首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Pseudomonas aeruginosa is a primary bacterial model to study cooperative behaviors because it yields exoproducts such as siderophores and exoproteases that act as public goods and can be exploited by selfish nonproducers behaving as social cheaters. Iron-limited growth medium, mainly casamino acids medium supplemented with transferrin, is typically used to isolate and study nonproducer mutants of the siderophore pyoverdine. However, using a protein as the iron chelator could inadvertently select mutants unable to produce exoproteases, since these enzymes can degrade the transferrin to facilitate iron release. Here we investigated the evolutionary dynamics of pyoverdine and exoprotease production in media in which iron was limited by using either transferrin or a cation chelating resin. We show that concomitant loss of pyoverdine and exoprotease production readily develops in media containing transferrin, whereas only pyoverdine loss emerges in medium treated with the resin. Characterization of exoprotease- and pyoverdine-less mutants revealed loss in motility, different mutations, and large genome deletions (13–33 kb) including Quorum Sensing (lasR, rsal, and lasI) and flagellar genes. Our work shows that using transferrin as an iron chelator imposes simultaneous selective pressure for the loss of pyoverdine and exoprotease production. The unintended effect of transferrin uncovered by our experiments can help to inform the design of similar studies.Subject terms: Bacteriology, Microbial ecology  相似文献   

3.
The idea from human societies that self-interest can lead to a breakdown of cooperation at the group level is sometimes termed the public goods dilemma. We tested this idea in the opportunistic bacterial pathogen, Pseudomonas aeruginosa, by examining the influence of putative cheats that do not cooperate via cell-to-cell signalling (quorum-sensing, QS). We found that: (i) QS cheating occurs in biofilm populations owing to exploitation of QS-regulated public goods; (ii) the thickness and density of biofilms was reduced by the presence of non-cooperative cheats; (iii) population growth was reduced by the presence of cheats, and this reduction was greater in biofilms than in planktonic populations; (iv) the susceptibility of biofilms to antibiotics was increased by the presence of cheats; and (v) coercing cooperator cells to increase their level of cooperation decreases the extent to which the presence of cheats reduces population productivity. Our results provide clear support that conflict over public goods reduces population fitness in bacterial biofilms, and that this effect is greater than in planktonic populations. Finally, we discuss the clinical implications that arise from altering the susceptibility to antibiotics.  相似文献   

4.
The production of beneficial public goods is common in the microbial world, and so is cheating – the exploitation of public goods by nonproducing mutants. Here, we examine co‐evolutionary dynamics between cooperators and cheats and ask whether cooperators can evolve strategies to reduce the burden of exploitation, and whether cheats in turn can improve their exploitation abilities. We evolved cooperators of the bacterium Pseudomonas aeruginosa, producing the shareable iron‐scavenging siderophore pyoverdine, together with cheats, defective in pyoverdine production but proficient in uptake. We found that cooperators managed to co‐exist with cheats in 56% of all replicates over approximately 150 generations of experimental evolution. Growth and competition assays revealed that co‐existence was fostered by a combination of general adaptions to the media and specific adaptions to the co‐evolving opponent. Phenotypic screening and whole‐genome resequencing of evolved clones confirmed this pattern, and suggest that cooperators became less exploitable by cheats because they significantly reduced their pyoverdine investment. Cheats, meanwhile, improved exploitation efficiency through mutations blocking the costly pyoverdine‐signalling pathway. Moreover, cooperators and cheats evolved reduced motility, a pattern that likely represents adaptation to laboratory conditions, but at the same time also affects social interactions by reducing strain mixing and pyoverdine sharing. Overall, we observed parallel evolution, where co‐existence of cooperators and cheats was enabled by a combination of adaptations to the abiotic and social environment and their interactions.  相似文献   

5.
Leaking of confidential material is a major threat to information security within organizations and to society as a whole. This insight has gained traction in the political realm since the activities of Wikileaks, which hopes to attack ‘unjust’ systems or ‘conspiracies’. Eventually, such threats to information security rely on a biologistic argument on the benefits and drawbacks that uncontrolled leaking might pose for ‘just’ and ‘unjust’ entities. Such biological metaphors are almost exclusively based on the economic advantage of participants. Here, I introduce a mathematical model of the complex dynamics implied by leaking. The complex interactions of adversaries are modeled by coupled logistic equations including network effects of econo-communication networks. The modeling shows, that there might arise situations where the leaking envisioned and encouraged by Wikileaks and the like can strengthen the defending entity (the ‘conspiracy’). In particular, the only severe impact leaking can have on an organization seems to originate in the exploitation of leaks by another entity the organization competes with. Therefore, the model suggests that leaks can be used as a `tactical mean’ in direct adversary relations, but do not necessarily increase public benefit and societal immunization to ‘conspiracies’. Furthermore, within the model the exploitation of the (open) competition between entities seems to be a more promising approach to control malicious organizations : divide-et-impera policies triumph here.  相似文献   

6.
An increasing body of empirical evidence suggests that cooperation among clone-mates is common in bacteria. Bacterial cooperation may take the form of the excretion of “public goods”: exoproducts such as virulence factors, exoenzymes or components of the matrix in biofilms, to yield significant benefit for individuals joining in the common effort of producing them. Supposedly in order to spare unnecessary costs when the population is too sparse to supply the sufficient exoproduct level, many bacteria have evolved a simple chemical communication system called quorum sensing (QS), to “measure” the population density of clone-mates in their close neighborhood. Cooperation genes are expressed only above a threshold rate of QS signal molecule re-capture, i.e., above the local quorum of cooperators. The cooperative population is exposed to exploitation by cheaters, i.e., mutants who contribute less or nil to the effort but fully enjoy the benefits of cooperation. The communication system is also vulnerable to a different type of cheaters (“Liars”) who may produce the QS signal but not the exoproduct, thus ruining the reliability of the signal. Since there is no reason to assume that such cheaters cannot evolve and invade the populations of honestly signaling cooperators, the empirical fact of the existence of both bacterial cooperation and the associated QS communication system seems puzzling. Using a stochastic cellular automaton approach and allowing mutations in an initially non-cooperating, non-communicating strain we show that both cooperation and the associated communication system can evolve, spread and remain persistent. The QS genes help cooperative behavior to invade the population, and vice versa; cooperation and communication might have evolved synergistically in bacteria. Moreover, in good agreement with the empirical data recently available, this synergism opens up a remarkably rich repertoire of social interactions in which cheating and exploitation are commonplace.  相似文献   

7.
The units that are subject to selection pressure in evolutionary biology are ‘strategies’, which are conditional actions (‘Do P if X occurs, otherwise do Q’). In contrast, the units in economics select strategies from available menus so as to further their projects and purposes. As economic agents do not live in isolation, each agent''s optimum choice, in general, depends on the choices made by others. Because their projects and purposes involve the future, not just the present, each agent reasons about the likely present and future consequences of their respective choices. That is why beliefs, about what others may do and what the consequences of those choices could be, are at the basis of strategy selection. A catalogue of social environments is constructed in which agents not only promise each other''s cooperation, but also rationally believe that the promises will be kept. Unfortunately, non-cooperation arising from mistrust can be the outcome in those same environments: societies harbour multiple ‘equilibria’ and can skid from cooperation to non-cooperation. Moreover, a pre-occupation among analysts with the Prisoners'' Dilemma game has obscured the fact that cooperative arrangements can harbour not only inequality, but also exploitation. The analysis is used to discuss why international cooperation over the use of global public goods has proved to be so elusive.  相似文献   

8.

Background and Aims

Sclerotinia sclerotiorum can attack >400 plant species worldwide. Very few studies have investigated host–pathogen interactions at the plant surface and cellular level in resistant genotypes of oilseed rape/canola (Brassica napus).

Methods

Infection processes of S. sclerotiorum were examined on two B. napus genotypes, one resistant cultivar ‘Charlton’ and one susceptible ‘RQ001-02M2’ by light and scanning electron microscopy from 2 h to 8 d post-inoculation (dpi).

Key Results

The resistant ‘Charlton’ impeded fungal growth at 1, 2 and 3 dpi, suppressed formation of appresoria and infection cushions, caused extrusion of protoplast from hyphal cells and produced a hypersensitive reaction. At 8 dpi, whilst in ‘Charlton’ pathogen invasion was mainly confined to the upper epidermis, in the susceptible ‘RQ001-02M2’, colonization up to the spongy mesophyll cells was evident. Calcium oxalate crystals were found in the upper epidermis and in palisade cells in susceptible ‘RQ001-02M2’ at 6 dpi, and throughout leaf tissues at 8 dpi. In resistant ‘Charlton’, crystals were not observed at 6 dpi, whereas at 8 dpi they were mainly confined to the upper epidermis. Starch deposits were also more prevalent in ‘RQ001-02M2’.

Conclusions

This study demonstrates for the first time at the cellular level that resistance to S. sclerotiorum in B. napus is a result of retardation of pathogen development, both on the plant surface and within host tissues. The resistance mechanisms identified in this study will be useful for engineering disease-resistant genotypes and for developing markers for screening for resistance against this pathogen.  相似文献   

9.
Understanding pathogen infectivity and virulence requires combining insights from epidemiology, ecology, evolution and genetics. Although theoretical work in these fields has identified population structure as important for pathogen life-history evolution, experimental tests are scarce. Here, we explore the impact of population structure on life-history evolution in phage T4, a viral pathogen of Escherichia coli. The host–pathogen system is propagated as a metapopulation in which migration between subpopulations is either spatially restricted or unrestricted. Restricted migration favours pathogens with low infectivity and low virulence. Unrestricted migration favours pathogens that enter and exit their hosts quickly, although they are less productive owing to rapid extirpation of the host population. The rise of such ‘rapacious’ phage produces a ‘tragedy of the commons’, in which better competitors lower productivity. We have now identified a genetic basis for a rapacious life history. Mutations at a single locus (rI) cause increased virulence and are sufficient to account for a negative relationship between phage competitive ability and productivity. A higher frequency of rI mutants under unrestricted migration signifies the evolution of rapaciousness in this treatment. Conversely, spatially restricted migration favours a more ‘prudent’ pathogen strategy, in which the tragedy of the commons is averted. As our results illustrate, profound epidemiological and ecological consequences of life-history evolution in a pathogen can have a simple genetic cause.  相似文献   

10.
The crystal structure of subtype-B HIV-1 genomic RNA Dimerization Initiation Site duplex revealed chain cleavage at a specific position resulting in 3′-phosphate and 5′-hydroxyl termini. A crystallographic analysis showed that Ba2+, Mn2+, Co2+ and Zn2+ bind specifically on a guanine base close to the cleaved position. The crystal structures also point to a necessary conformational change to induce an ‘in-line’ geometry at the cleavage site. In solution, divalent cations increased the rate of cleavage with pH/pKa compensation, indicating that a cation-bound hydroxide anion is responsible for the cleavage. We propose a ‘Trojan horse’ mechanism, possibly of general interest, wherein a doubly charged cation hosted near the cleavage site as a ‘harmless’ species is further transformed in situ into an ‘aggressive’ species carrying a hydroxide anion.  相似文献   

11.
Gram-negative ‘superbugs’ such as New Delhi metallo-beta-lactamase-1 (bla NDM-1) producing pathogens have become world’s major public health threats. Development of molecular strategies that can rehabilitate the ‘old antibiotics’ and halt the antibiotic resistance is a promising approach to target them. We report membrane-active macromolecules (MAMs) that restore the antibacterial efficacy (enhancement by >80-1250 fold) of tetracycline antibiotics towards bla NDM-1 Klebsiella pneumonia and bla NDM-1 Escherichia coli clinical isolates. Organismic studies showed that bacteria had an increased and faster uptake of tetracycline in the presence of MAMs which is attributed to the mechanism of re-sensitization. Moreover, bacteria did not develop resistance to MAMs and MAMs stalled the development of bacterial resistance to tetracycline. MAMs displayed membrane-active properties such as dissipation of membrane potential and membrane-permeabilization that enabled higher uptake of tetracycline in bacteria. In-vivo toxicity studies displayed good safety profiles and preliminary in-vivo antibacterial efficacy studies showed that mice treated with MAMs in combination with antibiotics had significantly decreased bacterial burden compared to the untreated mice. This report of re-instating the efficacy of the antibiotics towards bla NDM-1 pathogens using membrane-active molecules advocates their potential for synergistic co-delivery of antibiotics to combat Gram-negative superbugs.  相似文献   

12.
The potential for commensal microorganisms indigenous to a host (the ‘microbiome’ or ‘microbiota’) to alter infection outcome by influencing host-pathogen interplay is largely unknown. We used a multi-omics “systems” approach, incorporating proteomics, metabolomics, glycomics, and metagenomics, to explore the molecular interplay between the murine host, the pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium), and commensal gut microorganisms during intestinal infection with S. Typhimurium. We find proteomic evidence that S. Typhimurium thrives within the infected 129/SvJ mouse gut without antibiotic pre-treatment, inducing inflammation and disrupting the intestinal microbiome (e.g., suppressing Bacteroidetes and Firmicutes while promoting growth of Salmonella and Enterococcus). Alteration of the host microbiome population structure was highly correlated with gut environmental changes, including the accumulation of metabolites normally consumed by commensal microbiota. Finally, the less characterized phase of S. Typhimurium’s lifecycle was investigated, and both proteomic and glycomic evidence suggests S. Typhimurium may take advantage of increased fucose moieties to metabolize fucose while growing in the gut. The application of multiple omics measurements to Salmonella-induced intestinal inflammation provides insights into complex molecular strategies employed during pathogenesis between host, pathogen, and the microbiome.  相似文献   

13.
This paper shows that the ~66 kDa band, previously isolated from the HepG2 cell line as an oligonucleotide (ON) plasma membrane ‘receptor’, is induced by Mycoplasma infection. Moreover, this band has been identified as the invariant membrane protein of Mycoplasma hyorhinis, p70, based on ribosomal DNA sequencing combined with ON ligand blotting after p70 immunoprecipitation by a monoclonal antibody. Whereas antibiotic treatment of infected HepG2 cells strongly decreased ON capture, as measured by a biochemical assay, conversely, deliberate infection of HeLa cells with M.hyorhinis dramatically promoted ON uptake but did not affect receptor-mediated endocytosis of transferrin. This was confirmed by confocal microscopy of infected HepG2 cells, which also showed an indistinguishable labelling pattern after exposure of living cells to fluorescent ON and after p70 immunolabelling in permeabilised fixed cells. We propose that ON binds to p70 on M.hyorhinis attached at the cell surface, after which the complex is internalised by ‘piggy-back’ endocytosis.  相似文献   

14.
Humankind''s ongoing battle with pest species spans millennia. Pests cause or carry disease, damage or consume food crops and other resources, and drive global environmental change. Conventional approaches to pest management usually involve lethal control, but such approaches are costly, of varying efficiency and often have ethical issues. Thus, pest management via control of reproductive output is increasingly considered an optimal solution. One of the most successful such ‘fertility control’ strategies developed to date is the sterile male technique (SMT), in which large numbers of sterile males are released into a population each generation. However, this approach is time-consuming, labour-intensive and costly. We use mathematical models to test a new twist on the SMT, using maternally inherited mitochondrial (mtDNA) mutations that affect male, but not female reproductive fitness. ‘Trojan females’ carrying such mutations, and their female descendants, produce ‘sterile-male’-equivalents under natural conditions over multiple generations. We find that the Trojan female technique (TFT) has the potential to be a novel humane approach for pest control. Single large releases and relatively few small repeat releases of Trojan females both provided effective and persistent control within relatively few generations. Although greatest efficacy was predicted for high-turnover species, the additive nature of multiple releases made the TFT applicable to the full range of life histories modelled. The extensive conservation of mtDNA among eukaryotes suggests this approach could have broad utility for pest control.  相似文献   

15.
16.
Pre‐eclampsia (PE) is deemed an ischemia‐induced metabolic disorder of the placenta due to defective invasion of trophoblasts during placentation; thus, the driving role of metabolism in PE pathogenesis is largely ignored. Since trophoblasts undergo substantial glycolysis, this study aimed to investigate its function and regulatory mechanism by AMPK in PE development. Metabolomics analysis of PE placentas was performed by gas chromatography–mass spectrometry (GC–MS). Trophoblast‐specific AMPKα1‐deficient mouse placentas were generated to assess morphology. A mouse PE model was established by Reduced Uterine Perfusion Pressure, and placental AMPK was modulated by nanoparticle‐delivered A769662. Trophoblast glucose uptake was measured by 2‐NBDG and 2‐deoxy‐d‐[3H] glucose uptake assays. Cellular metabolism was investigated by the Seahorse assay and GC–MS.PE complicated trophoblasts are associated with AMPK hyperactivation due not to energy deficiency. Thereafter, AMPK activation during placentation exacerbated PE manifestations but alleviated cell death in the placenta. AMPK activation in trophoblasts contributed to GLUT3 translocation and subsequent glucose metabolism, which were redirected into gluconeogenesis, resulting in deposition of glycogen and accumulation of phosphoenolpyruvate; the latter enhanced viability but compromised trophoblast invasion. However, ablation of AMPK in the mouse placenta resulted in decreased glycogen deposition and structural malformation. These data reveal a novel homeostasis between invasiveness and viability in trophoblasts, which is mechanistically relevant for switching between the ‘go’ and ‘grow’ cellular programs.

Pre‐eclampsia (PE) is associated with trophoblast AMPK hyperactivation, presumably due to LKB1 phosphorylation, and glucose uptake is consequently increased via trafficking of GLUT3 from the cytosol to the plasma membrane. Such translocation enhances glycolytic flux and redirects glucose metabolic intermediates into gluconeogenesis, resulting in PEP accumulation, which not only benefits cell survival but also suppresses invasion by repressing MMPs, and thus in turn modulates switching between the ‘go’ and ‘grow’ cellular programs.  相似文献   

17.
Public goods cooperation is common in microbes, and there is much interest in understanding how such traits evolve. Research in recent years has identified several important factors that shape the evolutionary dynamics of such systems, yet few studies have investigated scenarios involving interactions between multiple public goods. Here, we offer general predictions about the evolutionary trajectories of two public goods traits having positive, negative or neutral regulatory influence on one another's expression, and we report on a test of some of our predictions in the context of Pseudomonas aeruginosa's production of two interlinked iron‐scavenging siderophores. First, we confirmed that both pyoverdine and pyochelin siderophores do operate as public goods under appropriate environmental conditions. We then tracked their production in lines experimentally evolved under different iron‐limitation regimes known to favour different siderophore expression profiles. Under strong iron limitation, where pyoverdine represses pyochelin, we saw a decline in pyoverdine and a concomitant increase in pyochelin – consistent with expansion of pyoverdine‐defective cheats derepressed for pyochelin. Under moderate iron limitation, pyochelin declined – again consistent with an expected cheat invasion scenario – but there was no concomitant shift in pyoverdine because cross‐suppression between the traits is unidirectional only. Alternating exposure to strong and moderate iron limitation caused qualitatively similar though lesser shifts compared to the constant‐environment regimes. Our results confirm that the regulatory interconnections between public goods traits can significantly modulate the course of evolution, yet also suggest how we can start to predict the impacts such complexities will have on phenotypic divergence and community stability.  相似文献   

18.
In recent decades, the emergence and spread of antibiotic resistance among bacterial pathogens has become a major threat to public health. Bacteria can acquire antibiotic resistance genes by the mobilization and transfer of resistance genes from a donor strain. The human gut contains a densely populated microbial ecosystem, termed the gut microbiota, which offers ample opportunities for the horizontal transfer of genetic material, including antibiotic resistance genes. Recent technological advances allow microbiota-wide studies into the diversity and dynamics of the antibiotic resistance genes that are harboured by the gut microbiota (‘the gut resistome’). Genes conferring resistance to antibiotics are ubiquitously present among the gut microbiota of humans and most resistance genes are harboured by strictly anaerobic gut commensals. The horizontal transfer of genetic material, including antibiotic resistance genes, through conjugation and transduction is a frequent event in the gut microbiota, but mostly involves non-pathogenic gut commensals as these dominate the microbiota of healthy individuals. Resistance gene transfer from commensals to gut-dwelling opportunistic pathogens appears to be a relatively rare event but may contribute to the emergence of multi-drug resistant strains, as is illustrated by the vancomycin resistance determinants that are shared by anaerobic gut commensals and the nosocomial pathogen Enterococcus faecium.  相似文献   

19.
Snakebite is a major public health problem in Eswatini and serious envenomations can be responsible for considerable morbidity and mortality if not treated correctly. Antivenom should be administered in hospital in case of adverse reactions and any delays due to distance, transport, costs, antivenom availability and cultural beliefs can be critical. Myths and superstition surround snakes, with illness from snakebite considered a supernatural phenomenon best treated by traditional medicine since healers can explore causes through communication with the ancestors. Traditional consultations can cause significant delays and the remedies may cause further complications. Four rural focus group discussions were held in varying geographical regions to establish why people may choose traditional medicine following snakebite. The study revealed four themes, with no apparent gender bias. These were ‘beliefs and traditions’, ‘logistical issues’, ‘lack of knowledge’ and ‘parallel systems’. All snakes are feared, regardless of geographical variations in species distribution. Deep-seated cultural beliefs were the most important reason for choosing traditional medicine, the success of which is largely attributed to the ‘placebo effect’ and positive expectations. Collaboration and integration of the allopathic and traditional systems assisted by the regulation of healers and their methods could improve future treatment success. The plight of victims could be further improved with more education, lower costs and improved allopathic facilities.  相似文献   

20.
Verbs and other temporal expressions allow speakers to specify the location of events in time, as well as to move back and forth in time, shifting in a narrative between past, present and future. The referential flexibility of temporal expressions is well understood in linguistics but its neurocognitive bases remain unknown. We aimed at obtaining a neural signature of shifting times in narrative language. We recorded and analyzed event-related brain potentials (ERPs) and oscillatory responses to the adverb ‘now’ and to the second main verb in Punctual (‘An hour ago the boy stole a candy and now he peeled the fruit’) and Iterative (‘The entire afternoon the boy stole candy and now he peeled the fruit’) contexts. ‘An hour ago’ introduces a time frame that lies entirely in the past, ‘now’ shifts the narrative to the present, and ‘peeled’ shifts it back to the past. These two referential shifts in Punctual contexts are expected to leave very similar traces on neural responses. In contrast, ‘The entire afternoon’ specifies a time frame that may encompass past, present and future, such that both ‘now’ and ‘peeled’ are consistent with it. Here, no time shift is required. We found no difference in ERPs between Punctual and Iterative contexts either at ‘now’ or at the second verb. However, reference shifts modulated oscillatory signals. ‘Now’ and the second verb in Punctual contexts resulted in similar responses: an increase in gamma power with a left-anterior distribution. Gamma bursts were absent in Iterative contexts. We propose that gamma oscillations here reflect the binding of temporal variables to the values allowed by constraints introduced by temporal expressions in discourse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号