首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The neonatal heart can efficiently regenerate within a short period after birth, whereas the adult mammalian heart has extremely limited capacity to regenerate. The molecular mechanisms underlying neonatal heart regeneration remain elusive. Here, we revealed that as a coreceptor of Wnt signalling, low‐density lipoprotein receptor‐related protein 5 (LRP5) is required for neonatal heart regeneration by regulating cardiomyocyte proliferation. The expression of LRP5 in the mouse heart gradually decreased after birth, consistent with the time window during which cardiomyocytes withdrew from the cell cycle. LRP5 downregulation reduced the proliferation of neonatal cardiomyocytes, while LRP5 overexpression promoted cardiomyocyte proliferation. The cardiac‐specific deletion of Lrp5 disrupted myocardial regeneration after injury, exhibiting extensive fibrotic scars and cardiac dysfunction. Mechanistically, the decreased heart regeneration ability induced by LRP5 deficiency was mainly due to reduced cardiomyocyte proliferation. Further study identified AKT/P21 signalling as the key pathway accounting for the regulation of cardiomyocyte proliferation mediated by LRP5. LRP5 downregulation accelerated the degradation of AKT, leading to increased expression of the cyclin‐dependent kinase inhibitor P21. Our study revealed that LRP5 is necessary for cardiomyocyte proliferation and neonatal heart regeneration, providing a potential strategy to repair myocardial injury.  相似文献   

2.
The LDL receptor-related protein 1 (LRP1) partakes in metabolic and signaling events regulated in a tissue-specific manner. The function of LRP1 in airways has not been studied. We aimed to study the function of LRP1 in smoke-induced disease. We found that bronchial epithelium of patients with chronic obstructive pulmonary disease and airway epithelium of mice exposed to smoke had increased LRP1 expression. We then knocked out LRP1 in human bronchial epithelial cells in vitro and in airway epithelial club cells in mice. In vitro, LRP1 knockdown decreased cell migration and increased transforming growth factor β activation. Tamoxifen-inducible airway-specific LRP1 knockout mice (club Lrp1?/?) induced after complete lung development had increased inflammation in the bronchoalveolar space and lung parenchyma at baseline. After 6 months of smoke exposure, club Lrp1?/? mice showed a combined restrictive and obstructive phenotype, with lower compliance, inspiratory capacity, and forced expiratory volume0.05/forced vital capacity than WT smoke-exposed mice. This was associated with increased values of Ashcroft fibrotic index. Proteomic analysis of room air exposed-club Lrp1?/? mice showed significantly decreased levels of proteins involved in cytoskeleton signaling and xenobiotic detoxification as well as decreased levels of glutathione. The proteome fingerprint created by smoke eclipsed many of the original differences, but club Lrp1?/? mice continued to have decreased lung glutathione levels and increased protein oxidative damage and airway cell proliferation. Therefore, LRP1 deficiency leads to greater lung inflammation and damage and exacerbates smoke-induced lung disease.  相似文献   

3.
4.
Mouse mast cell protease-4 (mMCP4) is a chymase that has been implicated in cardiovascular diseases, including myocardial infarction (MI). This study tested a direct role of mMCP4 in mouse post-MI cardiac dysfunction and myocardial remodeling. Immunoblot and immunofluorescent double staining demonstrated mMCP4 expression in cardiomyocytes from the infarct zone from mouse heart at 28 day post-MI. At this time point, mMCP4-deficient Mcpt4?/? mice showed no difference in survival from wild-type (WT) control mice, yet demonstrated smaller infarct size, improved cardiac functions, reduced macrophage content but increased T-cell accumulation in the infarct region compared with those of WT littermates. mMCP4-deficiency also reduced cardiomyocyte apoptosis and expression of TGF-β1, p-Smad2, and p-Smad3 in the infarct region, but did not affect collagen deposition or α-smooth muscle actin expression in the same area. Gelatin gel zymography and immunoblot analysis revealed reduced activities of matrix metalloproteinases and expression of cysteinyl cathepsins in the myocardium, macrophages, and T cells from Mcpt4?/? mice. Immunoblot analysis also found reduced p-Smad2 and p-Smad3 in the myocardium from Mcpt4?/? mice, yet fibroblasts from Mcpt4?/? mice showed comparable levels of p-Smad2 and p-Smad3 to those of WT fibroblasts. Flow cytometry, immunoblot analysis, and immunofluorescent staining demonstrated that mMCP4-deficiency reduced the expression of proapoptotic cathepsins in cardiomyocytes and protected cardiomyocytes from H2O2-induced apoptosis. This study established a role of mMCP4 in mouse post-MI dysfunction by regulating myocardial protease expression and cardiomyocyte death without significant impact on myocardial fibrosis or survival post-MI in mice.  相似文献   

5.
Cardiomyocyte cell death is a major contributing factor to various cardiovascular diseases and is therefore an important target for the design of therapeutic strategies. More recently, stem cell therapies, such as transplantation of embryonic or induced pluripotent stem (iPS) cell‐derived cardiomyocytes, have emerged as a promising alternative therapeutic avenue to treating cardiovascular diseases. Nevertheless, survival of these introduced cells is a serious issue that must be solved before clinical application. We and others have identified a small non‐coding RNA, microRNA‐24 (miR‐24), as a pro‐survival molecule that inhibits the apoptosis of cardiomyocytes. However, these earlier studies delivered mimics or inhibitors of miR‐24 via viral transduction or chemical transfection, where the observed protective role of miR‐24 in cardiomyocytes might have partially resulted from its effect on non‐cardiomyocyte cells. To elucidate the cardiomyocyte‐specific effects of miR‐24 when overexpressed, we developed a genetic model by generating a transgenic mouse line, where miR‐24 expression is driven by the cardiac‐specific Myh6 promoter. The Myh6‐miR‐24 transgenic mice did not exhibit apparent difference from their wild‐type littermates under normal physiological conditions. However, when the mice were subject to myocardial infarction (MI), the transgenic mice exhibited decreased cardiomyocyte apoptosis, improved cardiac function and reduced scar size post‐MI compared to their wild‐type littermates. Interestingly, the protective effects observed in our transgenic mice were smaller than those from earlier reported approaches as well as our parallelly performed non‐genetic approach, raising the possibility that non‐genetic approaches of introducing miR‐24 might have been mediated via other cell types than cardiomyocytes, leading to a more dramatic phenotype. In conclusion, our study for the first time directly tests the cardiomyocyte‐specific role of miR‐24 in the adult heart, and may provide insight to strategy design when considering miRNA‐based therapies for cardiovascular diseases.  相似文献   

6.
Unlike its mammalian counterpart, the adult zebrafish heart is able to fully regenerate after severe injury. One of the most important events during the regeneration process is cardiomyocyte proliferation, which results in the replacement of lost myocardium. Growth factors that induce cardiomyocyte proliferation during zebrafish heart regeneration remain to be identified. Signaling pathways important for heart development might be reutilized during heart regeneration. IGF2 was recently shown to be important for cardiomyocyte proliferation and heart growth during mid-gestation heart development in mice, although its role in heart regeneration is unknown. We found that expression of igf2b was upregulated during zebrafish heart regeneration. Following resection of the ventricle apex, igf2b expression was detected in the wound, endocardium and epicardium at a time that coincides with cardiomyocyte proliferation. Transgenic zebrafish embryos expressing a dominant negative form of Igf1 receptor (dn-Igf1r) had fewer cardiomyocytes and impaired heart development, as did embryos treated with an Igf1r inhibitor. Moreover, inhibition of Igf1r signaling blocked cardiomyocyte proliferation during heart development and regeneration. We found that Igf signaling is required for a subpopulation of cardiomyocytes marked by gata4:EGFP to contribute to the regenerating area. Our findings suggest that Igf signaling is important for heart development and myocardial regeneration in zebrafish.  相似文献   

7.
8.
Myocardial infarction (MI) leads to a severe loss of cardiomyocytes, which in mammals are replaced by scar tissue. Epicardial derived cells (EPDCs) have been reported to differentiate into cardiomyocytes during development, and proposed to have cardiomyogenic potential in the adult heart. However, mouse MI models reveal little if any contribution of EPDCs to myocardium. In contrast to adult mammals, teleosts possess a high myocardial regenerative capacity. To test if this advantage relates to the properties of their epicardium, we studied the fate of EPDCs in cryoinjured zebrafish hearts. To avoid the limitations of genetic labelling, which might trace only a subpopulation of EPDCs, we used cell transplantation to track all EPDCs during regeneration. EPDCs migrated to the injured myocardium, where they differentiated into myofibroblasts and perivascular fibroblasts. However, we did not detect any differentiation of EPDCs nor any other non-cardiomyocyte population into cardiomyocytes, even in a context of impaired cardiomyocyte proliferation. Our results support a model in which the epicardium promotes myocardial regeneration by forming a cellular scaffold, and suggests that it might induce cardiomyocyte proliferation and contribute to neoangiogenesis in a paracrine manner.  相似文献   

9.
Low-density lipoprotein receptor-related protein 5 (LRP5) is a member of the LDLR family that orchestrates cholesterol homoeostasis. The role of LRP5 and the canonical Wnt pathway in the vascular wall of dyslipidaemic animals remains unknown. In this study, we analysed the role of LRP5 and the Wnt signalling pathway in mice fed a hypercholesterolaemic diet (HC) to trigger dyslipidaemia. We show that Lrp5−/− mice had larger aortic lipid infiltrations than wild-type mice, indicating a protective role for LRP5 in the vascular wall. Three members of the LDLR family, Lrp1, Vldlr and Lrp6, showed up-regulated gene expression levels in aortas of Lrp5−/− mice fed a hypercholesterolaemic diet. HC feeding in Lrp5−/− mice induced higher macrophage infiltration in the aortas and accumulation of inflammatory cytokines in blood. Wnt/β-CATENIN signalling proteins were down-regulated in HC Lrp5−/− mice indicating that LRP5 regulates the activation of Wnt signalling in the vascular wall. In conclusion, our findings show that LRP5 and the canonical Wnt pathway down-regulation regulate the dyslipidaemic profile by promoting lipid and macrophage retention in the vessel wall and increasing leucocyte-driven systemic inflammation.  相似文献   

10.
Hepatocyte growth factor (HGF) and its receptor, Met, are key determinants of distinct developmental processes. Although HGF exerts cardio-protective effects in a number of cardiac pathologies, it remains unknown whether HGF/Met signaling is essential for myocardial development and/or physiological function in adulthood. We therefore investigated the requirement of HGF/Met signaling in cardiomyocyte for embryonic and postnatal heart development and function by conditional inactivation of the Met receptor in cardiomyocytes using the Cre-α-MHC mouse line (referred to as α-MHCMet-KO). Although α-MHCMet-KO mice showed normal heart development and were viable and fertile, by 6 months of age, males developed cardiomyocyte hypertrophy, associated with interstitial fibrosis. A significant upregulation in markers of myocardial damage, such as β-MHC and ANF, was also observed. By the age of 9 months, α-MHCMet-KO males displayed systolic cardiac dysfunction. Mechanistically, we provide evidence of a severe imbalance in the antioxidant defenses in α-MHCMet-KO hearts involving a reduced expression and activity of catalase and superoxide dismutase, with consequent reactive oxygen species accumulation. Similar anomalies were observed in females, although with a slower kinetics. We also found that Met signaling down-regulation leads to an increase in TGF-β production and a decrease in p38MAPK activation, which may contribute to phenotypic alterations displayed in α-MHCMet-KO mice. Consistently, we show that HGF acts through p38α to upregulate antioxidant enzymes in cardiomyocytes. Our results highlight that HGF/Met signaling in cardiomyocytes plays a physiological cardio-protective role in adult mice by acting as an endogenous regulator of heart function through oxidative stress control.  相似文献   

11.
In contrast to mammals, the zebrafish maintains its cardiomyocyte proliferation capacity throughout adulthood. However, neither the molecular mechanisms that orchestrate the proliferation of cardiomyocytes during developmental heart growth nor in the context of regeneration in the adult are sufficiently defined yet. We identified in a forward genetic N-ethyl-N-nitrosourea (ENU) mutagenesis screen the recessive, embryonic-lethal zebrafish mutant baldrian (bal), which shows severely impaired developmental heart growth due to diminished cardiomyocyte proliferation. By positional cloning, we identified a missense mutation in the zebrafish histone deacetylase 1 (hdac1) gene leading to severe protein instability and the loss of Hdac1 function in vivo. Hdac1 inhibition significantly reduces cardiomyocyte proliferation, indicating a role of Hdac1 during developmental heart growth in zebrafish. To evaluate whether developmental and regenerative Hdac1-associated mechanisms of cardiomyocyte proliferation are conserved, we analyzed regenerative cardiomyocyte proliferation after Hdac1 inhibition at the wound border zone in cryoinjured adult zebrafish hearts and we found that Hdac1 is also essential to orchestrate regenerative cardiomyocyte proliferation in the adult vertebrate heart. In summary, our findings suggest an important and conserved role of Histone deacetylase 1 (Hdac1) in developmental and adult regenerative cardiomyocyte proliferation in the vertebrate heart.  相似文献   

12.
13.
Numerous cardiac diseases, including myocardial infarction (MI) and chronic heart failure, have been associated with cardiomyocyte apoptosis. Promoting cell survival by inhibiting apoptosis is one of the effective strategies to attenuate cardiac dysfunction caused by cardiomyocyte loss. miR-24 has been shown as an anti-apoptotic microRNA in various animal models. In vivo delivery of miR-24 into a mouse MI model suppressed cardiac cell death, attenuated infarct size, and rescued cardiac dysfunction. However, the molecular pathway by which miR-24 inhibits cardiomyocyte apoptosis is not known. Here we found that miR-24 negatively regulates mouse primary cadiomyocyte cell death through functioning in the intrinsic apoptotic pathways. In ER-mediated intrinsic pathway, miR-24 genetically interacts with the CEBP homologous gene CHOP as knocking down of CHOP partially attenuated the induced apoptosis by miR-24 inhibition. In mitochondria–involved intrinsic pathway, miR-24 inhibits the initiation of apoptosis through suppression of Cytochrome C release and Bax translocation from cytosol to mitochondria. These results provide mechanistic insights into the miR-24 mediated anti-apoptotic effects in murine cardiomyocytes.  相似文献   

14.
Background: Nonalcoholic fatty liver disease (NAFLD) is a serious threat to human health worldwide, with a high genetic susceptibility. Rs2302685, a functional germline variant of LRP6, has been recently found to associate with NAFLD risk. This study was aimed to clarify the underlying mechanism associated with rs2302685 risk and its impact on pharmacotherapy in treatment of NAFLD.Methods: Venous blood samples were collected from NAFLD and non-NAFLD patients for SNP genotyping by using mass spectrometry. The Lrp6-floxdel mouse (Lrp6(+/-)) was generated to model the partial function associated with human rs2302685. The liver injury and therapeutic effects of silibinin were compared between Lrp6(+/-) and Lrp6(+/+) mice received a methionine-choline deficient (MCD) diet or normal diet. The effect of Lrp6 functional alteration on Wnt/β-catenin-Cyp2e1 signaling activities was evaluated by a series of cellular and molecular assays.Results: The T allele of LRP6 rs2302685 was confirmed to associate with a higher risk of NAFLD in human subjects. The carriers of rs2302685 had reduced level of AST and ALT as compared with the noncarriers. The Lrp6(+/-) mice exhibited a less severe liver injury induced by MCD but a reduced response to the treatment of silibinin in comparison to the Lrp6(+/+) mice, suggesting Lrp6 as a target of silibinin. Wnt/β-catenin-Cyp2e1 signaling together with ROS generation could be exacerbated by the overexpression of Lrp6, while decreased in response to Lrp6 siRNA or silibinin treatment under NAFLD modeling.Conclusions: The Lrp6 function affects individual susceptibility to NAFLD and the therapeutic effect of silibinin through the Wnt/β-catenin-Cyp2e1 signaling pathway. The present work has provided an underlying mechanism for human individual susceptibility to NAFLD associated with Lrp6 polymorphisms as well as a rationale for the effective use of silibinin in NAFLD patients.  相似文献   

15.
16.
The Hippo signaling pathway has recently moved to center stage in cardiac research because of its key role in cardiomyocyte proliferation and regeneration of the embryonic and newborn heart. However, its role in the adult heart is incompletely understood. We investigate here the role of mammalian Ste20-like kinase 2 (Mst2), one of the central regulators of this pathway. Mst2−/− mice showed no alteration in cardiomyocyte proliferation. However, Mst2−/− mice exhibited a significant reduction of hypertrophy and fibrosis in response to pressure overload. Consistently, overexpression of MST2 in neonatal rat cardiomyocytes significantly enhanced phenylephrine-induced cellular hypertrophy. Mechanistically, Mst2 positively modulated the prohypertrophic Raf1-ERK1/2 pathway. However, activation of the downstream effectors of the Hippo pathway (Yes-associated protein) was not affected by Mst2 ablation. An initial genetic study in mitral valve prolapse patients revealed an association between a polymorphism in the human MST2 gene and adverse cardiac remodeling. These results reveal a novel role of Mst2 in stress-dependent cardiac hypertrophy and remodeling in the adult mouse and likely human heart.  相似文献   

17.
18.
19.
20.
Prevention of adverse cardiac remodeling after myocardial infarction (MI) remains a therapeutic challenge. Angiotensin-converting enzyme inhibitors (ACE-I) are a well-established first-line treatment. ACE-I delay fibrosis, but little is known about their molecular effects on cardiomyocytes. We investigated the effects of the ACE-I delapril on cardiomyocytes in a mouse model of heart failure (HF) after MI. Mice were randomly assigned to three groups: Sham, MI, and MI-D (6 weeks of treatment with a non-hypotensive dose of delapril started 24h after MI). Echocardiography and pressure-volume loops revealed that MI induced hypertrophy and dilation, and altered both contraction and relaxation of the left ventricle. At the cellular level, MI cardiomyocytes exhibited reduced contraction, slowed relaxation, increased diastolic Ca2+ levels, decreased Ca2+-transient amplitude, and diminished Ca2+ sensitivity of myofilaments. In MI-D mice, however, both mortality and cardiac remodeling were decreased when compared to non-treated MI mice. Delapril maintained cardiomyocyte contraction and relaxation, prevented diastolic Ca2+ overload and retained the normal Ca2+ sensitivity of contractile proteins. Delapril maintained SERCA2a activity through normalization of P-PLB/PLB (for both Ser16- PLB and Thr17-PLB) and PLB/SERCA2a ratios in cardiomyocytes, favoring normal reuptake of Ca2+ in the sarcoplasmic reticulum. In addition, delapril prevented defective cTnI function by normalizing the expression of PKC, enhanced in MI mice. In conclusion, early therapy with delapril after MI preserved the normal contraction/relaxation cycle of surviving cardiomyocytes with multiple direct effects on key intracellular mechanisms contributing to preserve cardiac function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号