapy.  相似文献   

2.
Summary The role of various iron chelators on the multiplication of mouse hybridoma cells in an albumin-free, transferrin-deficient defined medium was investigated. Fe(III)-dihydroxyethylglycine, Fe(III)-glycylglycine, Fe(III)-ethylenediamine-N,N′-dipropionic acid, or Fe(III)-iminodiacetic acid supported the excellent growth of the cells. In addition, the growth of the iron-starved cells, which had been preincubated in a protein-, iron- and chelator-free defined medium, restored rapidly when the medium was supplemented with holotransfeerrin, ferric iron, and chelator compared to that when supplemented with holotransferin, but without iron and chelator. The results suggest that such chelators modulate a progression of transferrn cycle in the presence of transferin and ferric iron. An alternative explantation is that there is a decrease in generation of iron-catalyzed free radicals.  相似文献   

3.
The interaction of hydroxypyridinones with human serum transferrin and ovotransferrin has been studied by analyzing the distribution of iron between the chelator and the proteins as a function of both ligand concentration and transferrin saturation. The kinetics of iron removal by 3-hydroxypyridin-4-ones from both transferrins is slow; in ovotransferrin it appears to be monophasic, in contrast to that observed for serum transferrin. After 24 hours incubation at a 40:1 chelator:protein molar ratio, the percentage of iron removed from Fe(III)-ovotransferrin is 50%-60%, and is somewhat higher in the case of serum transferrin, in line with the respective affinity constants for the metal. The 3-hydroxypyridin-2-ones and the 3-hydroxypyran-4-ones, both of which have lower affinities for Fe(III), remove smaller proportions of the metal. The percentage of desaturation obtained with bidentate and hexadentate pyridinones appears to be similar for both transferrin classes at chelator:protein molar ratios from 40:1. The degree of transferrin saturation influences the extent of chelator mediated iron mobilization in the case of serum transferrin, but not of ovotransferrin. 59Fe competition studies demonstrate that bidentate pyridin-4-ones are capable of donating iron to serum apotransferrin; the relative concentrations of ligand and protein influence the distribution of iron because their effective binding constants (at pH 7.4) for Fe(III) are similar.  相似文献   

4.
Iron acquisition by iron‐limited cyanobacteria is typically considered to be mediated mainly by siderophores, iron‐chelating molecules released by iron‐limited cyanobacteria into the environment. In this set of experiments, iron uptake by iron‐limited cells of the cyanobacterium Anabaena flos‐aquae (L.) Bory was investigated in cells resuspended in siderophore‐free medium. Removal of siderophores decreased iron‐uptake rates by ~60% compared to siderophore‐replete conditions; however, substantial rates of iron uptake remained. In the absence of siderophores, Fe(III) uptake was much more rapid from a weaker synthetic chelator [N‐(2‐hydroxyethyl)ethylenediamine‐N,N′,N′‐triacetic acid (HEDTA); log Kcond = 28.64 for Fe(III)HEDTA(OH)?] than from a very strong chelator [N,N′‐bis(2‐hydroxybenzyl)‐ethylenediamine‐N,N′‐diacetic acid (HBED); log Kcond = 31.40 for Fe(III)HBED?], and increasing chelator:Fe(III) ratios decreased the Fe(III)‐uptake rate; these results were evident in both short‐term (4 h; absence of siderophores) and long‐term (116 h; presence of siderophores) experiments. However, free (nonchelated) Fe(III) provided the most rapid iron uptake in siderophore‐free conditions. The results of the short‐term experiments are consistent with an Fe(III)‐binding/uptake mechanism associated with the cyanobacterial outer membrane that operates independently of extracellular siderophores. Iron uptake was inhibited by temperature‐shock treatments of the cells and by metabolically compromising the cells with diphenyleneiodonium; this finding indicates that the process is dependent on active metabolism to operate and is not simply a passive Fe(III)‐binding mechanism. Overall, these results point to an important, siderophore‐independent iron‐acquisition mechanism by iron‐limited cyanobacterial cells.  相似文献   

5.
Kwok EY  Severance S  Kosman DJ 《Biochemistry》2006,45(20):6317-6327
In high-affinity iron uptake in the yeast Saccharomyces cerevisiae, Fe(II) is oxidized to Fe(III) by the multicopper oxidase, Fet3p, and the Fe(III) produced is transported into the cell via the iron permease, Ftr1p. These two proteins are likely part of a heterodimeric or higher order complex in the yeast plasma membrane. We provide kinetic evidence that the Fet3p-produced Fe(III) is trafficked to Ftr1p for permeation by a classic metabolite channeling mechanism. We examine the (59)Fe uptake kinetics for a number of complexes containing mutant forms of both Fet3p and Ftr1p and demonstrate that a residue in one protein interacts with one in the other protein along the iron trafficking pathway as would be expected in a channeling process. We show that, as a result of some of these mutations, iron trafficking becomes sensitive to an added Fe(III) chelator that inhibits uptake in a strictly competitive manner. This inhibition is not strongly dependent on the chelator strength, however, suggesting that Fe(III) dissociation from the iron uptake complex, if it occurs, is kinetically slow relative to iron permeation. Metabolite channeling is a common feature of multifunctional enzymes. We constructed the analogous ferroxidase, permease chimera and demonstrate that it supports iron uptake with a kinetic pattern consistent with a channeling mechanism. By analogy to the Fe(III) trafficking that leads to the mineralization of the ferritin core, we propose that ferric iron channeling is a conserved feature of iron homeostasis in aerobic organisms.  相似文献   

6.
We synthesized and evaluated new specific tridentate iron(III) chelators of 2,6-bis[hydroxyamino]-1,3,5-triazine (BHT) family for use in iron deprivation cancer therapy. Physical properties of BHT chelators are easily customizable allowing easy penetration through cellular membranes. Antiproliferative activity of new BHT chelators was studied on MDA-MB-231 and MiaPaCa cells and compared to a clinically available new oral iron chelator, deferasirox (DFX). The antiproliferative activity of new chelators was found to correlate with iron(III) chelation ability and some of analogs showed substantially higher antiproliferative activity than DFX.  相似文献   

7.
Graminaceous plant species acquire soil iron by the release of phytosiderophores and subsequent uptake of iron(III)-phytosiderophore complexes. As plant species differ in their ability for phytosiderophore hydroxylation prior to release, an electrophoretic method was set up to determine whether hydroxylation affects the net charge of iron(III)-phytosiderophore complexes, and thus chelate stability. At pH 7.0, non-hydroxylated (deoxymugineic acid) and hydroxylated (mugineic acid; epi-hydroxymugineic acid) phytosiderophores form single negatively charged iron(III) complexes, in contrast to iron(III)-nicotianamine. As the degree of phytosiderophore hydroxylation increases, the corresponding iron(III) complex was found to be less readily protonated. Measured pKa values of the amino groups and calculated free iron(III) concentrations in presence of a 10-fold chelator excess were also found to decrease with increasing degree of hydroxylation, confirming that phytosiderophore hydroxylation protects against acid-induced protonation of the iron(III)-phytosiderophore complex. These effects are almost certainly associated with intramolecular hydrogen bonding between the hydroxyl and amino functions. We conclude that introduction of hydroxyl groups into the phytosiderophore skeleton increases iron(III)-chelate stability in acid environments such as those found in the rhizosphere or the root apoplasm and may contribute to an enhanced iron acquisition.  相似文献   

8.
A mutant of Pseudomonas fluorescens strain B52 deficient in the synthesis of the fluorescent pigment, pyoverdine, was isolated. Absence of pyoverdine and other siderophores was confirmed by gel filtration, a specific siderophore assay, and inhibition studies with the iron chelator EDDA. Both parent and mutant synthesized additional outer membrane proteins in response to iron-limitation. Mutant cells cultured in the absence of iron(III) accumulated 55Fe-labeled pyoverdine. The mutant produced extracellular proteinase normally on various media, but was deficient in lipase secretion. Growth of the mutant with partially-purified pyoverdine resulted in a 2.5-fold stimulation of lipase secretion. The mutant grew poorly in deferrated medium; however, the addition of iron(III) stimulated growth. Proteinase secretion in deferrated medium was stimulated over a narrow range of iron(III) concentration, while lipase secretion was only slightly affected. The data suggest that separate regulatory mechanisms exist for the control of proteinase and lipase secretion by iron(III).Contribution No. 768 from the Food Research Centre  相似文献   

9.
The ciliate protozoan Tetrahymena thermophila was grown in synthetic nutrient medium in the absence of the iron chelator citrate. Utilization and toxicity of various iron compounds or complexes in iron-starved cells were assessed from the number of cell doublings obtained within a standard time. The compounds tested included complexes formed between ortho-phosphates and two forms of ferric hydroxides, native and cationized ferritin, and tris-acetylacetonato Fe(III). The ferric hydroxo ortho-phosphate particles are toxic and can be removed from the medium by Millipore filtration. Uptake of ferritin and tris-acetylacetonato-Fe(III) is independent of food vacuole formation and seems to occur by micropinocytosis and by plasma membrane translocation, respectively.  相似文献   

10.
The ferritin superfamily of iron storage proteins includes ferritin proper and Dps (DNA binding protein from starved cells) along with bacterioferritin. We examined the release of Fe from the Dps of Trichodesmium erythraeum (Dps(tery)) and compared it to the release of Fe from horse spleen ferritin (HoSF) under various conditions. Both desferrioxamine B (DFB), a Fe(III) chelator, and ascorbic acid were able to mobilize Fe from Dps(tery) at rates comparable to those observed for HoSF. The initial Fe release rate from both proteins increased linearly with the concentration of DFB, suggesting that the chelator binds to Fe in the protein. A small but significant rate obtained by extrapolation to zero concentration of DFB implies that Dps(tery) and HoSF might release Fe(III) spontaneously. A similar result was observed for HoSF in the presence of sulfoxine. In a different experiment, Fe(III) was transferred from holoferritin to apotransferrin across a dialysis membrane in the absence of chelator or reducing agent. The apparent spontaneous release of Fe from HoSF and Dps(tery) brings forth the hypothesis that the Fe core in Fe storage proteins might be continuously dissolving and re-precipitating in vivo, thus maintaining it in a highly reactive and bioavailable form.  相似文献   

11.
Fe-starved ciliates Tetrahymena thermophila cease to multiply at Fe(III) concentrations above 10 microM in a synthetic nutrient medium lacking a good iron chelator such as citrate. If, however, the Fe(III) concentration is gradually increased over a series of subcultivations the cells will tolerate up to 300 microM Fe(III). Our experiments rule out the possibility of genetic selection of Fe-tolerant clones and suggest a physiological type of adaptation.  相似文献   

12.
A series of fluorescent iron chelators has been synthesized such that a fluorescent function is covalently linked to a 3-hydroxypyridin-4-one. In the present study, the fluorescent iron chelators were loaded into isolated rat hepatocytes. The intracellular fluorescence was not only quenched by an addition of a highly lipophilic 8-hydroxyquinoline-iron(III) complex but also was dequenched by the addition of an excess of the membrane-permeable iron chelator CP94 (1,2-diethyl-3-hydroxypyridin-4-one). The time course of uptake of iron and iron chelation in single, intact cells was recorded on-line by using digital fluorescence microscopy. Intracellular concentrations of various fluorescent iron chelators were determined by using a spectrofluorophotometer subsequent to lysis of probe-loaded cells and were found to depend on their partition coefficients; the more hydrophobic the compound, the higher the intracellular concentration. An ex situ calibration method was used to determine the chelatable iron pool of cultured rat hepatocytes. CP655 (7-diethylamino-N-[(5-hydroxy-6-methyl-4-oxo-1,4-dihydropyridin-3-yl)methyl]-N-methyl-2-oxo-2H-chromen-3-carboxamide), which is a moderately lipophilic fluorescent chelator, was found to be the most sensitive probe for monitoring chelatable iron, as determined by the intracellular fluorescence increase induced by the addition of CP94. The concentration of the intracellular chelatable iron pool in hepatocytes was determined by this probe to be 5.4+/-1.3 microM.  相似文献   

13.
Silybin, a natural occurring flavolignan isolated from the fruits of Silibum marianum, has been reported to exert antioxidant and free radical scavenging abilities. It was suggested to act also as an iron chelator. The complexation and protonation equilibria of the ferric complex of this compound have been studied by potentiometric, spectrophotometric and electrochemical techniques. The formation of the complex silybin-Ga(III) in anhydrous DMSO-d6 has been studied by 1H NMR spectroscopy. Mass spectrometry and infrared spectroscopy on silybin-Fe(III) complex confirm all data obtained by 1H NMR spectroscopy. The experimental results show that silybin binds Fe(III) even at acidic pH. Different ternary complexes were observed at increasing methoxide ion concentration and their stability constants have been calculated. The results show the possible role of silybin in relation to the chelation therapy of chronic iron overload, as occurs in the treatment of Cooley's anemia.  相似文献   

14.
The toxicity of misonidazole (MISO) to hypoxic Chinese hamster ovary (CHO) cells in serum-free medium is enhanced by Fe(III)-EDTA. Enhancement of MISO cytotoxicity by a factor of 1.6 was seen with 2 microM Fe(III)-EDTA, while 200 microM Fe(III)-EDTA results in sensitization by a factor of 2.0. Treatment of CHO cells with the iron chelator desferal resulted in protection against the hypoxic cytotoxicity in MISO (approximate protection factor of 2.5 with 100 microM desferal). Similar results were obtained with Chinese hamster V79 cells. Fe(III)-EDTA also enhanced binding of [2-14C] MISO to cellular macromolecules while desferal decreased binding of MISO to cellular macromolecules. These results suggest that iron plays an important role in the reductive metabolism of MISO and that modification of the intracellular metal ion status may be a useful approach to modulating the biological effect of nitro compounds.  相似文献   

15.
Current iron chelation therapy consists primarily of DFO (desferrioxamine), which has to be administered via intravenous infusion, together with deferiprone and deferasirox, which are orally-active chelators. These chelators, although effective at decreasing the iron load, are associated with a number of side effects. Grady suggested that the combined administration of a smaller bidentate chelator and a larger hexadentate chelator, such as DFO, would result in greater iron removal than either chelator alone [Grady, Bardoukas and Giardina (1998) Blood 92, 16b]. This in turn could lead to a decrease in the chelator dose required. To test this hypothesis, the rate of iron transfer from a range of bidentate HPO (hydroxypyridin-4-one) chelators to DFO was monitored. Spectroscopic methods were utilized to monitor the decrease in the concentration of the Fe-HPO complex. Having established that the shuttling of iron from the bidentate chelator to DFO does occur under clinically relevant concentrations of chelator, studies were undertaken to evaluate whether this mechanism of transfer would apply to iron removal from transferrin. Again, the simultaneous presence of both a bidentate chelator and DFO was found to enhance the rate of iron chelation from transferrin at clinically relevant chelator levels. Deferiprone was found to be particularly effective at 'shuttling' iron from transferrin to DFO, probably as a result of its small size and relative low affinity for iron compared with other analogous HPO chelators.  相似文献   

16.
The synthesis of a third generation triazine dendrimer, 1, containing multiple, iron-sequestering desferrioxamine B (DFO) groups is described. Benzoylation of the hydroxamic acid groups of DFO and formation of a reactive dichlorotriazine provide the intermediate for reaction with the second generation dendrimer displaying twelve amines. This strategy further generalizes the ‘functional monomer’ approach to generate biologically active triazine dendrimers. Dendrimer 1 is prepared in seven steps in 35% overall yield and displays 12 DFO groups making it 56% drug by weight. Spectrophotometric titrations (UV–vis) show that 1 sequesters iron(III) atoms with neither cooperativity nor significant interference from the dendrimer backbone. Evidence from NMR spectroscopy and mass spectrometry reveals a limitation to this functional monomer approach: trace amounts of O-to-N acyl migration from the protected hydroxamic acids to the amine-terminated dendrimer occurs during the coupling step leading to N-benzoylated dendrimers displaying fewer than 12 DFO groups.  相似文献   

17.
Macromolecular chelators have potential applications in the medical area, for instance, in treatment of iron overload-related disorders and in the treatment of external infections. In this investigation, several novel iron(III)-selective hydroxypyridinone hexadentate-terminated first and second generation dendrimeric chelators were synthesized using a convergent strategy. Their iron chelating ability was demonstrated by UV/Visible spectrometry and high resolution mass spectrometry (HRMS). The iron binding affinities were also investigated by the competition with a fluorescent iron chelator CP691. The result indicated that these dendrimers possesses a high affinity for iron with a very high pFe3+ value, which is close to that of an isolated hexadentate unit. These dendrimeric chelators were found to exhibit inhibitory effect on the growth of both Gram-positive and Gram-negative bacteria.  相似文献   

18.
The kinetics of iron binding by deferrioxamine B mesylate and the ramifications of this process upon iron-catalyzed lipid peroxidation were assessed. The relative rates of Fe(III) binding by deferrioxamine varied for the chelators tested as follows: ADP greater than AMP greater than citrate greater than histidine greater than EDTA. The addition of a fivefold molar excess of deferrioxamine to that of Fe(III) did not result in complete binding (within 10 min) for any of the Fe(III) chelates tested except ADP:Fe(III). The rates of Fe(III) binding by deferrioxamine were greater at lower pH and when the competing chelator concentration was high in relationship to iron. The relatively slow binding of Fe(III) by deferrioxamine also affected lipid peroxidation, an iron-dependent process. The addition of deferrioxamine to an ascorbate- and ADP:Fe(III)-dependent lipid peroxidation system resulted in a time-dependent inhibition or stimulation of malondialdehyde formation (i.e., lipid peroxidation), depending on the ratio of deferrioxamine to iron. Converse to Fe(III), the rates of Fe(II) binding by deferrioxamine from the chelators tested above were rapid and complete (within 1 min), and resulted in the oxidation of Fe(II) to Fe(III). Lipid peroxidation dependent on Fe(II) autoxidation was stimulated by the addition of deferrioxamine. Malondialdehyde formation in this system was inhibited by the addition of catalase, and a similar extent of lipid peroxidation was achieved by substituting hydrogen peroxide for deferrioxamine. Collectively, these results suggest that the kinetics of Fe(III) binding by deferrioxamine is a slow, variable process, whereas Fe(II) binding is considerably faster. The binding of either valence of iron by deferrioxamine may result in variable effects on iron-catalyzed processes, such as lipid peroxidation, either via slow binding of Fe(III) or the rapid binding of Fe(II) with concomitant Fe(II) oxidation.  相似文献   

19.
The hyperthermophilic archaeon Pyrobaculum aerophilum used 20 mM Fe(III) citrate, 100 mM poorly crystalline Fe(III) oxide, and 10 mM KNO3 as terminal electron acceptors. The two forms of iron were reduced at different rates but with equal growth yields. The insoluble iron was reduced when segregated spatially by dialysis tubing, indicating that direct contact with the iron was not necessary for growth. When partitioned, there was no detectable Fe(III) or Fe(II) outside of the tubing after growth, suggesting that an electron shuttle, not a chelator, may be used as an extracellular mediator of iron reduction. The addition of 25 and 50% (vol vol(-1)) cell-free spent insoluble iron media to fresh media led to growth without a lag phase. Liquid chromatography analysis of spent media showed that cultures grown in iron, especially insoluble iron, produced soluble extracellular compounds that were absent or less abundant in spent nitrate medium. NADH-dependent ferric reductase activity increased approximately 100-fold, while nitrate reductase activity decreased 10-fold in whole-cell extracts from iron-grown cells relative to those from nitrate-grown cells, suggesting that dissimilatory iron reduction was regulated. A novel 2,6-anthrahydroquinone disulfonate oxidase activity was more than 580-fold higher in iron-grown cells than in nitrate-grown cells. The activity was primarily (>95%) associated with the membrane cellular fraction, but its physiological function is unknown. Nitrate-grown cultures produced two membrane-bound, c-type cytochromes that are predicted to be monoheme and part of nitrite reductase and a bc1 complex using genome analyses. Only one cytochrome was present in cells grown on Fe(III) citrate whose relative abundance was unchanged.  相似文献   

20.
The rate of iron release from Fe(III)-phosvitin complexes, at varied degrees of saturation, was studied. Iron release was induced by reduction in the presence of the ferrous ion chelator, o-phenanthroline. If iron release was induced photochemically (without a chemical reductant), the reactions proceeded in zero order fashion, independently of the degree of saturation but with a strong dependence on the concentration of phenanthroline. When hydroquinone was added and the reactions were conducted in the dark, iron release followed first-order kinetics and the rate constants showed a clear dependence on the degree of saturation of the protein, which was most marked at lower levels of saturation. The results imply control of iron release by binding site differences produced by different intramolecular environments as the protein provides different combinations of its phosphoserine groups as ligands depending on the number of iron atoms to be accommodated per protein molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号