首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 44 毫秒
1.
Glutamate dehydrogenase from Candida utilis undergoes a reversible conformational transition between an active and an inactive state at low pH AND low temperature. This conformational transition can also be followed by fluorescence measurements. The temperature-dependent equilibrium between the active and the inactive state is characterized by a transition temperature of 10.7 degrees C and a delta H value of 148 kcal/mol (620 kJ/mol). The temperature dependence of the enzymic activity above 15 degrees C yields an activation energy of 15 kcal/mol (63 kJ/mol), a larger value than that for the beef liver enzyme (9 kcal/mol; 38 kJ/mol). In contrast to the yeast enzyme the Arrhenius plot is linear and, therefore, the beef liver enzyme is not transformed into an inactive conformation at low temperatures. Sedimentation analysis shows that the inactivation of the Candida utilis enzyme is not caused by change in the quaternary structure. The pH dependence of the conformational transition at low pH measured by fluorescence change is characterized by a pK value of 7.01 for the enzyme in the absence and of 6.89 for the enzyme in the presence of 2-oxoglutarate with a Hill coefficient of 3.4 in both cases. Similar results are found when the pH dependence of the enzymic activity is analyzed. With the beef liver enzyme the same pK value is obtained but with a Hill coefficient of 1 indicating cooperativity only in the case of the Candida utilis enzyme. The best fit of the pH dependence of the rate constants of the fluorescence changes was obtained with pK values of 7.45 and 6.45 for the active and the inactive state respectively. In this model the lowest time constant which is obtained at the pH of the equilibrium was found to be 0.05 s-1. Preincubation experiments with the substrate 2-oxoglutarate but not with the coenzyme shift the equilibrium to the active conformation. The coenzyme obviously reduces the rate constant of the conformational transition. The sedimentation coefficient (SO20, w) and the molecular weight were found to be 11.0 S and 276 000, respectively. The enzyme molecule is built up by six polypeptide chains each having a molecular weight of 47 000.  相似文献   

2.
The rate of inactivation of succinyl-CoA:3-ketoacid coenzyme A transferase by thiol reagents is increased 3 to 100 times by very low concentrations of acyl-CoA substrates. The same maximum inactivation rate is found with acetoacetyl-CoA and succinyl-CoA. The enhanced rate of inactivation is caused by the stoichiometric formation of the enzyme-CoA intermediate and an accompanying conformation change of the enzyme. The inactivation rate provides a simple assay for the amount of enzyme present as the enzyme-CoA intermediate, using only catalytic concentrations of enzyme. This technique has been utilized to measure (a) a rate constant for hydrolysis of the enzyme-CoA intermediate of 0.10 min-1 at pH 8.1; (b) a stoichiometry of two active sites per enzyme molecule; and (c) the equilibrium constants for formation of the enzyme-CoA intermediate from dilute solutions of substrates (and hence for the overall reaction) by determining the ratio of [enzyme-CoA]/[enzyme] in the presence of a series of substrate "buffers" at different ratios of [RCOO-]/[RCOSCoA]. As the total concentration of acyl-CoA and carbosylate substrates is increased, the inactivation rate is decreased. This indicates that the Michaelis complexes are protected against inactivation.  相似文献   

3.
C Balny  H Anni  T Yonetani 《FEBS letters》1987,221(2):349-354
Transient kinetic measurements show that cytochrome c peroxidase reacts with excess of hydroperoxides to produce compound ES in two phases. The activation energies for the fast and slow phases are calculated to be 6.3 and 20.5 kcal X mol-1, respectively. The fast phase is assigned to the reaction of native active (pulsed) cytochrome c peroxidase with peroxides, whereas the slow phase is due to the presence of an inactive (aged, resting) enzyme. As the active species is exhausted, the equilibrium between the active and inactive enzymes is shifted by a slow conformational change to replenish the active enzyme. Since the rate-limiting step of the reaction of the inactive enzyme with peroxides is the conformation change, the overall reaction rate is independent of the nature and concentration of peroxides.  相似文献   

4.
Tryptophanase is catalytically more competent in alkaline pH even though the coenzyme exists as an inactive aldamine structure in this pH region. The binding of a substrate analog, 3-indolepropionate to the enzyme shifts the equilibrium from the substituted aldamine to the ketoenamine form in the entire pH region studied. The resultant ketoenamine form is favorable for transaldimination with the substrate amino group, a prerequisite for subsequent catalysis. This implies that the binding of tryptophan in alkaline pH, where the enzyme shows maximum activity, converts the inactive aldamine form of the coenzyme to the active ketoenamine form, which is favorable for undergoing the next step of the catalytic process.  相似文献   

5.
The acetyl-CoA:acetoacetate CoA-transferase of Escherichia coli has the subunit structure α2β2 The enzyme contains six sulfhydryl groups, one per α chain and two per β chain, and no disulfides. The rates and extent of sulfhydryl group reactivity with 5,5′-dithiobis(2-nitrobenzoic acid) were compared in the free enzyme, the enzyme-CoA intermediate in the catalytic pathway, and a substrate analog-enzyme Michaelis complex. The analog used was acetylaminodesthio-CoA, a competitive inhibitor with respect to acetyl-CoA; the analog is not a substrate. The reactions were studied in the presence and absence of 10% glycerol. In the absence of glycerol, one sulfhydryl group reacted rapidly in the free enzyme and enzyme-CoA intermediate; relative to the free enzyme, the rate and number of subsequently reacting sulfhydryl groups were increased in the enzyme-CoA intermediate. In the presence of 10% glycerol, one sulfhydryl group reacted rapidly in the free enzyme, while two reacted rapidly in the enzyme-CoA compound; the rates and extents of subsequently reacting sulfhydryl groups were also enhanced in the enzyme-CoA compound. The data strongly suggested subunit interactions in the free enzyme and intermediate; glycerol abolished those interactions in the enzyme-CoA intermediate. In the absence of glycerol, sulfhydryl group reactivity in the Michaelis complex, enzyme-acetylaminodesthio-CoA, was similar to that in the free enzyme with one exception: One of the more slowly reacting sulfhydryl groups in the free enzyme reacted at a rate characteristic of the enzyme-CoA intermediate. The results obtained with N-ethylmaleimide were qualitatively similar. The fractional inactivation of the enzyme with N-ethylmaleimide as a function of sulfhydryl groups modified and the subunit location of those sulfhydryl groups indicated that the same sulfhydryl groups react in both enzyme species; however, those sulfhydryl groups reacted more rapidly in the enzyme-CoA compound. The data indicate both subunit interactions in the enzyme and characteristic conformational changes upon formation of an acyl-CoA-enzyme Michaelis complex and the enzyme-CoA intermediate.  相似文献   

6.
The kinetics of the thermolysis of 5'-deoxyadenosylcobalamin (AdoCbl, coenzyme B12) in aqueous solution, pH 7.5, have been studied in the temperature range 30-85 degrees C using AdoCbl tritiated at the adenine C2 position and the method of initial rates. Combined with a careful analysis of the distribution of adenine-containing products, the results permit the dissection of the competing rate constants for carbon-cobalt bond homolysis and heterolysis. After correction for the temperature-dependent occurrence of the much less reactive base-off species of AdoCbl, the activation parameters for homolysis of the base-on species were found to be delta H++homo,on = 33.8 +/- 0.2 kcal mol-1 and delta S++homo,on = 13.5 +/- 0.7 cal mol-1 K-1, values not significantly different from those determined by Hay and Finke (J. Am. Chem. Soc. 108 (1986) 4820), in the temperature range 85-115 degrees C. In contrast, the heterolysis of base-on AdoCbl was characterized by a much smaller enthalpy of activation (delta H++het,on = 18.5 +/- 0.2 kcal mol-1) and a negative entropy of activation (delta S++het,on = -34.0 +/- 0.7 cal mol-1 K-1) so that heterolysis, which is minor pathway at elevated temperatures, is the dominant pathway for AdoCbl decomposition at physiological temperatures. Using literature values for the rate constant for the reverse reaction, the equilibrium constant for AdoCbl homolysis at 37 degrees C was calculated to be 7.9 x 10(-18). Comparison with the equilibrium constant for this homolysis at the active site of the ribonucleoside triphosphate reductase from Lactobacillus leichmannii shows that the enzymes shifts the equilibrium constant towards homolysis products by a factor of 2.9 x 10(12) (17.7 kcal mol-1) by binding the thermolysis products with an equilibrium constant of 7.1 x 10(16) M-2, compared to the bonding constant for AdoCbl of 2.4 x 10(4) M-1.  相似文献   

7.
D-amino acid transaminase, which contains pyridoxal 5'-phosphate (vitamin B6) as coenzyme, catalyzes the formation of D-alanine and D-glutamate from their corresponding alpha-keto acids; these D-amino acids are required for bacterial cell wall biosynthesis. Under conditions usually used for kinetic assay of enzyme activity, i.e., short incubation times with dilute enzyme concentrations, D-alanine behaves as one of the best substrates. However, the enzyme slowly loses activity over a period of hours when exposed to substrates, intermediates, and products at equilibrium. The rate of inactivation is dependent on enzyme concentration but independent of substrate concentration greater than Km values. Continuous removal of the product pyruvate by enzymic reduction precludes the establishment of equilibrium and prevents inactivation. The formation of small but detectable amounts of a quinonoid intermediate absorbing at 493 nm is proportional to inactivation. Studies with [14C]-D-alanine labeled on different carbon atoms indicate that the alpha-carboxyl group of the substrate is absent in the inactive enzyme; such decarboxylation is not a usual function of this enzyme. The inactive transaminase contains 1.1 mol of [14C]-D-alanine-derived adduct per mole of dimeric enzyme; this finding is consistent with the 50% reduction in the fluorescence intensity at 390 nm (due to the PMP form of the coenzyme) for the inactive enzyme. Thus, inactivation of one subunit of the dimeric enzyme renders the entire molecule inactive. Inactivation may occur when a coenzyme intermediate, perhaps the ketimine, is slowly decarboxylated and then undergoes a conformational change from its catalytically competent location.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Studies of the reactivity of succinyl-CoA:3-keto acid CoA transferase with a small coenzyme A analog, methylmercaptopropionate, have shown that noncovalent interactions between the enzyme and the side chain of CoA are responsible for a rate acceleration of approximately 10(12), which is close to the total rate acceleration brought about by the enzyme (Moore, S. A., and Jencks, W. P. (1982) J. Biol. Chem. 257, 10893-10907). We report here that interaction between the enzyme and the pantetheine moiety of CoA provides the majority of the rate acceleration and destabilization of the enzyme-thiol ester intermediate that is observed with CoA substrates. The role of the adenosine 3'-phosphate 5'-diphosphate moiety of CoA is to provide 6.9 kcal/mol of binding energy in order to pull the pantetheine moiety into the active site. The enzyme-thiol ester intermediate, E-pantetheine, was generated by reaction of pantetheine with the thiol ester of enzyme and methylmercaptopropionate. E-Pantetheine undergoes hydrolysis with khyd = 2 min-1, 140-fold faster than E-CoA, and reacts with acetoacetate with kAcAc = 3 X 10(6) M-1 min-1, only 10-fold slower than E-CoA. However, in the reverse direction acetoacetylpantetheine reacts with CoA transferase (kAcAc-SP = 220 M-1 min-1) 1.6 X 10(6) times slower than acetoacetyl-CoA. The equilibrium constant for the reaction of pantetheine with E-CoA is approximately 8 X 10(-6).  相似文献   

9.
Dissociation of yeast hexokinase by hydrostatic pressure   总被引:5,自引:0,他引:5  
K Ruan  G Weber 《Biochemistry》1988,27(9):3295-3301
The pressure-induced dissociation of the isozymes P1 and P2 of hexokinase was investigated by studies of the spectral shift of the intrinsic protein fluorescence and by the fluorescence polarization of dansyl conjugates. The free energy of association of the monomers at atmospheric pressure, Katm, was -14.2 kcal mol-1 at 20 degrees C and -11.4 kcal mol-1 at 0 degrees C. The positive enthalpy indicates that the association of the monomers is entropy-driven, overcoming the negative enthalpy of hydration of the subunit interfaces. At 0 degrees C and 1 bar, glucose stabilizes the association by -1.1 kcal mol-1 and the binding of both adenosine 5'-(beta, gamma-methylenetriphosphate) (AMPPCP) and glucose by an even larger amount, -1.34 kcal mol-1. Paradoxically, adenosine 5'-triphosphate (ATP), or AMPPCP, in the absence of glucose destabilizes the association by +0.34 kcal mol-1, while adenosine 5'-diphosphate (ADP) stabilizes it by -0.6 kcal mol-1. Comparison of dV0, the apparent standard volume of association, at different pHs and temperatures indicates that its value (115-160 mL mol-1) is strongly dependent upon the ionization of a group at the subunit interface with a pK near neutrality. Under dissociating pressures, trypsin action results in permanent dissociation of the dimer, confirming earlier observations of Colowick by less direct methods. The P1 and P2 enzymes differ in Katm and dV0 and markedly so in the effects of salt upon the stability of the dimer.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
With and without p-chlorophenol as an activator, the rates of hydrolysis of p-nitrophenyl acetate catalyzed by alpha-chymotrypsin were measured at pressures up to 2 kbar at 25 degrees C. From the pressure dependence of the rate constant (kcat)A and (kcat)0 of the product formation with and without an activator, the activation volumes (delta V not equal to cat)A and (delta not equal to cat)0 were +2 and -6 +/- 1 cm3.mol-1. From the pressure dependence of the equilibrium constant (KA) of incorporation of p-chlorophenol into the enzyme, the volume change (delta VA) was -10 +/- 1 cm3.mol-1. The mechanisms of the substrate activation are discussed in terms of the activation and reaction volumes.  相似文献   

11.
The enthalpy of binding, deltaHb, of flavin adenine dinucleotide to the apoenzyme of D-amino acid oxidase was determined by flow calorimetry at pH 8.5 to be +3.8, -4.1 and -11.0 kcal mol-1 at 10 degrees, 25 degrees and 38 degrees, respectively. These values correspond to a heat capacity change, deltaCp, of -530 cal K-1 mol-1. From the binding constant reported by Dixon and Kleppe (1965a) and the above enthalpies, the standard free energy and standard entropy of binding are evaluated. These thermodynamic data are interpreted in terms of hydrophobic and vibrational contributions (Sturtevant, 1977). The product of the assay reaction (Fonda and Anderson, 1967), benzoylformic acid, is a non-competitive inhibitor of the enzyme with a value for KI of 1.4 X 10(-4)M at 25 degrees.  相似文献   

12.
We have previously shown that a coenzyme-B12 analog, adenosylcobalamin (AdoCbl)-(e-OH), with the e-propionamide group converted to a carboxylic acid, serves as a poor coenzyme for dioldehydrase. During the course of the catalytic process, the enzyme AdoCbl-(e-OH) complex becomes catalytically inactive (T. Toraya, E. Krodel, A. S. Mildvan, and R. H. Abeles, 1979, Biochemistry18, 417–426). We have now examined the mechanism of this inactivation further. Inactivation only occurs in the presence of substrate. The dioldehydrase coenzyme analog complex is stable in the absence of substrate. In the inactivated complex, the coenzyme analog was stoichiometrically converted to a cob(II)alamin species. The cob-(II)alamin formed remained irreversibly bound at the active site of the enzyme and resisted oxidation by O2 even in the presence of CN?. Stoichiometric formation of 5′-deoxyadenosine from the 5′-deoxy-5′-adenosyl moiety of the coenzyme analog was demonstrated with [8-14C]-AdoCbl(e-OH). This nucleoside also remained tightly bound to the enzyme and was not exchangeable with free 5′-deoxyadenosine nor was it removed by Sephadex chromatography. The rate of inactivation showed no deuterium isotope effect when the inactivation occurred in the presence of l,2-propanediol-l-d2. The inactivated complex was resolved by acid ammonium sulfate treatment into the intact apoenzyme and the hydroxocobalamin derivative. This indicates that the apoenzyme itself is not modified in the inactivation process. These results suggest that the inactivation reaction occurs from one of the intermediates in the normal catalysis. We propose that the inactivation is due to incorrect binding of the modified coenzyme in an intermediate of the catalytic process. This incorrect binding leads to the loss of the substrate radical, and consequently, to loss of catalytic activity.  相似文献   

13.
Asp222 is an invariant residue in all known sequences of aspartate aminotransferases from a variety of sources and is located within a distance of strong ionic interaction with N(1) of the coenzyme, pyridoxal 5'-phosphate (PLP), or pyridoxamine 5'-phosphate (PMP). This residue of Escherichia coli aspartate aminotransferase was replaced by Ala, Asn, or Glu by site-directed mutagenesis. The PLP form of the mutant enzyme D222E showed pH-dependent spectral changes with a pKa value of 6.44 for the protonation of the internal aldimine bond, slightly lower than that (6.7) for the wild-type enzyme. In contrast, the internal aldimine bond in the D222A or D222N enzyme did not titrate over the pH range 5.3-9.5, and a 430-nm band attributed to the protonated aldimine persisted even at high pH. The binding affinity of the D222A and D222N enzymes for PMP decreased by 3 orders of magnitude as compared to that of the wild-type enzyme. Pre-steady-state half-transamination reactions of all the mutant enzymes with substrates exhibited anomalous progress curves comprising multiphasic exponential processes, which were accounted for by postulating several kinetically different enzyme species for both the PLP and PMP forms of each mutant enzyme. While the replacement of Asp222 by Glu yielded fairly active enzyme species, the replacement by Ala and Asn resulted in 8600- and 20,000-fold decreases, respectively, in the catalytic efficiency (kmax/Kd value for the most active species of each mutant enzyme) in the reactions of the PLP form with aspartate. In contrast, the catalytic efficiency of the PMP form of the D222A or D222N enzyme with 2-oxoglutarate was still retained at a level as high as 2-10% of that of the wild-type enzyme. The presteady-state reactions of these two mutant enzymes with [2-2H]aspartate revealed a deuterium isotope effect (kH/kD = 6.0) greater than that [kH/kD = 2.2; Kuramitsu, S., Hiromi, K., Hayashi, H., Morino, Y., & Kagamiyama, H. (1990) Biochemistry 29, 5469-5476] for the wild-type enzyme. These findings indicate that the presence of a negatively charged residue at position 222 is particularly critical for the withdrawal of the alpha-proton of the amino acid substrate and accelerates this rate-determining step by about 5 kcal.mol-1. Thus it is concluded that Asp222 serves as a protein ligand tethering the coenzyme in a productive mode within the active site and stabilizes the protonated N(1) of the coenzyme to strengthen the electron-withdrawing capacity of the coenzyme.  相似文献   

14.
Phosphohexose isomerase from amyloplasts of immature wheat endosperm was purified 133-fold. The enzyme had a molecular weight of 130 kDa and maximum activity at pH 8.6. It showed normal hyperbolic kinetics for both fructose-6-P and glucose-6-P with Km of 0.12 mM and 0.44 mM, respectively. pH had a great influence on Km for fructose-6-P. Using glucose-6-P as the substrate, the equilibrium was reached at 23% fructose-6-P and 77% glucose-6-P and an equilibrium constant of about 3.0. The delta F calculated from the apparent equilibrium constant was +742 cal.mol-1. The activation energy calculated from the Arrhenius plot was 7450 cal.mol-1. None of the sulphydryl reagents at 2.5 mM concentration inactivated the enzyme. The enzyme was competitively inhibited by 6-phosphogluconate, ribose-5-P and ribulose-5-P with Ki values of 0.18, 0.14, and 0.13 mM, respectively. The probable role of the enzyme in starch biosynthesis in amyloplasts is discussed.  相似文献   

15.
J W Burgner  W J Ray 《Biochemistry》1984,23(16):3620-3626
The binary complex of NAD and lactate dehydrogenase reacts reversibly with cyanide to produce a complex (E X NAD-CN) whose noncovalent interactions are similar to those in the E X NADH complex (where E is one-fourth of the tetrameric dehydrogenase). The reaction apparently is a simple bimolecular nucleophilic addition at the 4 position of the bound nicotinamide ring; viz., cyanide does not bind to the enzyme prior to reaction. The value of the dissociation constant for E X NAD-CN is about 1 X 10(-6) M and is independent of pH over the range of 6-8. The equilibrium constant for the reaction of cyanide with E X NAD is about 400-fold larger than that for the nonenzymic process after a statistical correction. This increment in Ke is accounted for by a 220-fold increase in the rate of the forward enzymic reaction (20 M-1 s-1) as compared with an approximately 2-fold decrease for the reverse process (9 X 10(-5) s-1). Thus, the increased value of the rate constant for bond formation in the enzymic reaction is attributed to an equilibrium binding effect that is translated almost entirely into a rate effect on that step (bond formation). Since the nonenzymic reaction is sensitive to solvent composition, this equilibrium binding effect likely is produced by environmental effects at the nicotinamide/dehydronicotinamide part of the coenzyme binding site on the enzyme.  相似文献   

16.
Equilibrium constants for the adenylylation of T4 DNA ligase have been measured at 10 pH values. The values, when plotted against pH, fit a titration curve corresponding to a pKa of 8.4 +/- 0.1. The simplest interpretation is that the apparent pKa is that of the 6-amino group of the AMP-accepting residue Lys159. Based on the pH dependence of the equilibrium constants, the value at pH 7.0 is 0. 0213 at 25 degrees C, corresponding to DeltaG'o = +2.3 kcal mol-1. From this value and the standard free energy change of -10.9 kcal mol-1 for the hydrolysis of ATP to AMP and PPi, we calculate that DeltaG'o for the hydrolysis of the adenylyl-DNA ligase is -13.2 kcal mol-1. The presence of conserved basic amino acid residues in the catalytic domain, which are proximal to the active site in the homologous catalytic domain of T7 DNA ligase, suggests that the pKa of Lys159 is perturbed downward by the electrostatic effects of nearby positively charged amino acid side chains. The lower than normal pKa 8.4 compared with 10.5 for the 6-amino group of lysine and the high energy of the alpha,beta-phosphoanhydride linkage in ATP significantly facilitate adenylylation of the enzyme.  相似文献   

17.
Ubiquitin (Ub) carboxyl-terminal hydrolase (E) catalyzes the hydrolysis, at the Ub-carboxyl terminus, of a wide variety of C-terminal Ub derivatives. We show that the enzyme is inactivated by millimolar concentrations of either sodium borohydride or hydroxylamine, but only if Ub is present. We have interpreted these results on the assumption that the hydrolase mechanism is one of nucleophilic catalysis with an acyl-Ub-E intermediate. The borohydride-inactivated enzyme has the following properties. It is a stoichiometric complex of E and Ub containing tritium from sodium boro[3H]hydride. This complex is stable at neutral pH in 5 M urea and can be isolated on the basis of size on a sieving column, but a labeled product the size of Ub is released under more strongly denaturing conditions. The "Ub" released in acid is Ub-carboxyl-terminal aldehyde, based on the observations that: it contains the tritium present in the reduced complex and it is able to form the inactive enzyme from a stoichiometric amount of fresh enzyme, and inactivation is accompanied by E-Ub adduct formation; it has chemical properties expected of an aldehyde: after a second reduction of the Ub released with boro[3H]hydride and complete acid hydrolysis, tritium counts are found in ethanolamine (the carboxyl-terminal residue of Ub is glycine). These results suggest that enzyme and Ub combine in an equilibrium reaction to form an ester or thiol ester adduct (at the Ub-carboxyl terminus), and that this adduct is trapped by borohydride to give a very stable inactive E-Ub (thio) hemiacetal which is unable to undergo a second reduction step and which can release Ub-aldehyde in mild acid. Inactivation in the presence of hydroxylamine of hydrolase occurs once during hydrolysis of 1200 molecules of Ub-hydroxamate by the enzyme. The hydrolysis/inactivation ratio is constant over the range of 10-50 mM hydroxylamine showing that forms of E-Ub with which hydroxylamine and water react are different and not in rapid equilibrium. The inactive enzyme may be an acylhydroxamate formed from an E-Ub mixed anhydride generated from the E-Ub (thiol) ester inferred from the borohydride study. A direct radioactive assay for the hydrolase has been developed using the Ub-C-terminal amide of [3H]butanol-4-amine as substrate.  相似文献   

18.
P J Day  W V Shaw  M R Gibbs  A G Leslie 《Biochemistry》1992,31(17):4198-4205
The possible involvement of arginyl and lysyl side chains of chloramphenicol acetyltransferase (CAT) in binding coenzyme A (CoA) was studied by means of chemical modification, site-directed mutagenesis, variation in ionic strength, use of competitive inhibitors or substrate analogues, and X-ray crystallography. Unlike a number of enzymes, including citrate synthase, CAT does not employ specific ion pairs with the phosphoanionic centers of CoA to bind the acetyl donor, and arginyl residues play no role in recognition of the coenzyme. Although phenylglyoxal inactivates CAT reversibly, it does so by the formation of an unstable adduct with a thiol group, that of Cys-31 in the chloramphenicol binding site. The inhibitory effect of increasing ionic strength on kcat/Km(acetyl-CoA) can be explained by long-range electrostatic interactions between CoA and the epsilon-amino groups of Lys-54 and Lys-177, both of which are solvent-accessible. The epsilon-amino group of Lys-54 contributes 1.3 kcal.mol-1 to the binding of acetyl-CoA via interactions with both the 3'- and 5'-phosphoanions of CoA. Lys-177 contributes only 0.4 kcal.mol-1 to the productive binding of acetyl-CoA, mediated by long-range (approximately 14 A) interactions with the 5'-alpha- and -beta-phosphoanions of CoA. The combined energetic contribution of Lys-54 and Lys-177 to acetyl-CoA binding (1.7 kcal.mol-1) is less than that previously demonstrated (2.4 kcal.mol-1) for a simple hydrophobic interaction between Tyr-178 and the adenine ring of CoA (Day & Shaw, 1992).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Formyltetrahydrofolate synthetase monomers are converted to catalytically active tetramers in the presence of monovalent cations. The stoichiometry of the reaction is 4M + 2C+ in equilibrium M4C2(2+). A positive deltaS compensates for an unfavorable positive deltaH so that the overall reaction is exergonic. Both deltaH and deltaS become more positive as the temperature is increased. Association of subunits of the enzyme prepared from Clostridium cylindrosporum is second order with respect to monomer concentration, consistent with a rate-determining dimerization step. Activation parameters for this step at 20 degrees are: deltaG, 12.6 kcal mol-1; deltaH, 12.5 kcal mol-1; deltaS, -05 e.u. The rate-limiting step for the cation-dependent association of Clostridium acidi-urici monomers is believed to be a conformational alteration since first order kinetics is observed. The Eyring plot of the kinetic data obtained for the C. acidi-urici system has a sharp break at 15 degrees. Activation parameters for cation-induced association at 20 degrees are: deltaG, 21.5 kcal mol-1; deltaH, 14.0 kcal mol-1; deltaS, -26.6 e.u.  相似文献   

20.
Glutathionyl S-[4-(succinimidyl)benzophenone] (GS-Succ-BP), an analogue of the product of glutathione and electrophilic substrate, acts as a photoaffinity label of dimeric rat liver glutathione S-transferase (GST), isoenzyme 1-1. A time-dependent loss of enzyme activity is observed upon irradiation of the enzyme with long wavelength UV light in the presence of the reagent. The initial rate of inactivation exhibits nonlinear dependence on the concentration of the reagent, characterized by an apparent dissociation constant of the enzyme-reagent complex (K(R)) of 99 +/- 2 microM and k(max) of 0.082 +/- 0.005 min(-1). Protection against this inactivation is provided by the electrophilic substrate (ethacrynic acid), electrophilic substrate analogue (dinitrophenol), and product analogues (S-hexylglutathione and p-nitrobenzylglutathione) but not by steroids (Delta(5)-androstene-3,17-dione and 17beta-estradiol-3, 17-disulfate). These results suggest that GS-Succ-BP binds and reacts with the enzyme within the xenobiotic substrate binding site, and this reaction site is distinct from the substrate and nonsubstrate steroid binding sites of the enzyme. About 1 mol of reagent is incorporated into 1 mol of enzyme dimer when the enzyme is completely inactivated. Met-208 is the only amino acid target of the reagent, and modification of this residue in one enzyme subunit of the GST 1-1 dimer completely abolishes the enzyme activity of both subunits. In order to evaluate the role of subunit interactions in the Alpha class glutathione S-transferases, inactive GS-Succ-BP-modified GST 1-1 was mixed with unlabeled, active GST 2-2. The enzyme subunits were dissociated in dilute trifluoroacetic acid and then renatured at pH 7.8 and separated by chromatofocusing into GST 1-1, 1-2, and 2-2. The specific activities of the heterodimer toward several substrates indicate that the loss of catalytic activity in the unmodified subunit of the modified GST 1-1 is the indirect result of the interaction between the two enzyme subunits and that this subunit interaction is absent in the heterodimer GST 1-2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号