首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The participation of different afferent systems in organization of internal reference frame was studied. For this was chosen the task of visual comparison that executed in different experimental conditions: in upright standing, with inclined body or head in frontal plane and availability or non-availability visual information about external environment. Results showed that dominant orientation of referent stimulus (minimal value of mean error and minimal variability of responses) was connected with body position, mainly head position but not with gravity and visual vertical even when visual environment was available. It means that for creating the internal representing of vertical CNS mainly uses proprioceptive information about longitudinal axis of body.  相似文献   

2.
The roles of different afferent systems in the organization of an internal reference frame was studied. The task of visual comparison was performed by subjects under different experimental conditions: in the upright standing position and with the body or head inclined in the frontal plane and with the visual information about an external environment available or not available. It was shown that the dominant orientation of a referent stimulus (the minimum value of the mean error in the reproduction of the stimulus and the minimal variability of the error) was correlated with the body position, mainly the position of the head, more than with the gravitational or visual vertical, even when the visual information was available. This means that the proprioceptive information about the longitudinal axis of body, rather than gravity, is mainly used by the central nervous system for creating the internal representing of vertical during standing.  相似文献   

3.
Preserving upright stance requires central integration of the sensory systems and appropriate motor output from the neuromuscular system to keep the centre of pressure (COP) within the base of support. Unilateral peripheral vestibular disorder (UPVD) causes diminished stance stability. The aim of this study was to determine the limits of stability and to examine the contribution of multiple sensory systems to upright standing in UPVD patients and healthy subjects. We hypothesized that closure of the eyes and Achilles tendon vibration during upright stance will augment the postural sway in UPVD patients more than in healthy subjects. Seventeen UPVD patients and 17 healthy subjects performed six tasks on a force plate: forwards and backwards leaning, to determine limits of stability, and upright standing with and without Achilles tendon vibration, each with eyes open and closed (with blackout glasses). The COP displacement of the patients was significantly greater in the vibration tasks than the controls and came closer to the posterior base of support boundary than the controls in all tasks. Achilles tendon vibration led to a distinctly more backward sway in both subject groups. Five of the patients could not complete the eyes closed with vibration task. Due to the greater reduction in stance stability when the proprioceptive, compared with the visual, sensory system was disturbed, we suggest that proprioception may be more important for maintaining upright stance than vision. UPVD patients, in particular, showed more difficulty in controlling postural stability in the posterior direction with visual and proprioceptive sensory disturbance.  相似文献   

4.
The influence of light passive contact of the forearm with a pliable external object (flexible plate) on the maintenance of upright posture was studied in healthy subjects in several conditions, with the eyes closed and on immersion in a virtual visual environment (VVE). The visual environment was either stable or unstable as a result of a synphase (SP) or antiphase (AP) association between the environment and body sway. The posture maintenance analysis focused on estimating the amplitude and frequency characteristics of two elementary variables, which were calculated from the foot center of pressure (CoP) trajectories in the mediolateral and anteroposterior directions. The variables were trajectory of the vertical projection of the center of gravity (variable CG) and difference between the CoP and CG trajectories (variable CoP–CG). In both the absence and presence of passive tactile contact, the root mean square (RMS) values of the oscillation spectra of the two variables were the lowest in the stable visual environment and in the case of the antiphase association of the environment with body sways and the highest in the cases of the synphase association and standing with the eyes closed. Passive contact decreased body sways in both directions, and the RMSs of the spectra of the two variables decreased in all visual conditions. A greater decrease in RMS was observed for the CG variable. Body sways changed not only in amplitude, but also in frequency. Tactile contact increased the median frequencies (MFs) of the CG variable spectra calculated from the anteroposterior and mediolateral body sways. In contrast, a significant increase in MFs calculated for the CoP–CG variable was observed only for anteroposterior body sways. The results showed that passive contact of a forearm with a pliable external object, which does not provide a mechanical support for the subject, significantly improves the maintenance of the upright posture even in an unstable visual environment.  相似文献   

5.
Information about head orientation, position, and movement with respect to the trunk relies on the visual, vestibular, extensive muscular, and articular proprioceptive system of the neck. Various factors can affect proprioception since it is the function of afferent integration, and tuning of muscular and articular receptors. Pain, muscle fatigue, and joint position have been shown to affect proprioceptive capacity. Thus, it can be speculated that changes in body posture can alter the neck proprioception. This study was undertaken to investigate the effect of body posture on cervicocephalic kinesthetic sense in healthy subjects. Cervicocephalic kinesthetic sensibility was measured by the kinesthetic sensibility test in healthy young adults while in (a) habitual slouched sitting position with arms hanging by the side (SS), (b) habitual slouched sitting position with arms unloaded (supported) (SS-AS), and (c) upright sitting position with arms hanging by the side (US) during maximum and 30 degree right, left rotations, flexion, and extension. Thirty healthy male adults (mean age 27.83; SD 3.41) volunteered for this study. The least mean error was found for the SS-AS position (0.48; SD 0.24), followed by SS (0.60; SD 0.43) and US (0.96; SD 0.71), respectively. For all test conditions, there was significant difference in mean absolute error while head repositioning from maximum and 30 degree rotation during SS and SS-AS positions (p?相似文献   

6.
To achieve human upright posture (UP) and avoid falls, the central nervous system processes visual, vestibular, and proprioceptive information to activate the appropriate muscles to accelerate or decelerate the body’s center of mass. In this process, sensory-motor (SM) latencies and muscular deficits, even in healthy older adults, may cause falls. This condition is worse for people with chronic neuromuscular deficits (stroke survivors, patients with multiple sclerosis or Parkinson’s disease). One therapeutic approach is to recover or improve quiet UP by utilizing a balance board (BB) (a rotating surface with a tunable stiffness and time delay), where a patient attempts to maintain UP while task difficulty is manipulated. While BBs are commonly used, it is unclear how UP is maintained or how changes in system parameters such as SM latencies and BB time delay affect UP stability. To understand these questions, it is important that mathematical models be developed with enough degrees-of-freedom to capture the many responses evoked during the maintenance of UP on a BB. This paper presents an ankle-hip model of balance on a BB, which is used to study the combined effect of SM latencies and active muscular stiffness of the ankle and hip joints, and the BB stiffness and time delay on UP stability. The analysis predicts that people with proprioceptive, visual, vestibular loss, or increased SM latencies may show either leaning postures or larger body-sway. The results show that the BB time delay and the visual and vestibular feedback have the largest impact on UP stability.  相似文献   

7.
重力是体位改变过程中最基本的生物力学刺激因素.血流压力是表征心血管功能状态的一个基本指标.目前,体位改变影响心血管系统的确切内部机制尚不清楚.为此,采用在流体和固体方程中分别引入体力项的方法,建立一个基于血流动力学概念的三维流固耦合数学模型,用以研究体位改变,确切量化重力对血流压力的影响.通过数值计算,得到以下结果.水平卧位条件下:a.单一血管中血流压力由无重力影响的轴对称二维分布变为重力影响下的三维不对称分布;b.随着进出口压差由小变大,重力对压力分布和极值的影响由大变小,当压差值分别达到10 665.6 Pa(80 mmHg)和2 666.4 Pa(20 mmHg)时,重力的影响就不再随进出口压差增大而变化;对三维单一流体,重力影响的总体趋势类似.对正、倒直立位,压力均为二维轴对称分布,其重力影响强度约为水平卧位的2倍以上.结果表明:基于血流动力学概念,引入体力项,建立三维流固耦合模型为研究体位改变提供了一种新思路,重力对单一血管中血流压力分布和大小的影响因体位不同而不同,并与进出口压差密切相关,提示,若血管进出口压差较小,忽略重力影响,不考虑体位改变,以二维轴对称模型来研究血管中血流状态,须谨慎解释所得结果.  相似文献   

8.
A novel kinematics-based approach coupled with a non-linear finite element model was used to investigate the effect of changes in the load position and posture on muscle activity, internal loads and stability margin of the human spine in upright standing postures. In addition to 397 N gravity, external loads of 195 and 380 N were considered at different lever arms and heights. Muscle forces, internal loads and stability margin substantially increased as loads displaced anteriorly away from the body. Under same load magnitude and location, adopting a kyphotic posture as compared with a lordotic one increased muscle forces, internal loads and stability margin. An increase in the height of a load held at a fixed lever arm substantially diminished system stability thus requiring additional muscle activations to maintain the same margin of stability. Results suggest the importance of the load position and lumbar posture in spinal biomechanics during various manual material handling operations.  相似文献   

9.
Up-down asymmetry of vertical optokinetic nystagmus (OKN) has been attributed to a potential effect of gravity. This suggestion has been supported by some investigations in microgravity where a reverse of up-down asymmetry (downward OKN greater than upward OKN) was found. In joint Bulgarian-Russian space experiment "Labyrinth", the part "Optokinez" was devoted to central OKN and its gravity dependence. We aimed at answering questions: 1) Was central optokinetic nystagmus gravity dependent, in particular vertical OKN? If it was: 2) What happened with up-down asymmetry in adaptation period to weightlessness and re-adaptation period to gravity. Furthermore, in our recent study (3) on upright standing humans we found a consistent downward prevalence in central vertical OKN. Thus, a new question arises: What determines the direction of up-down OKN asymmetry?  相似文献   

10.
A novel kinematics-based approach coupled with a non-linear finite element model was used to investigate the effect of changes in the load position and posture on muscle activity, internal loads and stability margin of the human spine in upright standing postures. In addition to 397 N gravity, external loads of 195 and 380 N were considered at different lever arms and heights. Muscle forces, internal loads and stability margin substantially increased as loads displaced anteriorly away from the body. Under same load magnitude and location, adopting a kyphotic posture as compared with a lordotic one increased muscle forces, internal loads and stability margin. An increase in the height of a load held at a fixed lever arm substantially diminished system stability thus requiring additional muscle activations to maintain the same margin of stability. Results suggest the importance of the load position and lumbar posture in spinal biomechanics during various manual material handling operations.  相似文献   

11.
The effectivity of the compensatory role of visual biofeedback in cases of decreased stability of upright posture has been analysed. The deterioration of stance was modelled by a subject standing on a soft surface and with additional weight load on the body. The influence of visual biofeedback was positive only for the compensation of decreased stability of upright posture caused by artificially increased body weight of the subject. The compensatory effectivity of visual biofeedback in stabilization of upright posture during stance on a soft surface was practically negligible. The results have shown that effective compensation of the destabilizing effect by visual biofeedback in human upright posture was possible only when the activity and efficiency of efferent-action part of the postural system remained unchanged.  相似文献   

12.
The neuromuscular system used to stabilize upright posture in humans is a nonlinear dynamical system with time delays. The analysis of this system is important for improving balance and for early diagnosis of neuromuscular disease. In this work, we study the dynamic coupling between the neuromuscular system and a balance board—an unstable platform often used to improve balance in young athletes, and older or neurologically impaired patients. Using a simple inverted pendulum model of human posture on a balance board, we describe a surprisingly broad range of divergent and oscillatory CoP/CoM responses associated with instabilities of the upright equilibrium. The analysis predicts that a variety of sudden changes in the stability of upright postural equilibrium occurs with slow continuous deterioration in balance board stiffness, neuromuscular gain, and time delay associated with the changes in proprioceptive/vestibular/visual-neuromuscular feedback. The analysis also provides deeper insight into changes in the control of posture that enable stable upright posture on otherwise unstable platforms.  相似文献   

13.
The hypothesis was put forward that, along with the regulation of mass center projection, the system of upright posture control stabilizes the deviation of pressure center from the position of the mass center projection. The regularities in the behavior of the trajectories of pressure center and mass center projection were analysed. Experimental evidence was obtained supporting the validity of the hypothesis. The structure of the control system that corresponds to the new understanding of the variables being regulated during the maintenance of vertical posture was considered.  相似文献   

14.
The EEG spectral-coherence parameters were analyzed in 10 healthy individuals (mean age, 22 ± 0.67 years) at different steps of verticalization, from the lying position to the sitting and standing positions. The maximal changes in all EEG parameters were revealed when the upright posture was maintained in the absence of visual control. Under these conditions, a power increase for the fast EEG components (the ??- and ??-bands) was observed, as was an additional increase when the conditions of maintaining the upright posture were complicated. According to the results of the EEG??s coherent analysis, human verticalization revealed a specific increase for most of the EEG rhythm ranges in the right hemisphere, especially in the frontocentral and occipitoparietal regions, as well as for the interhemispheric coherences for these leads reflecting the involvement of both cortical and subcortical structures in these processes. When the posture maintenance conditions were complicated, an additional coherence increase in the fast EEG bands (the ??-rhythm) was observed in the frontal cortical regions, which was evidence of the increase in the executive functions under these conditions.  相似文献   

15.

Introduction

It has been reported that AIS rely much more on ankle proprioception to control the amplitude of the balance control commands as compared to age-matched healthy adolescents. Our hypothesis was that AIS do not neglect proprioceptive information to control posture probably because of their vestibular deficits. We investigated the proprioceptive contribution to postural control in AIS which expresses spinal deformity during a crucial transitional period of ontogenesis.

Methods

10 adolescents with idiopathic scoliosis (AIS) with moderate spinal deformity (10° < Cobb Angle >35°) and 10 control adolescents (CA) had to maintain vertical stance while very slow oscillations in the frontal plane (below the detection threshold of the semicircular canal system) were applied to the support with the eyes open and closed. Postural orientation and segmental stabilisation were analysed at head, shoulder, trunk and pelvis levels.

Results

Scoliosis did not affect vertical orientation control and segmental stabilization strategies. Vision improves postural control in both CA and AIS, which seem more dependent on visual cues than adults.

Conclusions

AIS as CA were unable to control efficiently their postural orientation on the basis of the proprioceptive cues, the only sensory information available in the EC situation, whereas in the same condition healthy young adults present no difficulty to achieve the postural control. This suggests that AIS as CA transitory neglect proprioceptive information to control their posture. These results and previous studies suggest the existence of different afferent pathways for proprioceptive information subserving different parts in sensory integration of postural control. We conclude that the static proprioceptive system is not affected by the idiopathic scoliosis, while the dynamic proprioceptive system would be mainly affected.  相似文献   

16.
Summary In the fly,Calliphora erythrocephala, visual stimuli presented in an asymmetrical position with respect to the fly elicit roll or tilt movements of the head by which its dorsal part is moved towards the light areas of the surroundings (Figs. 4–7). The influence of passive body roll and tilt (gravitational stimulus) on the amplitude of these active head movements was investigated for two types of visual stimuli: (1) a dark hollow hemisphere presented in different parts of the fly's visual field, and (2) a moving striped pattern stimulating the lateral parts of one eye only.The response characteristics of the flies in the bimodal situation in which the gravitational stimulus was paired with stimulation by the dark hollow hemisphere can be completely described by the addition of the response characteristics for both unimodal situations, i.e. by the gravity-induced and visually induced characteristics (Figs. 8, 9). Therefore, the stimulus efficacy of the dark hollow hemisphere is independent of (=invariant with respect to) the flies' spatial position. The advantage of this type of interaction between gravity and visual stimulation for the control of body posture near the horizontal is discussed.In contrast, the efficacy of moving patterns depends on (=non-invariant with respect to) the spatial position of the walking fly. Regressive pattern movements exhibit their stronger efficacy with respect to progressive ones only when the gravity receptor system of the legs is stimulated. The stronger efficacy of downward vs upward movements can only be demonstrated when the flies are walking horizontally, independently of whether the leg gravity receptor system is stimulated by gravity or not (Fig. 10).The results are discussed with respect (1) to the invariance and non-invariance of the efficacy of visual stimuli with respect to the direction of the field of gravity, (2) to the formation of reference lines by the gravitational field which are used by the walking fly to determine the orientation of visual patterns, and (3) to the possible location of the underlying convergence between gravitationally and visually evoked excitation. As all types of head responses occur only in walking flies, we also discussed the possible influences of some physiological processes like arousal, proprioceptive feedback during walking and various peripheral sensory inputs on the performance of behavioural responses in the fly (Fig. 11).  相似文献   

17.
The effects of 20 days horizontal bed rest (BR) on postural reflex were studied by measuring fluctuation of center of gravity in the body during two legs or one leg upright standing in 10 young volunteers. The fluctuation was decided as total moving distance of the center recorded during 60sec standing on a force plate. The stability was measured by the moved area. After BR, the moving distance increased during two legs standing with open eyes (p<0.05), but statistically unchanged with closed eyes. The moving area decreased during right one-leg standing with closed eyes (p<0.05), but unchanged during left one-leg standing. Despite with open eyes the increased distance suggested that postural reflexes to maintain upright position were probably decreased by increased unsuitable feedback informations from the visual receptor deconditioning during BR. The decreased area during right one-leg standing with closed eyes also suggested that the declined standing posture reflex was probably related to more rapidly lowered functions for maintaining standing position in the dominating leg than in the other.  相似文献   

18.
Characteristic features of upright posture maintenance and mechanisms of postural disorders in poststroke hemiparetic patients were studied using a bilateral force platform. The following features of postural disorders were revealed in the patients tested: an increase in the velocity and amplitude of the center-of-pressure (CP) sway as compared to in healthy subjects, an absolute decrease in the half-cycles of the CP sway, asymmetry of weight bearing by both feet, and a shift of the center of pressure of an affected foot towards the toe. The disturbance of stability of the vertical posture in such patients is to a greater extent associated with weight-bearing asymmetry. It was shown that the character of the CP sway is mainly determined by a disorder of the sensory motor control, whereas damage to the efferent pathways is responsible for the postural asymmetry. Increase in the muscle tone restricts the sway amplitude. Thus, several forms of postural instability are characteristic of hemiparetic patients. Predominantly sensory, motor, or tonic disorders are responsible for these disturbances of stability.  相似文献   

19.
BackgroundVestibular patients occasionally report aggravation or triggering of their symptoms by visual stimuli, which is called visual vestibular mismatch (VVM). These patients therefore experience discomfort, disorientation, dizziness and postural unsteadiness.ObjectiveFirstly, we aimed to get a better insight in the underlying mechanism of VVM by examining perceptual and postural symptoms. Secondly, we wanted to investigate whether roll-motion is a necessary trait to evoke these symptoms or whether a complex but stationary visual pattern equally provokes them.MethodsNine VVM patients and healthy matched control group were examined by exposing both groups to a stationary stimulus as well as an optokinetic stimulus rotating around the naso-occipital axis for a prolonged period of time. Subjective visual vertical (SVV) measurements, posturography and relevant questionnaires were assessed.ResultsNo significant differences between both groups were found for SVV measurements. Patients always swayed more and reported more symptoms than healthy controls. Prolonged exposure to roll-motion caused in patients and controls an increase in postural sway and symptoms. However, only VVM patients reported significantly more symptoms after prolonged exposure to the optokinetic stimulus compared to scores after exposure to a stationary stimulus.ConclusionsVVM patients differ from healthy controls in postural and subjective symptoms and motion is a crucial factor in provoking these symptoms. A possible explanation could be a central visual-vestibular integration deficit, which has implications for diagnostics and clinical rehabilitation purposes. Future research should focus on the underlying central mechanism of VVM and the effectiveness of optokinetic stimulation in resolving it.  相似文献   

20.
Knowing where our limbs are in space is crucial for a successful interaction with the external world. Joint position sense (JPS) relies on both cues from muscle spindles and joint mechanoreceptors, as well as the effort required to move. However, JPS may also rely on the perceived external force on the limb, such as the gravitational field. It is well known that the internal model of gravity plays a large role in perception and behaviour. Thus, we have explored whether direct vestibular-gravitational cues could influence JPS. Participants passively estimated the position of their hand while they were upright and therefore aligned with terrestrial gravity, or pitch-tilted 45° backwards from gravity. Overall participants overestimated the position of their hand in both upright and tilted postures; however, the proprioceptive bias was significantly reduced when participants were tilted. Our findings therefore suggest that the internal model of gravity may influence and update JPS in order to allow the organism to interact with the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号