首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have demonstrated that ischemic neuronal death (apoptosis) of rat CA1 region of the hippocampus was prevented by infusing pituitary adenylate cyclase-activating polypeptide (PACAP) either intracerebroventricularly or intravenously. We have also demonstrated that the activity of mitogen-activated protein (MAP) kinase family members, including ERK (extracellular signal-regulated kinase), Jun N-terminal kinase (JNK)/stress-activated protein kinase (SAPK) and p38, was increased in the hippocampus within 1-6 h after brain ischemia. The molecular mechanisms underlying the PACAP anti-apoptotic effect were demonstrated in this study. Ischemic stress had a strong influence on MAP kinase family, especially on JNK/SAPK and p38. PACAP inhibited the activation of JNK/SAPK and p38 after ischemic stress, while ERK is not suppressed. These findings suggest that PACAP inhibits the JNK/SAPK and p38 signaling pathways, thereby protecting neurons against apoptosis.  相似文献   

2.
Mutations of ras are tumor-initiating events for many cell types, including thyrocytes. To explore early consequences after oncogenic Ras activation, we developed a doxycycline-inducible expression system in rat thyroid PCCL3 cells. Beginning 3-4 days after H-Ras(v12) expression, cells underwent apoptosis. The H-Ras(v12) effects on apoptosis were decreased by a mitogen-activated protein kinase kinase (MEK1) inhibitor and recapitulated by doxycycline-inducible expression of an activated MEK1 mutant (MEK1(S217E/S221E)). As reported elsewhere, acute expression of H-Ras(v12) also induces mitotic defects in PCCL3 cells through ERK (extracellular ligand-regulated kinase) activation, suggesting that apoptosis may be secondary to DNA damage. However, acute activation of SAPK/JNK (stress-activated protein kinase/Jun N-terminal kinase) through acute expression of Rac1(v12) also triggered apoptosis, without inducing large-scale genomic abnormalities. H-Ras(v12)-induced apoptosis was dependent on concomitant activation of cAMP by either TSH or forskolin, in a protein kinase A-independent manner. Thus, coactivation of cAMP-dependent pathways and ERK or JNK (either through H-Ras(v12), Rac1(v12), or MEK1(S217E/S221E)) is inconsistent with cell survival. The fate of thyrocytes within the first cell cycles after expression of oncogenic Ras is dependent on ambient TSH levels. If both cAMP and Ras signaling are simultaneously activated, most cells will die. Those that survive will eventually lose TSH responsiveness and/or inactivate the apoptotic cascade through secondary events, thus enabling clonal expansion.  相似文献   

3.
We have shown previously that nerve growth factor (NGF) down-regulates adenosine A(2A) receptor (A(2A)AR) mRNA in PC12 cells. To define cellular mechanisms that modulate A(2A)AR expression, A(2A)AR mRNA and protein levels were examined in three PC12 sublines: i) PC12nnr5 cells, which lack the high affinity NGF receptor TrkA, ii) srcDN2 cells, which overexpress kinase-defective Src, and iii) 17.26 cells, which overexpress a dominant-inhibitory Ras. In the absence of functional TrkA, Src, or Ras, NGF-induced down-regulation of A(2A)AR mRNA and protein was significantly impaired. However, regulation of A(2A)AR expression was reconstituted in PC12nnr5 cells stably transfected with TrkA. Whereas NGF stimulated the mitogen-activated protein kinases p38, extracellular regulated kinase 1 and 2 (ERK1/ERK2), and stress-activated protein kinase/c-Jun NH(2)-terminal kinase (SAPK/JNK) in PC12 cells, these kinases were activated only partially or not at all in srcDN2 and 17.26 cells. Inhibiting ERK1/ERK2 with PD98059 or inhibiting SAPK/JNK by transfecting cells with a dominant-negative SAPKbeta/JNK3 mutant partially blocked NGF-induced down-regulation of A(2A)AR expression in PC12 cells. In contrast, inhibiting p38 with SB203580 had no effect on the regulation of A(2A)AR mRNA and protein levels. Treating SAPKbeta/JNK3 mutant-transfected PC12 cells with PD98059 completely abolished the NGF-induced decrease in A(2A)AR mRNA and protein levels. These results reveal a role for ERK1/ERK2 and SAPK/JNK in regulating A(2A)AR expression.  相似文献   

4.
The receptor for granulocyte colony-stimulating factor (G-CSF) can mediate differentiation and proliferation of hemopoietic cells. A proliferative signal is associated with activation of the ERK mitogen-activated protein kinase (MAPK) pathway. To determine whether other MAPK pathways are activated by G-CSF signalling, we have investigated activation of JNK/SAPK in cells proliferating in response to G-CSF. Here we show that G-CSF and interleukin-3 activate JNK/SAPK in two hemopoietic cell lines. The region of the G-CSF receptor required for G-CSF-induced JNK/SAPK activation is located within the C-terminal 68 amino acids of the cytoplasmic domain, which contains Tyr 763. Mutation of Tyr 763 to Phe completely blocks JNK/SAPK activation. However, the C-terminal 68 amino acids are not required for ERK2 activation. We show that activation of JNK/SAPK, like that of ERK2, is dependent on Ras but that higher levels of Ras-GTP are associated with activation of JNK/SAPK than with activation of ERK2. Two separate functional regions of the G-CSF receptor contribute to activation of Ras. The Y763F mutation reduces G-CSF-induced Ras activation from 30 to 35% Ras-GTP to 10 to 13% Ras-GTP. Low levels of Ras activation (10 to 13% Ras-GTP), which are sufficient for ERK2 activation, require only the 100 membrane-proximal amino acids. High levels of Ras-GTP provided by expression of oncogenic Ras are not sufficient to activate JNK/SAPK. An additional signal, also mediated by Tyr 763, is required for activation of JNK/SAPK.  相似文献   

5.
Promotion of photodynamic therapy-induced apoptosis by stress kinases.   总被引:3,自引:0,他引:3  
Photodynamic therapy (PDT), a cancer treatment that employs a photosensitizer and visible light, induces apoptosis in murine LY-R leukemic lymphoblasts and in CHO cells, but the rate and extent of apoptosis are much greater in LY-R cells. Three MAPK family members, ERK1/ERK2, SAPK/JNK, and p38/HOG, are important intermediates in signal transduction pathways. To ascertain whether activation of one or more MAPKs could mediate PDT-induced apoptosis, Western blot analysis has been performed on the proteins of LY-R and CHO cells at various times following lethal (90 - 99% cell kill) doses of PDT photosensitized by the phthalocyanine Pc 4. The blots were probed with antibodies to each of the proteins as well as antibodies specific for the activated (phosphorylated) forms of each kinase. Of the three MAPK types, only the p46 and p54 SAPK/JNKs were found to be activated by PDT in LY-R cells, with a maximum approximately threefold increase in the content of the phosphorylated forms reached in 30 - 60 min. An even larger relative activation was observed in CHO cells. PDT did not affect ERK and p38/HOG activation in LY-R cells. In the case of CHO cells, however, ERK2 was slightly activated at 5 min post-PDT, then declined, and p38/HOG was strongly activated from 5 to 60 min post-PDT. A specific inhibitor (PD98059) of MEK1, the kinase that activates ERK, had little or no effect on PDT-induced apoptosis in either LY-R or CHO cells. In contrast, a specific inhibitor of p38/HOG (SB202190) blocked PDT-induced apoptosis in LY-R cells with a lesser effect in CHO cells. The results suggest that both the SAPK and p38/HOG cascades can be stimulated by PDT and that the latter participates in both rapid and slow PDT-induced apoptosis. Furthermore, the high level of constitutively active p38/HOG in LY-R cells may poise those cells for rapid activation of apoptosis following PDT.  相似文献   

6.
Apoptosis was induced in human glioma cell lines by exposure to 100 nM calphostin C, a specific inhibitor of protein kinase C. Calphostin C-induced apoptosis was associated with synchronous down-regulation of Bcl-2 and Bcl-xL as well as activation of caspase-3 but not caspase-1. The exposure to calphostin C led to activation of stress-activated protein kinase/c-Jun NH2-terminal kinase (SAPK/JNK) and p38 kinase and concurrent inhibition of extracellular signal-regulated kinase (ERK). Upstream of ERK, Shc was shown to be activated, but its downstream Raf1 and ERK were inhibited. The pretreatment with acetyl-Tyr-Val-Ala-Asp-aldehyde, a relatively selective inhibitor of caspase-3, or benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (z-VAD.fmk), a broad spectrum caspase inhibitor, similarly inhibited calphostin C-induced activation of SAPK/JNK and p38 kinase as well as apoptotic nuclear damages (chromatin condensation and DNA fragmentation) and cell shrinkage, suggesting that caspase-3 functions upstream of SAPK/JNK and p38 kinase, but did not block calphostin C-induced surface blebbing and cell death. On the other hand, the inhibition of SAPK/JNK by transfection of dominant negative SAPK/JNK and that of p38 kinase by SB203580 induced similar effects on the calphostin C-induced apoptotic phenotypes and cell death as did z-VAD.fmk and acetyl-Tyr-Val-Ala-Asp-aldehyde, but the calphostin C-induced PARP cleavage was not changed, suggesting that SAPK/JNK and p38 kinase are involved in the DNA fragmentation pathway downstream of caspase-3. The present findings suggest, therefore, that the activation of SAPK/JNK and p38 kinase is dispensable for calphostin C-mediated and z-VAD.fmk-resistant cell death.  相似文献   

7.
Nitric oxide (NO) induces apoptotic cell death in murine RAW 264.7 macrophages. To elucidate the inhibitory effects of protein kinase C (PKC) on NO-induced apoptosis, we generated clones of RAW 264.7 cells that overexpress one of the PKC isoforms and explored the possible interactions between PKC and three structurally related mitogen-activated protein (MAP) kinases in NO actions. Treatment of RAW 264.7 cells with sodium nitroprusside (SNP), a NO-generating agent, activated both c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) and p38 kinase, but did not activate extracellular signal-regulated kinase (ERK)-1 and ERK-2. In addition, SNP-induced apoptosis was slightly blocked by the selective p38 kinase inhibitor (SB203580) but not by the MAP/ERK1 kinase inhibitor (PD098059). PKC transfectants (PKC-beta II, -delta, and -eta) showed substantial protection from cell death induced by the exposure to NO donors such as SNP and S-nitrosoglutathione (GSNO). In contrast, in RAW 264.7 parent or in empty vector-transformed cells, these NO donors induced internucleosomal DNA cleavage. Moreover, overexpression of PKC isoforms significantly suppressed SNP-induced JNK/SAPK and p38 kinase activation, but did not affect ERK-1 and -2. We also explored the involvement of CPP32-like protease in the NO-induced apoptosis. Inhibition of CPP32-like protease prevented apoptosis in RAW 264.7 parent cells. In addition, SNP dramatically activated CPP32 in the parent or in empty vector-transformed cells, while slightly activated CPP32 in PKC transfectants. Therefore, we conclude that PKC protects NO-induced apoptotic cell death, presumably nullifying the NO-mediated activation of JNK/SAPK, p38 kinase, and CPP32-like protease in RAW 264.7 macrophages.  相似文献   

8.
A group of dual specificity protein phosphatases negatively regulates members of the mitogen-activated protein kinase (MAPK) superfamily, which consists of three major subfamilies, MAPK/extracellular signal-regulated kinase (ERK), stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK), and p38. Nine members of this group of dual specificity phosphatases have previously been cloned. They show distinct substrate specificities for MAPKs, different tissue distribution and subcellular localization, and different modes of inducibility of their expression by extracellular stimuli. Here we have cloned and characterized a novel dual specificity phosphatase, which we have designated MKP-5. MKP-5 is a protein of 482 amino acids with a calculated molecular mass of 52.6 kDa and consists of 150 N-terminal amino acids of unknown function, two Cdc25 homology 2 regions in the middle, and a C-terminal catalytic domain. MKP-5 binds to p38 and SAPK/JNK, but not to MAPK/ERK, and inactivates p38 and SAPK/JNK, but not MAPK/ERK. p38 is a preferred substrate. The subcellular localization of MKP-5 is unique; it is present evenly in both the cytoplasm and the nucleus. MKP-5 mRNA is widely expressed in various tissues and organs, and its expression in cultured cells is elevated by stress stimuli. These results suggest that MKP-5 is a novel type of dual specificity phosphatase specific for p38 and SAPK/JNK.  相似文献   

9.
Among the mechanisms by which the Ras oncogene induces cellular transformation, Ras activates the mitogen-activated protein kinase (MAPK or ERK) cascade and a related cascade leading to activation of Jun kinase (JNK or SAPK). JNK is additionally regulated by the Ras-related G proteins Rac and Cdc42. Ras also regulates the actin cytoskeleton through an incompletely elucidated Rac-dependent mechanism. A candidate for the physiological effector for both JNK and actin regulation by Rac and Cdc42 is the serine/threonine kinase Pak (p65pak). We show here that expression of a catalytically inactive mutant Pak, Pak1(R299), inhibits Ras transformation of Rat-1 fibroblasts but not of NIH 3T3 cells. Typically, 90 to 95% fewer transformed colonies were observed in cotransfection assays with Rat-1 cells. Pak1(R299) did not inhibit transformation by the Raf oncogene, indicating that inhibition was specific for Ras. Furthermore, Rat-1 cell lines expressing Pak1(R299) were highly resistant to Ras transformation, while cells expressing wild-type Pak1 were efficiently transformed by Ras. Pak1(L83,L86,R299), a mutant that fails to bind either Rac or Cdc42, also inhibited Ras transformation. Rac and Ras activation of JNK was inhibited by Pak1(R299) but not by Pak1(L83,L86,R299). Ras activation of ERK was inhibited by both Pak1(R299) and Pak1(L83,L86,R299), while neither mutant inhibited Raf activation of ERK. These results suggest that Pak1 interacts with components essential for Ras transformation and that inhibition can be uncoupled from JNK but not ERK signaling.  相似文献   

10.
Previous studies demonstrated that in vitro the protein kinase TAO2 activates MAP/ERK kinases (MEKs) 3, 4, and 6 toward their substrates p38 MAP kinase and c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK). In this study, we examined the ability of TAO2 to activate stress-sensitive MAP kinase pathways in cells and the relationship between activation of TAO2 and potential downstream pathways. Over-expression of TAO2 activated endogenous JNK/SAPK and p38 but not ERK1/2. Cotransfection experiments suggested that TAO2 selectively activates MEK3 and MEK6 but not MEKs 1, 4, or 7. Coimmunoprecipitation demonstrated that endogenous TAO2 specifically associates with MEK3 and MEK6 providing one mechanism for preferential recognition of MEKs upstream of p38. Sorbitol, and to a lesser extent, sodium chloride, Taxol, and nocodazole increased TAO2 activity toward itself and kinase-dead MEKs 3 and 6. Activation of endogenous TAO2 during differentiation of C2C12 myoblasts paralleled activation of p38 but not JNK/SAPK, consistent with the idea that TAO2 is a physiological regulator of p38 under certain circumstances.  相似文献   

11.
12.
The mitogen-activated protein (MAP) kinases are a family of serine/threonine kinases that are regulated by distinct extracellular stimuli. The currently known members include extracellular signal-regulated protein kinase 1 (ERK1), ERK2, the c-Jun N-terminal kinase/stress-activated protein kinases (JNK/SAPKs), and p38 MAP kinases. We find that overexpression of the Ste20-related enzymes p21-activated kinase 1 (PAK1) and PAK2 in 293 cells is sufficient to activate JNK/SAPK and to a lesser extent p38 MAP kinase but not ERK2. Rat MAP/ERK kinase kinase 1 can stimulate the activity of each of these MAP kinases. Although neither activated Rac nor the PAKs stimulate ERK2 activity, overexpression of either dominant negative Rac2 or the N-terminal regulatory domain of PAK1 inhibits Ras-mediated activation of ERK2, suggesting a permissive role for Rac in the control of the ERK pathway. Furthermore, constitutively active Rac2, Cdc42hs, and RhoA synergize with an activated form of Raf to increase ERK2 activity. These findings reveal a previously unrecognized connection between Rho family small G proteins and the ERK pathway.  相似文献   

13.
The antineoplastic agent paclitaxel (TaxolTM), a microtubule stabilizing agent, is known to arrest cells at the G2/M phase of the cell cycle and induce apoptosis. We and others have recently demonstrated that paclitaxel also activates the c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) signal transduction pathway in various human cell types, however, no clear role has been established for JNK/SAPK in paclitaxel-induced apoptosis. To further examine the role of JNK/SAPK signaling cascades in apoptosis resulting from microtubular dysfunction induced by paclitaxel, we have coexpressed dominant negative (dn) mutants of signaling proteins of the JNK/SAPK pathway (Ras, ASK1, Rac, JNKK, and JNK) in human ovarian cancer cells with a selectable marker to analyze the apoptotic characteristics of cells expressing dn vectors following exposure to paclitaxel. Expression of these dn signaling proteins had no effect on Bcl-2 phosphorylation, yet inhibited apoptotic changes induced by paclitaxel up to 16 h after treatment. Coexpression of these dn signaling proteins had no protective effect after 48 h of paclitaxel treatment. Our data indicate that: (i) activated JNK/SAPK acts upstream of membrane changes and caspase-3 activation in paclitaxel-initiated apoptotic pathways, independently of cell cycle stage, (ii) activated JNK/SAPK is not responsible for paclitaxel-induced phosphorylation of Bcl-2, and (iii) apoptosis resulting from microtubule damage may comprise multiple mechanisms, including a JNK/SAPK-dependent early phase and a JNK/SAPK-independent late phase.  相似文献   

14.
Summary Among the three major mitogen-activated protein kinase (MAPK) cascades—the extracellular signal regulated kinase (ERK) pathway, the c-JUN N-terminal/stress-activated protein kinase (JNK/SAPK) pathway, and the reactivating kinase (p38) pathway—retinoic acid selectively utilizes ERK but not JNK/SAPK or p38 when inducing myeloid differentiation of HL-60 human myeloblastic leukemia cells. Retinoic acid is known to active ERK2. The present data show that the activation is selective for this MAPK pathway. JNK/SAPK or p38 are not activated by retinoic acid. Presumably because it activates relevant signaling pathways including MAPK, the polyoma middle T antigen, as well as certain transformation defective mutants thereof, is known to promote retinoic acid-induced differentiation, although the mechanism of action is not well understood. The present results show that consistent with the selective involvement of ERK2, ectopic expression of either the polyoma middle T antigen or its dl23 mutant, which is defective for PLCγ and PI-3 kinase activation, or the Δ205 mutant, which in addition is also weakened for activation of src-like kinases, caused no enhanced JNK/SAPK or p38 kinase activity that promoted the effects of retinoic acid. However, all three of these polyoma antigens are known to enhance ERK2 activation and promote differentiation induced by retinoic acid. Polyoma-activated MAPK signaling relevant to retinoic acid-induced differentiation is thus restricted to ERK2 and does not involve JNK/SAPK or p38. Taken together, the data indicate that among the three parallel MAPK pathways, retinoic acid-induced HL-60 myeloid differentiation selectively depends on activating ERK but not the other two MAPK pathways, JNK/SAPK or p38, with no apparent cross talk between pathways. Furthermore, the striking ability of polyoma middle T antigens to promote retinoic acid-induced differentiation appears to utilize ERK, but not JNK/SPK or p38 signaling.  相似文献   

15.
Mammalian members related to Saccharomyces cerevisiae serine/threonine kinase STE20 can be divided into two subfamilies based on their structure and function. The PAK subfamily is characterized by an N-terminal p21-binding domain (also known as CRIB domain), a C-terminal kinase domain, and is regulated by the small GTP-binding proteins Rac1 and Cdc42Hs. The second group is represented by the GCK-like members, which contain an N-terminal catalytic domain and lack the p21-binding domain. Some of them have been demonstrated to induce c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) cascade, while others have been shown to be activated by a subset of stress conditions or apoptotic agents, although little is known about their specific function. Here, we have identified a novel human STE20-related serine/threonine kinase, belonging to the GCK-like subfamily. This kinase does not induce the JNK/SAPK pathway, but, instead, inhibits the basal activity of JNK/SAPK, and diminishes its activation in response to human epidermal growth factor (EGF). Therefore, we designated this molecule JIK for JNK/SAPK-inhibitory kinase. The inhibition of JNK/SAPK signaling pathway by JIK was found to occur between the EGF receptor and the small GTP-binding proteins Rac1 and Cdc42Hs. In contrast, JIK does not activate nor does it inhibit ERK2, ERK6, p38, or ERK5. Furthermore, JIK kinase activity is not modulated by any exogenous stimuli, but, interestingly, it is dramatically decreased upon EGF receptor activation. Thus, JIK might represent the first member of the STE20 kinase family whose activity can be negatively regulated by tyrosine kinase receptors, and whose downstream targets inhibit, rather than enhance, JNK/SAPK activation.  相似文献   

16.
c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) is involved in the regulation of various cellular functions including cell cycle, proliferation, apoptosis. However, whether JNK/SAPK directly regulates the angiogenesis of human umbilical vein endothelial cells (HUVECs) induced by vascular endothelial growth factor A (VEGFA) has not yet been fully elucidated. Our present study firstly demonstrated VEGFA-induced angiogenic responses including the increase of cell viability, migration, and tube formation with a concentration-dependent manner in HUVECs. Further results showed that VEGFA induced the activation of JNK/SAPK, p38 kinase and extracellular signal-regulated kinases 1 and 2 (ERK1/2), while JNK/SAPK inhibitor SP600125 and specific siRNA both blocked all those angiogenic effects induced by VEGFA. Furthermore, VEGFA induced the phosphorylation of ASK1, SEK1/MKK4, MKK7, and c-Jun, which are upstream or downstream signals of JNK/SAPK. In addition, in vivo matrigel plug assay further showed that SP600125 inhibited VEGFA-induced angiogenesis. Further results showed that SP600125 and JNK/SAPK siRNA decreased VEGFA-induced VEGFR2 (Flk-1/KDR) sustained phosphorylation in HUVECs. Taken together, all these results demonstrate that JNK/SAPK regulates VEGFA-induced VEGFR2 sustained phosphorylation, which plays important roles in VEGFA-induced angiogenesis in HUVECs.  相似文献   

17.
Activation of the stress-activated protein kinase (SAPK/JNK) by genotoxic agents is necessary for induction of apoptosis. We report here that ionizing radiation ionizing radiation exposure induces translocation of SAPK to mitochondria and association of SAPK with the anti-apoptotic Bcl-x(L) protein. SAPK phosphorylates Bcl-x(L) on threonine 47 (Thr-47) and threonine 115 (Thr-115) in vitro and in vivo. In contrast to wild-type Bcl-x(L), a mutant Bcl-x(L) with the two threonines substituted by alanines (Ala-47, Ala-115) is a more potent inhibitor of ionizing radiation-induced apoptosis. These findings indicate that translocation of SAPK to mitochondria is functionally important for interactions with Bcl-x(L) in the apoptotic response to genotoxic stress.  相似文献   

18.
MAP kinase pathways comprise a group of parallel protein phosphorylation cascades, which are involved in signaling triggered by a variety of stimuli. Previous findings suggested that the ERK and the JNK pathways have opposing roles in regulating proliferation and survival or apoptosis and that apoptosis can be promoted by inhibiting the ERK pathway or by activation of the JNK pathway. In order to test this hypothesis and explore whether it can be exploited as a strategy for killing human cancer cells, we used gene transfer experiments with a range of cancer cell lines. We expressed the catalytic fragment of human MEKK1 to activate JNK and the Ras-binding domain (RBD) of Raf-1 to inhibit the Ras-ERK pathway. In addition, we designed several RBD-MEKK1 fusion proteins aiming to simultaneously activate the JNK and block the ERK pathway. We found that the MEKK1 proteins as well as the RBD alone could reduce colony formation in all cell lines. The survival time of MEKK1-expressing cells depended on the cell line. In HeLa cells, survival could be prolonged by inhibition of caspases but not by coexpression of the anti-apoptotic protein Bcl-2. Due to a lower kinase activity the RBD-MEKK1 fusion proteins were less effective in apoptosis induction than the MEKK1 kinase domain alone. Using mutant forms of Ras and Raf-1 we could show that the reduced kinase activity of RBD-MEKK1 fusion proteins was caused by binding to the Ras protein. The expression of lethal doses of MEKK1 resulted in a strong activation of all three major MAP kinase families JNK, ERK, and p38. Blocking these pathways either by coexpressing a dominant negative form of MKK4 or with inhibitors of MEK or p38 failed to inhibit apoptosis. This suggests that MEKK1 induces apoptosis by causing a general deregulation of MAP kinase signaling rather than by the activation of a single pathway.  相似文献   

19.
Ten isoforms of c-jun N-terminal kinase (JNK) have been described that arise by differential mRNA splicing of three genes. In that the relative expression and function of these different JNK proteins in human monocytic cells is not known, we have examined the JNK isoforms in THP-1 monocyte/macrophage cells. Differentiation of THP-1 cells by exposure to 10(-8) M PMA for 42-48 h enhances cellular responses to LPS, including enhanced activation of total JNK activity and increased phosphorylation of p54 JNK as well as p46 JNK. Examination of JNK proteins on Western blots reveals a predominance of p46 JNK1 and p54 JNK2 proteins. Clearing of lysates by immunoprecipitation of JNK1(99% effective) removes 46% of the JNK enzymatic activity (p < 0.01), whereas clearing of JNK1 plus JNK2 (70% effective) depletes the sample of 72% of the JNK activity (p < 0.01). Further analysis, undertaken with real-time RT-PCR, revealed that 98% of the JNK messages code for three isoforms: JNK1beta1, JNK2alpha1, and JNK2alpha2. The p54 JNK that is phosphorylated in LPS-stimulated, PMA-differentiated THP-1 cells is most likely JNK2alpha2 because 97% of the p54 JNK-encoding messages code for JNK2alpha2. By analogous reasoning, the p46 JNKs that are not heavily phosphorylated, but account for approximately half of the N-terminal c-jun kinase enzymatic activity, are most likely either JNK1beta1 or JNK2alpha1 because they account for 98% of the messages that can code for 46kDa JNKS:  相似文献   

20.
Vascular endothelial growth factor (VEGF), an endothelial cell-specific mitogen, promotes endothelial cell survival and angiogenesis. We recently showed that VEGF can support the growth of human dermal microvascular endothelial cells (HDMEC) and human umbilical vein endothelial cells in serum-free medium. Reasoning that VEGF might be modulating apoptotic signal transduction pathways, we examined mechanisms involved in the anti-apoptotic effect of VEGF on starvation- and ceramide-induced apoptosis in HDMEC. We observed that VEGF ameliorated the time-dependent increase in apoptosis, as demonstrated by morphologic observations, TUNEL assay, and DNA fragmentation. On the other hand, basic fibroblast growth factor only partially prevented apoptosis in serum-starved HDMEC; platelet-derived growth factor-BB was completely ineffective. VEGF activated the phosphorylation of extracellular signal regulated kinase (ERK)1 (p44 mitogen-activated protein kinase; MAPK) and ERK2 (p42 MAPK) in a time- and concentration-dependent manner. Both the VEGF-induced activation and its anti-apoptotic effect were prevented by the specific MAPK/ERK inhibitor PD98059. The presence of VEGF also inhibited the sustained activation of stress-activated protein kinase/c-jun-NH2-kinase (SAPK/JNK) caused by serum starvation and ceramide treatment. Activation of the MAPK pathway together with inhibition of SAPK/JNK activity by VEGF appears to be a key event in determining whether an endothelial cell survives or undergoes programmed cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号