首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Calix[4]arenes bearing two or four methylenebisphosphonic acid groups at the macrocyclic upper rim have been studied with respect to their effects on fibrin polymerization. The most potent inhibitor proved to be calix[4]arene tetrakis-methylene-bis-phosphonic acid (C-192), in which case the maximum rate of fibrin polymerization in the fibrinogen + thrombin reaction decreased by 50% at concentrations of 0.52 × 10(-6) M (IC(50)). At this concentration, the molar ratio of the compound to fibrinogen was 1.7 : 1. For the case of desAABB fibrin polymerization, the IC(50) was 1.26 × 10(-6) M at a molar ratio of C-192 to fibrin monomer of 4 : 1. Dipropoxycalix[4]arene bis-methylene-bis-phosphonic acid (C-98) inhibited fibrin desAABB polymerization with an IC(50) = 1.31 × 10(-4) M. We hypothesized that C-192 blocks fibrin formation by combining with polymerization site 'A' (Aα17-19), which ordinarily initiates protofibril formation in a 'knob-hole' manner. This suggestion was confirmed by an HPLC assay, which showed a host-guest inclusion complex of C-192 with the synthetic peptide Gly-Pro-Arg-Pro, an analogue of site 'A'. Further confirmation that the inhibitor was acting at the initial step of the reaction was obtained by electron microscopy, with no evidence of protofibril formation being evident. Calixarene C-192 also doubled both the prothrombin time and the activated partial thromboplastin time in normal human blood plasma at concentrations of 7.13 × 10(-5) M and 1.10 × 10(-5) M, respectively. These experiments demonstrate that C-192 is a specific inhibitor of fibrin polymerization and blood coagulation and can be used for the design of a new class of antithrombotic agents.  相似文献   

2.
ELISA for soluble fibrin (SF) quantification has been elaborated on the basis of our fibrin-specific monoclonal antibodies (mAb). Epitope for these mAb is localized in fibrin fragment Bbeta118-134. The method was used on the blood plasma of healthy pregnant women (control group) and pregnant women with the risk of fetal loss (RFL). The increased mean values of SF concentrations were observed at pregnancy with RFL as compared to the normal pregnancy at the terms from 4 to 24 weeks (17.87 +/- 3.15 mkg/ml and 9.03 +/- 1.58 mkg/ml accordingly, p < 0.05). A weak negative correlation between SF concentration and pregnancy term was found at RFL (r = -0.201, n=35), while there was no correlation between these variables in control group (r = 0.004, n=28). The mean values of SF concentration estimated by semiquantitative test (by phosphates salting out of SF) were also higher at the pregnancy with RFL as compared to the normal pregnancy. However, the absolute values of SF concentrations determined by salting out method were essentially higher than in the case of ELISA. Immunoblot analysis with mAb 2d-2a (epitope for which in fibrin molecule encompasses peptide bond Bbeta14-15), showed that the main molecular component of SF at normal pregnancy and RFL was oligomeric fibrin desAA with possible incorporation of fibrinogen and/or fibrin desA which was not stabilized by factor XIIIa. D-dimer concentrations determined in blood plasma samples of pregnant women by ELISA varied in the range of 1-224 ng/ml at the pregnancy period from 4 to 37 weeks. There was positive correlation between D-dimer concentration and pregnancy term both at normal pregnancy and pregnancy with RFL (r = 0.765, n=33 and r = 0.712, n=44 correspondingly). The mean values of D-dimer concentration at various terms of normal pregnancy and pregnancy with RFL did not vary considerably. Thus SF but not D-dimer quantification may give useful diagnostic information at the pregnancy with RFL.  相似文献   

3.
The effect of fibrinogen on the two steps of polymerization of two fibrin forms differing in the set of polymerization sites (fibrin-desAA and fibrin-desAABB) was studied. It was shown that fibrinogen inhibited the protofibril growth and fibril formation at the stage of lateral aggregation more effectively with fibrin-desAABB than with fibrin desAA. When the fibrinogen D2-site was blocked by tetrapeptide Gly-His-Arg-Pro, the key structure of the E2-site, the inhibitory activity of fibrinogen diminished. A conclusion is drawn that the high susceptibility of fibrin-desAABB to fibrinogen is due to the interaction of the E2-active site with the D2-site of the fibrinogen molecule. The concentration dependence of the tetrapeptide Gly-His-Arg-Pro-induced inactivation of fibrinogen and the effects of temperature and Ca2+ on the tetrapeptide interaction with fibrinogen were investigated.  相似文献   

4.
Fibronectin matrix assembly is a cell-dependent process which is upregulated in tissues at various times during development and wound repair to support the functions of cell adhesion, migration, and differentiation. Previous studies have demonstrated that the alpha 5 beta 1 integrin and fibronectin's amino terminus and III-1 module are important in fibronectin polymerization. We have recently shown that fibronectin's III-1 module contains a conformationally sensitive binding site for fibronectin's amino terminus (Hocking, D.C., J. Sottile, and P.J. McKeown-Longo. 1994. J. Biol. Chem. 269: 19183- 19191). The present study was undertaken to define the relationship between the alpha 5 beta 1 integrin and fibronectin polymerization. Solid phase binding assays using recombinant III-10 and III-1 modules of human plasma fibronectin indicated that the III-10 module contains a conformation-dependent binding site for the III-1 module of fibronectin. Unfolded III-10 could support the formation of a ternary complex containing both III-1 and the amino-terminal 70-kD fragment, suggesting that the III-1 module can support the simultaneous binding of III-10 and 70 kD. Both unfolded III-10 and unfolded III-1 could support fibronectin binding, but only III-10 could promote the formation of disulfide-bonded multimers of fibronectin in the absence of cells. III-10-dependent multimer formation was inhibited by both the anti-III-1 monoclonal antibody, 9D2, and amino-terminal fragments of fibronectin. A fragment of III-10, termed III-10/A, was able to block matrix assembly in fibroblast monolayers. Similar results were obtained using the III-10A/RGE fragment, in which the RGD site had been mutated to RGE, indicating that III-I0/A was blocking matrix assembly by a mechanism distinct from disruption of integrin binding. Texas red- conjugated recombinant III-1,2 localized to beta 1-containing sites of focal adhesions on cells plated on fibronectin or the III-9,10 modules of fibronectin. Monoclonal antibodies against the III-1 or the III-9,10 modules of fibronectin blocked binding of III-1,2 to cells without disrupting focal adhesions. These data suggest that a role of the alpha 5 beta 1 integrin in matrix assembly is to regulate a series of sequential self-interactions which result in the polymerization of fibronectin.  相似文献   

5.
Two monomeric fibrin forms differing in a set of polymerization sites (fibrin desAA and fibrin-desAABB) are inhibited to a different extent by tetrapeptide Gly-Pro-Arg-Pro which simulates a moiety of polymerization site E1. The lesser sensitivity of fibrin-desAABB polymerization to the inhibiting tetrapeptide is due to the presence of active site E2 in it. A shape of the concentration dependence curve of the inhibitory effect of tetrapeptide Gly-Pro-Arg-Pro on the polymerization of both fibrin types is similar to the previously found curve for fibrinogen and its fragments--specific inhibitors of polymerization. Ca2+ intensifies inhibition of fibrin-desAABB polymerization by tetrapeptide Gly-Pro-Arg-Pro twice as much as that of fibrin-desAA evidently due to the peptide blockage of sites D2. An increase of the ionic strength from 0.15 to 0.3 enhances the inhibitory effect of the tetrapeptide on polymerization of two monomeric fibrin forms.  相似文献   

6.
Binding of plasminogen to fibrin and cell surfaces is essential for fibrinolysis and pericellular proteolysis. We used surface plasmon resonance and enzyme kinetic analyses to study the effect of two mAbs (A10.2, CPL15) on plasminogen binding and activation at fibrin surfaces. A10.2 is directed against the lysine-binding site (LBS) of kringle 4, whereas CPL15 recognises a region in kringle 1 outside the LBS. In the presence of CPL15 and A10.2 mAbs, binding of plasminogen (K(d)=1.16+/-0.22 micromol/l) to fibrin was characterised by a mAb concentration-dependent bell-shaped isotherm. A progressive increase in the concentration of mAbs at the surface was also detected, and reached a plateau corresponding to the maximum of plasminogen bound. These data indicated that at low mAb concentration, bivalent plasminogen-mAb-plasminogen ternary complexes are formed, whereas at high mAb concentration, a progressive shift to monovalent plasminogen-mAb binary complexes is observed. Plasmin formation in the presence of mAbs followed a similar bell-shaped profile. Monovalent Fab fragments of mAb A10.2 showed no effect on the binding of plasminogen, confirming the notion that a bivalent mAb interaction is essential to increase plasminogen binding and activation at the surface of fibrin.  相似文献   

7.
Plasminogen activation catalysed by tissue-type plasminogen activator (t-PA) has been examined in the course of concomitant fibrin formation and degradation. Plasmin generation has been measured by the spectrophotometric method of Petersen et al. (Biochem. J. 225 (1985) 149-158), modified so as to allow for light scattering caused by polymerized fibrin. Glu1-, Lys77- and Val442-plasminogen are activated in the presence of fibrinogen, des A- and des AB-fibrin and the rate of plasmin formation is found to be greatly enhanced by both des A- and des AB-fibrin polymer. Plasmin formation from Glu1- and Lys77-plasminogen yields a sigmoidal curve, whereas a linear increase is obtained with Val442-plasminogen. The rate of plasmin formation from Glu1- and Lys77-plasminogen declines in parallel with decreasing turbidity of the fibrin polymer effector. In order to study the effect of polymerization, this has been inhibited by the synthetic polymerization site analogue Gly-Pro-Arg-Pro, by fibrinogen fragment D1 or by prior methylene blue-dependent photooxidation of the fibrinogen used. Inhibition of polymerization by Gly-Pro-Arg-Pro reduces plasmin generation to the low rate observed in the presence of fibrinogen. Antipolymerization with fragment D1 or photooxidation has the same effect on Glu1-plasminogen activation, but only partially reduces and delays the stimulatory effect on Lys77- and Val442-plasminogen activation. The results suggest that protofibril formation (and probably also gelation) of fibrin following fibrinopeptide release is essential to its stimulatory effect. The gradual increase and subsequent decline in the rate of plasmin formation from Glu1- or Lys77-plasminogen during fibrinolysis may be explained by sequential exposure, modification and destruction of different t-PA and plasminogen binding sites in fibrin polymer.  相似文献   

8.
In the event of a myocardial infarction, current interventions aim to reopen the occluded vessel to reduce myocardial damage and injury. Although reperfusion is essential for tissue salvage, it can cause further damage and the onset of inflammation. We show a novel anti-inflammatory effect of a fibrin-derived peptide, Bbeta15-42. This peptide competes with the fibrin fragment N-terminal disulfide knot-II (an analog of the fibrin E1 fragment) for binding to vascular endothelial (VE)-cadherin, thereby preventing transmigration of leukocytes across endothelial cell monolayers. In acute or chronic rat models of myocardial ischemia-reperfusion injury, Bbeta15-42 substantially reduces leukocyte infiltration, infarct size and subsequent scar formation. The pathogenic role of fibrinogen products is further confirmed in fibrinogen knockout mice, in which infarct size was substantially smaller than in wild-type animals. Our findings conclude that the interplay of fibrin fragments, leukocytes and VE-cadherin contribute to the pathogenesis of myocardial damage and reperfusion injury. The naturally occurring peptide Bbeta15-42 represents a potential candidate for reperfusion therapy in humans.  相似文献   

9.
A monoclonal antibody (3D6) was produced which reacted only with Brucella sonicated cell extracts that had been lysozyme-treated after sonication. The monoclonal antibody (mAb) reacted with the three major outer-membrane proteins (OMPs) of B. melitensis B115 in Western blots. A large number of reactive bands ranging from 12 to 43 kDa were present in lysozyme-treated Escherichia coli and Yersinia enterocolitica sonicated cell extracts. In a latex agglutination inhibition immunoassay, mAb 3D6 showed better reactivity with purified peptidoglycan (PG) of B. melitensis B115 than with that of Escherichia coli. This mAb was also used in immunogold electron microscopy with whole Brucella cells and sections. No binding was observed on whole cells and immunogold labelling in sections was observed close to the outer membrane, in the periplasmic space and in the cytoplasm. These findings indicate that mAb 3D6 is specific for PG subunits. Immunoblot analysis of B. melitensis B115 rough sonicated cell extracts after SDS-PAGE, with or without lysozyme treatment, was performed using mAbs specific for Brucella OMPs of molecular masses of 10, 16.5, 19, 25-27, 31-34, 36-38 and 89 kDa, for PG and for rough lipopolysaccharide (R-LPS) and smooth lipopolysaccharide (S-LPS). mAbs specific for the 25-27, 31-34 and 36-38 kDa OMPs reacted with three to six bands. All of them except the band of lowest molecular mass reacted with the PG-specific mAb and not with R-LPS- and S-LPS-specific mAbs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The population of fibronectins in adult mammalian cartilage includes high levels of a cartilage-specific (V+C)(-) isoform which lacks the V, III-15, and I-10 segments and thus contains a novel junction between protein segments III-14 and I-11. We report production of a monoclonal antibody specific for (V+C)(-) fibronectin without cross-recognition of V(+)C(+) and V(-)C(+) isoforms found in plasma and other tissues. Presentation of epitope to this antibody requires the III-14/I-11 junction, but the epitope itself extends beyond 14 amino acids immediately surrounding the junction site and involves a conformational change in III-14 and/or the N-terminal portion of I-11. The antibody, designated Mab 5D10 anti (V+C)(-), displays specificity for (V+C)(-) fibronectin from multiple mammalian species including humans and utility in immunoblots, immunohistochemistry, and ELISA.  相似文献   

11.
The formation of a fibrin clot occurs through binding of putative complementary sites, called fibrin polymerization sites, located in the NH2- and COOH-terminal domains of fibrin monomer molecules. In this study, we have investigated the structure of the NH2-terminal fibrin polymerization site by using fibrinogen-derived peptides and fragments. Fibrinogen was digested with Crotalus atrox protease III, to two major molecular species: a Mr 325,000 derivative (Fg325) and a peptide of Mr 5000. The peptide and its thrombin-cleavage product were purified by ion-exchange and reverse-phase HPLC; the authenticity of the B beta 1-42 and beta 15-42 peptides, respectively, was confirmed by amino acid sequencing. Since Fg325 had decreased thrombin coagulability, we addressed the question of whether the peptide B beta 1-42 contained a fibrin polymerization site. In order to identify and map the site, the peptides B beta 1-42 and beta 15-42 were tested for their ability to inhibit fibrin monomer polymerization. In addition the following peptides prepared by chemical synthesis were also tested: beta 15-18, beta 15-26, beta 24-42, beta 40-54, beta 50-55, and alpha 17-19-Pro. While B beta 1-42 had no inhibitory activity, the peptide devoid of fibrinopeptide B, beta 15-42, was a strong inhibitor. The peptides beta 15-18, beta 15-26, and beta 15-42 decreased the rate of fibrin polymerization by 50% at a molar excess of the peptide to fibrin monomer of 500, 430, and 50, respectively. The peptides beta 24-42, beta 40-54, and beta 50-55 were inactive.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Gorlatov S  Medved L 《Biochemistry》2002,41(12):4107-4116
Interaction of fibrin with endothelial cells stimulates capillary tube formation thus promoting angiogenesis. This interaction occurs via endothelial cell receptor VE-cadherin and fibrin beta chain 15-42 regions [Bach, T. L., et al. (1998) J. Biol. Chem. 272, 30719-30728]. To clarify the mechanism of this interaction, we expressed in Escherichia coli a number of recombinant fibrin(ogen) fragments containing the beta15-42 region or the VE-cad(1-2) and VE-cad(1-4) fragments encompassing two and four extracellular NH2-terminal domains of VE-cadherin, respectively, and tested interaction between them by surface plasmon resonance and ELISA. Neither the recombinant Bbeta1-57 or Bbeta1-64 fragments, nor beta15-57 or beta15-64 prepared from the latter fragments by thrombin treatment to remove fibrinopeptides B, bound the recombinant VE-cadherin fragments. At the same time, a dimeric recombinant thrombin-treated (beta15-66)2 fragment, which had been disulfide-linked via Cys65 to mimic the dimeric arrangement of the beta chains in fibrin, bound VE-cad(1-4) well, but not VE-cad(1-2); no binding was observed with the untreated (Bbeta1-66)2 dimer. We next mutated several residues in the dimer, His16, Arg17, Pro18, and Asp20, and tested the interaction of the thrombin-treated mutants with VE-cad(1-4) by ligand blotting and surface plasmon resonance. No binding was observed with the H16A and R17Q single mutants and the H16P, P18V double mutant while the P18A and D20N single mutants bound VE-cad(1-4) with the same affinity as the thrombin-treated wild-type dimer. These results indicate that the VE-cadherin binding site in fibrin includes NH2-terminal regions of both fibrin beta-chains, that His16 and Arg17 are critical for the binding, and that the third and/or fourth extracellular domains of VE-cadherin are required for the binding to occur.  相似文献   

13.
Purified platelet Factor XIII was radioiodinated and then partially degraded by thrombin or trypsin, and a fibrin-binding fragment was identified by autoradiography and immunoblotting following separation by SDS/polyacrylamide-gel electrophoresis. Limited proteolysis of 125I-Factor XIII by thrombin or trypsin produced an 125I-51 kDa fragment and an unlabelled 19 kDa fragment. The 51 kDa fragment was purified by h.p.l.c. on a TSK-125 gel-filtration column. Partial amino acid sequence analysis of the 51 kDa fragment indicated that it was similar in sequence to the Gly38-Lys513 segment in placental Factor XIII a-chain. More than 70% of the 51 kDa fragment bound to fibrin, whereas the 19 kDa fragment did not bind. The active site was localized to the 51 kDa fragment since this fragment expressed transglutaminase activity, cross-linked fibrin and fibrinogen and incorporated iodo[14C]acetamide into the active-site cysteine residue. Isolation of a fibrin-binding fragment expressing transglutaminase activity demonstrates that each a-chain of the dimeric Factor XIIIa could function independently to cross-link fibrin. The fibrin-binding site could play an important role in localizing Factor XIIIa to the fibrin clot.  相似文献   

14.
Analysis of the binding of monoclonal antibodies (mAbs) by Torpedo nicotinic acetylcholine receptor (AChR) has demonstrated that a region of the alpha-subunit between alpha-156 and alpha-179 is exposed on the cytoplasmic surface of the nicotinic post-synaptic membrane. A panel of mAbs was produced that recognized sodium dodecyl sulfate-denatured subunits of the Torpedo AChR. Antibodies recognizing alpha-subunit were distinguished in terms of their ability to bind alpha-subunit fragments generated by Staphylococcus aureus V8 protease: an 18-kDa fragment beginning at Val-46, a 20-kDa fragment beginning at Ser-173/Ser-162, and a 10 kDa fragment beginning at Asn-339. Three mAbs, selected for binding to each of the V8-protease alpha-subunit fragments, respectively, were characterized in detail. The location of epitopes recognized by both anti-V8-18 and anti-V8-20 mAbs was determined to be within alpha-156 to alpha-179 by isolation of small immunoreactive peptides from proteolytic digests of the alpha-subunit, while the mAb reactive to V8-10 was bound to an epitope within alpha-339 to alpha-386. Quantitative evaluation of binding of the anti-V8-18 and anti-V8-20 mAbs to overlapping synthetic peptides corresponding to alpha-147 to alpha-179 localized the epitopes to distinct portions of this region. Further screening of the panel of mAbs using these synthetic peptides revealed three additional mAbs that bind in this region. The mAbs that bound the three distinct V8-protease alpha-subunit fragments were shown to bind to native AChR by indirect immunofluorescence on frozen sections of Torpedo electric organ. Binding to the native AChR was to the cytoplasmic surface of the AChR since the mAbs could bind to AChR in native vesicles, in which the AChR is oriented right-side-out, only after permeabilization of the vesicles by alkaline treatment or after scrambling of the orientation of the AChR by solubilization and reconstitution into liposomes. The location of the mAb-binding sites at the cytoplasmic surface of the AChR was visualized directly by freeze-etch immunoelectron microscopy. The identification of alpha-156 and alpha-179 as containing a cytoplasmic exposed sequence implies the existence of two non-hydrophobic transmembrane sequences between the site of N-glycosylation (Asn-141) and Cys-192, a site alkylated by the cholinergic affinity labels.  相似文献   

15.
Cultured fibroblasts bind soluble protomeric fibronectin and mediate its conversion to insoluble disulfide-bonded multimers. The disulfide-bonded multimers are deposited in fibrillar pericellular matrix. Antifibronectin monoclonal antibodies were analyzed to identify domains of fibronectin required for assembly into matrix. Two antibodies, L8 and 9D2, inhibited binding and insolubilization of 125I-labeled plasma fibronectin by fibroblasts but did not inhibit binding of labeled amino-terminal 70-kDa fragment of fibronectin to matrix assembly sites. Immunoblotting of fibronectin fragments showed that the epitope for 9D2 is in the first type III homology sequence (III-1) whereas the epitope for L8 requires that the last type I sequence of the gelatin binding region (I-9) be contiguous to III-1 and is sensitive to reduction of disulfides in I-9. A 56-kDa gelatin-binding thermolysin fragment of fibronectin that contains III-1 and the L8 and 9D2 epitopes inhibited binding of fibronectin to cell layers 10-fold better than a 40-kDa gelatin-binding fragment that lacks III-1 and the antigenic sites. This 56-kDa fragment, however, did not bind specifically to cell layers. These results indicate that the I-9 and III-1 modules of fibronectin form a functional unit that mediates an interaction, perhaps between protomers, important in the assembly of fibronectin.  相似文献   

16.
Complement receptor type 2 (CR2)/CD21 is a B lymphocyte cell membrane C3d/iC3b receptor that plays a central role in the immune response. Human CR2 is also the receptor for the EBV viral membrane glycoprotein gp350/220. Both C3d and gp350/220 bind CR2 within the first two of 15-16 repetitive domains that have been designated short consensus/complement repeats. Many mAbs react with human CR2; however, only one currently available mAb is known to block both C3d/iC3b and gp350/220 binding. We have used a recombinant form of human CR2 containing the short consensus/complement repeat 1-2 ligand-binding fragment to immunize Cr2(-/-) mice. Following fusion, we identified and further characterized four new anti-CR2 mAbs that recognize this fragment. Three of these inhibited binding of CR2 to C3d and gp350/220 in different forms. We have determined the relative inhibitory ability of the four mAbs to block ligand binding, and we have used overlapping peptide-based approaches to identify linear epitopes recognized by the inhibitory mAbs. Placement of these epitopes on the recently solved crystal structure of the CR2-C3d complex reveals that each inhibitory mAb recognizes a site either within or adjacent to the CR2-C3d contact site. One new mAb, designated 171, blocks CR2 receptor-ligand interactions with the greatest efficiency and recognizes a portion of the C3d contact site on CR2. Thus, we have created an anti-human CR2 mAb that blocks the C3d ligand by direct contact with its interaction site, and we have provided confirmatory evidence that the C3d binding site seen in its crystal structure exists in solution.  相似文献   

17.
When thrombin-mediated fibrin formation and tissue plasminogen activator (t-PA)-mediated fibrinolysis proceed in dynamic interaction, desA-(desB beta 1-42)-fragment X polymers are shown to be the predominant fibrin derivatives present during the rapid second phase of Glu1- and Lys78-plasminogen activation. To further investigate the effect of this intermediate, a method was developed for the production and purification of fibrinogen-derived desA-(desB beta 1-42)-fragment X, deprived of both COOH-terminal A alpha-chains, but still capable of thrombin-mediated polymerization. DesA-(desB beta 1-42)-fragment X polymer was compared to intact fibrin with regard to its stimulatory effect on Glu1-, Lys78-, and Val443-plasminogen activation, and its binding of Glu1- and Lys78-plasminogen. Pure fragment X polymer gave rise to a biphasic activation pattern like that of fibrin, demonstrating similar kinetics of rapid phase activation. The dissociation constant for the binding of plasminogen to the effector decreases by a factor of 14, and the stoichiometry increases by a factor of 2 upon plasmin-catalyzed cleavage of both native Glu1- to Lys78-plasminogen, and fibrin to fragment X polymer. We conclude that desA-fibrin protofibril formation is sufficient to initiate fibrin enhancement of t-PA-catalyzed plasminogen activation, and that optimal stimulation depends on further plasmin-mediated modification of the fibrin effector to desA-fragment X-related moieties. Optimal stimulation is dependent on the presence of the kringle 1-4 domains of plasminogen and probably results from altered and increased binding of both plasminogen and t-PA to the modified effector.  相似文献   

18.
In addition to crystallographic studies that determined antigen contact residues for monoclonal anti-fluorescein (Fl) antibody 4-4-20 (Ka = 2.5 x 10(10) M-1), primary structure comparisons revealed idiotypically cross-reactive monoclonal antibodies (mAbs) 9-40 (Ka = 4.4 x 10(7) M-1), 12-40 (Ka = 4.0 x 10(8) M-1), and 5-14 (Ka = 2.4 x 10(8) M-1) possessed identical Fl contact residues, with the exception of L34His for L34Arg. Site-specific mutagenesis of single chain antibody (SCA) 4-4-20 in which L34Arg was changed to L34His resulted in approximately 1000- and 3-fold decreases in binding affinity and Qmax (maximum quenching of bound Fl), respectively, which suggested that L34Arg was directly involved in increased binding affinity and fluorescence quenching. Therefore, substitution of Arg for His at residue L34 in mAbs 9-40, 12-40, and 5-14 should result in increased binding affinity and Qmax. To facilitate site-specific mutagenesis studies, single chain derivatives of mAbs 9-40, 12-40, and 5-14 were constructed. Following expression in Escherichia coli, characterization of the SCAs demonstrated that when compared with the respective parental mAb, the SCAs possessed identical binding affinities and similar Qmax and lambda max (absorption profiles of bound Fl) values. These results validated SCA 9-40, 12-40, and 5-14 for use in site-directed mutagenesis studies. Results of mutagenesis studies indicated that substitution of L34Arg into the active sites of 9-40, 12-40, and 5-14 was not enough to produce 4-4-20-like binding characteristics. Therefore, the following single chain mutants were constructed: 9-40L34Arg/L46Val, 12-40L34Arg/L46Val and 5-14L34Arg/L46Val, 9-40L34Arg/L46Val/H101Asp and 4-4-20H101Ala. Results demonstrated that these mutations were not able to render the mutant SCAs with increased binding affinity and fluorescence quenching values. Collectively, these results suggest that the combining sites of mAb 9-40, 12-40, and 5-14 may possess different active site structures than mAb 4-4-20.  相似文献   

19.
Fragments D1 and DD, plasmic degradation products of human fibrinogen and cross-linked fibrin, respectively, originate from the COOH-terminal domain of the parent molecule. Since a specific binding site for fibrin resides in the COOH-terminal region of the gamma chain, the primary structure of the two fragments was compared and their affinity for fibrin monomer measured. Fragments D1 and DD contained the same segments of the three fibrinogen chains, corresponding to the sequences alpha 105-206, beta 134-461, and gamma 63-411. Fragment DD had a double set of the same chain remnants. Fragments D1 and DD inhibited polymerization of fibrin monomer in a dose-dependent manner; 50% inhibition occurred at a molar ratio of fragment to monomer of 1:1 and 0.5:1, respectively. To prevent fibrin monomer polymerization and render it suitable for binding studies in the liquid phase, fibrinogen was decorated with Fab fragments isolated from rabbit antibodies to human fragment D1. Fibrinogen molecules decorated with 6 molecules of this Fab fragment did not clot after incubation with thrombin, and the decorated fibrin monomer could be used to measure binding of fragments D1 and DD in a homogeneous liquid phase. The data analyzed according to the Scatchard equation and a double-reciprocal plot gave a dissociation constant of 12 nM for fragment D1 and 38 nM for fragment DD. There were two binding sites/fibrin monomer molecule for each fragment. After denaturation in 5 M guanidine HCl, the inhibitory function on fibrin polymerization was irreversibly destroyed. Denatured fragments also lost binding affinity for immobilized fibrin monomer. The preservation of the native tertiary structure in both fragments was essential for the expression of polymerization sites in the structural D domain.  相似文献   

20.
We have generated a number of EBV-transformed B cell lines producing human mAb against human T cell leukemia virus type 1 (HTLV-1) from the peripheral blood B lymphocytes obtained from patients with HTLV-1-associated myelopathy/tropical spastic paraparesis. Various synthetic peptides corresponding to antigenic regions of HTLV-1 gag and env proteins were used for the screening of antibodies in ELISA. In our study, four IgG mAb to the gag p19 amino acids 100 to 130, and 5 IgG mAb to the env p46 amino acids 175 to 199 were characterized. An immunofluorescence assay showed that all of these mAb specifically bound to the surface of HTLV-1-bearing cell lines. Among these mAb, one anti-gp46 mAb, designated KE36-11, neutralized the infectivity of HTLV-1 as determined by both the inhibition of HTLV-1-induced syncytium formation and transformation assays in vitro. An antibody-binding assay using overlapping oligopeptides revealed that KE36-11 recognized a new epitope locating between the gp46 amino acid sequence 187-193 (Ala-Pro-Pro-Leu-Leu-Pro-His). Another anti-gp46 mAb, designated KE36-7, showed antibody-dependent cellular cytotoxicity against HTLV-1-bearing cell line. KE36-7 bound strongly to the 10-mer peptide-gp46 187-196, and weakly to peptides containing the gp46 amino acid sequence 191-196 (Leu-Pro-His-Ser-Asn-Leu). These two epitopes, which are associated with HTLV-1 neutralization and antibody-dependent cellular cytotoxicity, are thus the first epitopes identified in human HTLV-1 infection. It is possible that passive immunization of humans with these two human mAb are effective on the protection of HTLV-1 infection in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号