首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For in vivo impact loadings administered under controlled initial conditions, it was hypothesized that larger initial knee angles (IKA) and softer impacting interfaces would reduce impact loading and initial leg stiffness. A human pendulum was used to deliver controlled impacts to the right foot of 21 subjects for three IKA (0, 20 and 40°) and three interfaces (barefoot, soft and hard EVA foams). The external impact force and the shock experienced by the subjects' shank were measured simultaneously with a wall mounted force platform and a skin mounted accelerometer, respectively. Stiffness of the leg was derived using impact velocity and wall reaction force data. The results disproved the role of the knee joint in regulating initial leg stiffness and provided only partial support for the hypothesized improved cushioning. Larger knee flexion at contact reduced impact force but increased the shock travelling throughout the shank. Conversely, softer interfaces produced sizable reductions in both initial leg stiffness and severity of the impact experienced by the lower limb. Force rate of loading was found to be highly correlated (r=0.95) to limb stiffness that was defined by the heel fat pad and interface deformations. These results would suggest that interface interventions are more likely to protect the locomotor system against impact loading than knee angle strategies.  相似文献   

2.
To examine the effect of compound deficiencies in antioxidant defense, we have generated mice (Sod2+/−/Gpx1−/−) that are deficient in Mn superoxide dismutase (MnSOD) and glutathione peroxidase 1 (Gpx1) by breeding Sod2+/− and Gpx1−/− mice together. Although Sod2+/−/Gpx1−/− mice showed a 50% reduction in MnSOD and no detectable Gpx1 activity in either mitochondria or cytosol in all tissues, they were viable and appeared normal. Fibroblasts isolated from Sod2+/−/Gpx1−/− mice were more sensitive (4- to 6-fold) to oxidative stress (t-butyl hydroperoxide or γ irradiation) than fibroblasts from wild-type mice, and were twice as sensitive as cells from Sod2+/− or Gpx1−/− mice. Whole-animal studies demonstrated that survival of the Sod2+/−/Gpx1−/− mice in response to whole body γ irradiation or paraquat administration was also reduced compared with that of wild-type, Sod2+/−, or Gpx1−/− mice. Similarly, endogenous oxidative stress induced by cardiac ischemia/reperfusion injury led to greater apoptosis in heart tissue from the Sod2+/−/Gpx1−/− mice than in that from mice deficient in either MnSOD or Gpx1 alone. These data show that Sod2+/−/Gpx1−/− mice, deficient in two mitochondrial antioxidant enzymes, have significantly enhanced sensitivity to oxidative stress induced by exogenous insults and to endogenous oxidative stress compared with either wild-type mice or mice deficient in either MnSOD or Gpx1 alone.  相似文献   

3.
Direct evidence obtained by means of the technique of pulse radiolysis-kinetic spectrometry, with measurements in the time range 10−6 to 1 s, is presented that, consequent upon reaction of a single H-atom with a single molecule of ferricytochrome c, a reducing equivalent is transmitted via the protein structure to the ferriheme moiety. Such transmission accounts for at least 70% of the total reduction of the ferri to the ferro state of cytochrome c. The remainder of the total reduction takes place without stages resolvable on the time scale of these experiments. Reduction brought about by H atoms appears to follow a different course than reduction by hydrated electrons. In the latter case, intramolecular transmission of reducing equivalents could not be demonstrated (Lichtin, N. N., Shafferman, A. and Stein, G. (1973) Biochim. Biophys. Acta 314, 117–135).

Not every H-atom reacts with ferricytochrome c at a site which results in conversion of the Fe(III) state to the Fe(II) state. Approximately half of reacting H-atoms do not produce reduction.

The following second order rate constants have been determined in solutions of low ionic strength at 20±2 °C: k[H+ferricytochrome c] = (1.0±0.2) · 1010 M−1 · s−1 at pH 3.0 and 6.7; k[H+ferrocytochrome c] = (1.3±0.2) · 1010 M−1 · s−1 at pH 3.0; k[eaq + ferrocytochrome c] = (1.9±0.4) · 1010 M−1 · s−1 at pH 6.7.  相似文献   


4.
The survival of Leishmania, which encounter drastic changes of environment during their life-cycle, requires regulation and control of ionic concentrations within the cell. We analysed the influence of growth stage, ionic composition of the medium, heat and acidic stress on 86Rb+ influx in L. infantum promastigetes. Proliferating promastigotes exibited faster and higher 86Rb+ uptake than stationary cells. Cl anion did not have any effect, but in the presence of physiological concentration of HCO3, 86Rb+ uptake was significantly increased. This enhancing effect was only partially inhibited by N,N′-dicyclohexylcarbodiimide (DCCD), a blocker of ion-translocating ATPases. 86Rb+ influx was abolished by N-ethylmaleimide (NEM), indicating a major contribution of plasma membrane transporters. Heat shock and acidic shock notably decreased 86Rb+ influx. Our data provide indirect evidence that an energy-dependent system which brings K+ in, such as K+/H+-ATPase evidenced by Jiang et al. (1994), is active in Leishmania in different environments. Mechanism(s) other than ion-translocating ATPase occur, at least in the presence of HCO3, and their contribution to K+ pathways varies in different environmental conditions.  相似文献   

5.
1. 1. The thermal characteristics of Petrodromus tetradactylus, Elephantulus intufi and E. brachyrhynchus were investigated and compared with other elephant-shrews that occur in the southern African subregion.
2. 2. E. intufi and E. brachyrhynchus appear to have lower than expected basal metabolic rates (1.1185 ± 0.1623 and 0.9649 ± 0.1638 ml O2 g−1 h−1, respectively) and high, narrow thermoneutral zones, similar to other elephant-shrews investigated previously. In contrast P. tetradactylus has a basal metabolic rate (0.871 ± 0.027 ml O2 g−1 h−1) close to expected for body mass, and a broad, low thermoneutral zone.
3. 3. The thermal biology of macroscelids is discussed in terms of their distribution, microhabitat and body size.
  相似文献   

6.
In the hopes of reducing the unpredictability associated with refractive surgical procedures and ultimately improving surgical techniques, many investigators have attempted to determine the elastic moduli of the cornea. Techniques such as stress-strain tests of corneal strips and the measurement of mercury drop displacement in a whole eye under increasing pressure have resulted in a range of values for Young's modulus from 105 to 107 N m−2. Both of these methods are limited because these mechanical tests cannot be performed in the physiological state and because of the large amount of force applied during testing. We used an ultrasonic technique to determine the elastic moduli of the human cornea. Two groups of six corneas prepared under different conditions (in saline and in dextran) were examined separately and the shear waves were generated and detected in these 12 human eye bank eyes. All the waveforms were digitized and saved in files of binary format. Fast Fourier transformation (FFT) was applied to calculate the speed and attenuation of the shear wave. Using the resulting wave speeds and attenuation coefficients, the Young's moduli of the corneal samples were calculated as (5.3±1.1)×106 N m−2 and (2.0±1.0)×107 N m−2 for cornea samples prepared in saline and in dextran at 2.25 MHz, respectively.  相似文献   

7.
The perchlorate (ClO4)-respiring organism, strain perc1ace, can grow using nitrate (NO3) as a terminal electron acceptor. In resting cell suspensions, NO3 grown cells reduced ClO4, and ClO4 grown cells reduced NO3. Activity assays showed that nitrate reductase (NR) activity was 1.31 μmol min−1 (mg protein)−1 in ClO4 grown cells, and perchlorate reductase (PR) activity was 4.24 μmol min−1 (mg protein)−1 in NO3 grown cells. PR activity was detected within the periplasmic space, with activities as high as 14 μmol min−1 (mg protein)−1. The NR had a pH optimum of 9.0 while the PR had an optimum of 8.0. This study suggests that separate terminal reductases are present in strain perclace to reduce NO3 and ClO4.  相似文献   

8.
Effect of iron concentration on hydrogen fermentation   总被引:11,自引:0,他引:11  
The effect of the iron concentration in the external environment on hydrogen production was studied using sucrose solution and the mixed microorganisms from a soybean-meal silo. The iron concentration ranged from 0 to 4000 mgFeCl2 l−1. The temperature was maintained at 37°C. The maximum specific hydrogen production rate was found to be 24.0 mlg−1 VSSh−1 at 4000 mgFeCl2 l−1. The specific production rate of butyrate increased with increasing iron concentration from 0 to 20 mgFeCl2 l−1, and decreased with increasing iron concentration from 20 to 4000 mgFeCl2 l−1. The maximum specific production rates of ethanol (682 mgg−1 VSSh−1) and butanol (47.0 mgg−1 VSSh−1) were obtained at iron concentrations of 5 and 3 mgFeCl2 l−1, respectively. The maximum hydrogen production yield of 131.9 mlg−1 sucrose was obtained at the iron concentration of 800 mgFeCl2 l−1. The maximum yields of acetate (389.3 mgg−1 sucrose), propionate (37.8 mgg−1 sucrose), and butyrate (196.5 mg g−1 sucros) were obtained at iron concentrations of 3, 200 and 200 mgFeCl2 l−1, respectively. The sucrose degradation efficiencies were close to 1.0 when iron concentrations were between 200 and 800 mgFeCl2 l−1. The maximum biomass production yield was 0.283 gVSSg−1 sucrose at an iron concentration of 3000 mgFeCl2 l−1.  相似文献   

9.
Weakfish larvae, Cynoscion regalis (Bloch and Schneider), were used in laboratory experiments, during May and June 1991–1993, to examine the effects of varying irradiance levels on capture and ingestion of Zooplankton prey (rotifers). Treatments consisted of six different irradiance levels: no light, 5, 11, 15, 20, and 500 × 1012 quanta·cm−2·s−1. These levels are typical of the irradiance range found in a 10-m water column during the late-spring, weakfish spawning season in Delaware Bay. Early-stage larvae (8 days post-hatching) did not feed in total darkness, and there was no difference in the incidence of feeding among the other treatment groups. Similarly, late-stage larvae (13 days post-hatching) showed no significant difference between the incidence of feeding in darkness and at 5 × 1012 quanta·cm−2 s−1, though feeding within these two intensities was significantly lower than feeding in the other light levels. Results of a subsequent experiment indicated that the ability to feed in total darkness may depend on the abundance of available prey. Scanning electron microscope analysis of preserved weakfish larvae showed that neuromasts were not fully developed until larvae had reached at least 12 days post-hatching, and that younger larvae had only lateral line pores along the body trunk. There were no neuromasts evident on the head region, regardless of age. Thus, neuromasts may be involved in the capture of prey in darkness.  相似文献   

10.
The tumor suppressor protein p53 is a key regulatory element in the cell and is regarded as the “guardian of the genome”. Much of the present knowledge of p53 function has come from studies of transgenic mice in which the p53 gene has undergone a targeted deletion. In order to provide additional insight into the impact on the cellular regulatory networks associated with the loss of this gene, microarray technology was utilized to assess gene expression in tissues from both the p53−/− and p53+/− mice. Six male mice from each genotype (p53+/+, p53+/−, and p53−/−) were humanely killed and the tissues processed for microarray analysis. The initial studies have been performed in the liver for which the Dunnett test revealed 1406 genes to be differentially expressed between p53+/+ and p53+/− or between p53+/+ and p53−/− at the level of p ≤ 0.05. Both genes with increased expression and decreased expression were identified in p53+/− and in p53−/− mice. Most notable in the gene list derived from the p53+/− mice was the significant reduction in p53 mRNA. In the p53−/− mice, not only was there reduced expression of the p53 genes on the array, but genes associated with DNA repair, apoptosis, and cell proliferation were differentially expressed, as expected. However, altered expression was noted for many genes in the Cdc42-GTPase pathways that influence cell proliferation. This may indicate that alternate pathways are brought into play in the unperturbed liver when loss or reduction in p53 levels occurs.  相似文献   

11.
Norathyriol, aglycone of a xanthone C-glycoside mangiferin isolated from Tripterospermum lanceolatum, concentration dependently inhibited the formylmethionyl-leucyl-phenylalanine (fMLP)-induced superoxide anion (O2˙−) generation and O2 consumption in rat neutrophils. In cell-free oxygen radical generating system, norathyriol inhibited the O2˙− generation during dihydroxyfumaric acid (DHF) autoxidation and in hypoxanthine-xanthine oxidase system. fMLP-induced transient elevation of [Ca2+]i and the formation of inositol trisphosphate (IP3) were significantly inhibited by norathyriol (30 μM) (about 30 and 46% inhibition, respectively). Norathyriol concentration dependently suppressed the neutrophil cytosolic phospholipase C (PLC). In contrast with the marked attenuation of fMLP-induced protein tyrosine phosphorylation (about 70% inhibition at 10 μM norathyriol), norathyriol only slightly modulated the phospholipase D (PLD) activity as determined by the formation of phosphatidic acid (PA) and, in the presence of ethanol, phosphatidylethanol (PEt). Norathyriol did not modulate the intracellular cyclic AMP level. In the presence of NADPH, the phorbol 12-myristate 13-acetate (PMA)-activated particulate NADPH oxidase activity was suppressed by norathyriol in a concentration-dependent manner and the inhibition was noncompetitive with respect to NADPH. Norathyriol inhibited the iodonitrotetrazolium violet (INT) reduction in arachidonic acid (AA)-activated cell-free NADPH oxidase system at the same concentration range as those used in the suppression of PMA-activated particulate NADPH oxidase activity. Taken together, these results suggest that the scavenging ability of norathyriol contributes to the reduction of generated O2˙−, however, the inhibition of O2˙− generation from neutrophils by norathyriol is attributed to the blockade of PLC pathway, the attenuation of protein tyrosine phosphorylation, and to the suppression of NADPH oxidase through the interruption of electrons transport.  相似文献   

12.
The rate of Hg2+-assisted chloride release from several mer-[CrCl(diamine)(triamine)]2+ complexes has been measured as a function of pressure, Hg2+ concentration and temperature. The calculated activation volumes are independent of [Hg2+] and temperature and kinetic parametes 104 kHg (25 °c) (M−1 s−1), ΔH (kJ mol−1), ΔS (J K−1 mol−1), ΔV (cc mol−1) are: (en)(dpt): 6.44. 75.5, −52, −5.0; (ibn)(dpt): 5.81, 89.5, −6, −0.03; (Me2tn)(dpt): 22.2, 84.9, −11, −0.5; (tn)(dpt): 29.1, 87, −1, +0.3; (en)(2,3-tri): 1.94, 87.0, −24, −5.7; (en)(Medpt): 0.417, 94.6, −11, −0.8; (tn)(Medpt): 9.14, 98.3, +26, +1.8.  相似文献   

13.
The reaction of meso-tetrakis (4-dimethoxyphenyl) porphinatomanganese(II), MnTPOMeP, with TCNE (TCNE = tetracyanoethylene) leads to the formation of [MnTPOMeP]+ [TCNE] and [MnTPOMeP]+[OC(CN)C(CN)2]. The single-crystal X-ray structures of the latter as well as [Cu(bipy)2Cl]+ [OC(CN)C(CN)2] were determined. The former has a disordered [OC(CN)C(CN)2] bridging via C and O between a pair of MnIII sites, whereas the latter has an isolated [OC(CN)C(CN)2] unbound to CuII. The IR characterization for μ2-C,O bound [OC(CN)C(CN)2] is at 2219m and 2196s (νCN) cm−1 and at 1558s (νCO) cm−1 while for unbound [OC(CN)C(CN)2] it is at 2210m, 2203m, 2181m (νCN) cm−1 and at 1583s (νCO) cm−1.  相似文献   

14.
Rates of stepwise anation of cis-Cr(ox)2(H2O2) with SCN/N3, Cr(acac)2(H2O)2+ with SCN and Cr(atda)(H2O)2 with SCN have been investigated in weakly acidic aqueous solutions. Rate constants, kI and kII for the two steps in each system, are composite as kx = kx0+kxX[X] (x = I, II; X = SCN, N3). These rate constants have been evaluated also as the corresponding ΔH and ΔS values. The results obtained and the plausible Id mechanism seem to suggest Cr---OOC bond dissociation (hence a strongly negative ΔS) generating the transition state in each system with outer-sphere association forming the precursor complex in the X dependent paths.  相似文献   

15.
Comparative measurements of bacterial total counts and volumes of flow cytometry (FCM), transmission electron (TEM), and epifluorescence microscopy (EFM), were undertaken during a four week mesocosm experiment. Total counts of bacteria measured by TEM, EFM, and FCM were in the range of 1 · 106−6 cells ml−1, 1 · 106−3 · 1016 cells ml−1, and 5 · 105 cells ml−1 respectively. The mean volume of the bacterial community, measured by means of EFM and TEM, increased from 0.12–0.15 μm3 at the start of the experiment to 0.39–0.53 μm3 at the end. Generally, there was good agreement between the two methods and regression analyses gave r = 0.87 (p < < 0.01) for cell volume and r = 0.97 (p < < 0.01) for cell number. DAPI stained bacteria with volumes less than 0.2 μm3 were not detected by flow cytometry and these were generally an order of magnitude lower than counts made by TEM and EFM. For samples where the mean bacterial cell volume was longer than 0.3 μm3, all three methods were in agreement both with respect to counts and volume estimates.  相似文献   

16.
Because of the nature of running, the forces encountered require a proper coordination of joint action of the lower extremity to dissipate the ground reaction forces and accelerations through the kinetic chain. Running-related muscle fatigue may reduce the shock absorbing capacity of the lower extremity and alter running kinematics. The purpose of this study was to determine if a bout of exhaustive running at a physiologically determined high intensity, changes running kinematics, impact accelerations, and alters shock attenuating capabilities. It was hypothesized that as a result of fatigue induced by an exhaustive run, running kinematics, impact accelerations at the head and shank, acceleration reduction, and shock attenuation would change. A within-subject, repeated-measures design was used for this study. Twelve healthy, competitive male and female distance runners participated. Subjects performed 2 testing sessions consisting of a VO2max treadmill protocol to determine the heart rate at ventilatory threshold and a fatigue-inducing running bout at the identified ventilatory threshold heart rate. Kinematic data included knee flexion, pronation, time to maximum knee flexion, and time to maximum pronation. Acceleration data included shank acceleration, head acceleration, and shock attenuation. No significant differences resulted for the kinematic or acceleration variables. Although the results of this study do not support the original hypotheses, the influence of running fatigue on kinematics and accelerations remains inconclusive. Future research is necessary to examine fatigue-induced changes in running kinematics and accelerations and to determine the threshold at which point the changes may occur.  相似文献   

17.
The mechanism by which Cl activates the oxygen-evolving complex (OEC) of Photosystem II (PS II) in spinach was studied by 35Cl-NMR spectroscopy and steady-state measurements of oxygen evolution. Measurements of the excess 35Cl-NMR linewidth in dark-adapted, Cl-depleted thylakoid and Photosystem II membranes show an overall hyperbolic decrease which is interrupted by sharp increases in linewidth (linewidth maxima) at approx. 0.3 mM, 0.75 mM, 3.25 mM (2.0 mM in PS II membranes), and 7.0 mM Cl. The rate of the Hill reaction (H2O → 2,6-dichlorophenolindophenol) at low light intensities (5% of saturation) as a function of [Cl] in thylakoids shows three intermediary plateaus in the concentration range between 0.1 and 10 mM Cl indicating kinetic cooperativity with respect to Cl. The presence of linewidth maxima in the 35Cl-NMR binding curve indicates that Cl addition exposes four types of Cl binding site that were previously inaccessible to exchange with Cl in the bulk solution. These results are best explained by proposing that Cl binds to four sequestered (salt-bridged) domains within the oxygen-evolving complex. Binding of Cl is facilitated by the presence of H+ and vice versa. The pH dependence of the excess 35Cl-NMR linewidth at 0.75 mM Cl shows that Cl binding has a maximum at pH 6.0 and two smaller maxima at pH 5.4 and 6.5 which may suggest that as many as three groups (perhaps histidine) with pKa values in the region may control the binding.  相似文献   

18.
15N NMR studies of the interaction of 15N cyanide ion with gold(I)-thiomalate (Autm) and gold(I)-thioglucose (Autg) have been carried out at pH* 7.40. The chemical shifts of the two 15N ions containing species Au(C15N)2 and RS-Au-C15N (where RS = tm or tg) were identified at 265.94 and 260.30 ppm, respectively. From the broadened 15N NMR signals, approximate life times of the RS-Au-CN species were calculated.  相似文献   

19.
1H NMR line broadening is found to be an effective complimentary method to chemical trapping for determining the rates and activation parameters for organo-metal bond homolysis events that produce freely diffusing radicals. Application of this method is illustrated by measurement of bond homolysis activation parameters for a series of organo-cobalt porphyrin complexes ((TPP)Co-C(CH3)2CN (ΔH = 19.5±0.9 kcal mol−1, ΔS = 12±3 cal°K−1 mol−1), (TMP)Co-C(CH3)2CN (ΔH = 20±1 kcal mol−1S = 13±2 cal°K−1 mol−1), (TAP)Co-C(CH3)2CO2CH3H = 18.2±0.5 kcal mol−1, ΔS = 12±2 cal °K−1 mol−1), (TAP)Co-CH(CH3)C6H5H = 22.5±0.5, ΔS = 17±2 cal °K−1 mol−1)). The line broadening method is particularly useful in determining activation parameters for dissociation of weakly bonded organometallics where the rate of homolysis can exceed the range measurable by conventional chemical trapping methods.  相似文献   

20.

1. 1. The naked mole-rat (Heterocephalus glaber) is a poikilothermic mammal. During gestation metabolic shifts that differ from both mammalian and reptilian thermoregulatory patterns occurred.

2. 2. Body temperature was directly dependent on ambient temperature. At low ambient temperatures the temperature differential (TbTa) was approximately 3°C, whereas at higher ambient temperatures the temperature differential diminished.

3. 3. In early pregnancy (prior to week 3) oxygen consumption at low ambient temperatures was greater than that of non-reproductive animals. A maximal metabolic rate (3.2 ± 1.0 ml O2 . g−1 . h−1) occurred at an ambient temperature of 27°C. Thereafter the endothermic pattern of metabolism with increasing ambient temperatures was evident. Oxygen consumption decreased with increasing ambient temperature to minimal rates of 1.2 ± 0.1 ml O2 . g−1 . h−1 over the ambient temperature range of 31–34°C.

4. 4. Oxygen consumption in late pregnancy (1.8 ± 0.1 ml O2 . g−1 . h−1) was not correlated with ambient temperature over the entire ambient temperature range measured (24–36°C).

5. 5. Differences in thermoregulation in early and late pregnancy may be attributed to different rates of heat loss as a consequence of (a) changes in surface area and body mass or (b) vascular changes. Furthermore the thermoregulatory changes in late pregnancy may indicate that maximal overall metabolic capacity had been reached, for peak resting metabolism (expressed per animal rather than per gram body mass) in early pregnancy was similar to observed metabolism in late pregnancy.

6. 6. The dissociation of metabolism from both ambient temperature and body temperature in late pregnancy could confer an energetic advantage to this arid dwelling underground inhabitant; for it may enable the breeding female to partition a greater portion of available energy into reproduction.

Author Keywords: Body temperature; endothermy; eusocial; gestation; Heterocephalus glaber; metabolic changes; naked mole-rat; oxygen consumption; poikilothermy; pregnancy; rectal temperature; thermoregulation  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号