首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
2.
Coronavirus disease 19 (COVID-19) is caused by a highly contagious RNA virus Severe Acute Respiratory Syndrome coronavirus-2 (SARS-CoV-2), originated in December 2019 in Wuhan, China. Since then, it has become a global public health concern and leads the disease table with the highest mortality rate, highlighting the necessity for a thorough understanding of its biological properties. The intricate interaction between the virus and the host immune system gives rise to diverse implications of COVID-19. RNA viruses are known to hijack the host epigenetic mechanisms of immune cells to regulate antiviral defence. Epigenetics involves processes that alter gene expression without changing the DNA sequence, leading to heritable phenotypic changes. The epigenetic landscape consists of reversible modifications like chromatin remodelling, DNA/RNA methylation, and histone methylation/acetylation that regulates gene expression. The epigenetic machinery contributes to many aspects of SARS-CoV-2 pathogenesis, like global DNA methylation and receptor angiotensin-converting enzyme 2 (ACE2) methylation determines the viral entry inside the host, viral replication, and infection efficiency. Further, it is also reported to epigenetically regulate the expression of different host cytokines affecting antiviral response. The viral proteins of SARS-CoV-2 interact with various host epigenetic enzymes like histone deacetylases (HDACs) and bromodomain-containing proteins to antagonize cellular signalling. The central role of epigenetic factors in SARS-CoV-2 pathogenesis is now exploited as promising biomarkers and therapeutic targets against COVID-19. This review article highlights the ability of SARS-CoV-2 in regulating the host epigenetic landscape during infection leading to immune evasion. It also discusses the ongoing therapeutic approaches to curtail and control the viral outbreak.  相似文献   

3.
4.
5.
6.
7.
The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection causes Coronavirus Disease 2019 (COVID-19), a pandemic that seriously threatens global health. SARS-CoV-2 propagates by packaging its RNA genome into membrane enclosures in host cells. The packaging of the viral genome into the nascent virion is mediated by the nucleocapsid (N) protein, but the underlying mechanism remains unclear. Here, we show that the N protein forms biomolecular condensates with viral genomic RNA both in vitro and in mammalian cells. While the N protein forms spherical assemblies with homopolymeric RNA substrates that do not form base pairing interactions, it forms asymmetric condensates with viral RNA strands. Cross-linking mass spectrometry (CLMS) identified a region that drives interactions between N proteins in condensates, and deletion of this region disrupts phase separation. We also identified small molecules that alter the size and shape of N protein condensates and inhibit the proliferation of SARS-CoV-2 in infected cells. These results suggest that the N protein may utilize biomolecular condensation to package the SARS-CoV-2 RNA genome into a viral particle.

The packaging of the SARS-CoV-2 genome is mediated by the nucleocapsid (N) protein; this study shows that the N protein forms liquid condensates with viral genomic RNA and identifies small molecules that alter these condensates.  相似文献   

8.
The SARS-CoV-2 infection activates host kinases and causes high phosphorylation in both the host and the virus. There were around 70 phosphorylation sites found in SARS-CoV-2 viral proteins. Besides, almost 15,000 host phosphorylation sites were found in SARS-CoV-2-infected cells. COVID-19 is thought to enter cells via the well-known receptor Angiotensin-Converting Enzyme 2 (ACE2) and the serine protease TMPRSS2. Substantially, the COVID-19 infection doesn’t induce phosphorylation of the ACE2 receptor at Serin-680(s680). Metformin's numerous pleiotropic properties and extensive use in medicine including COVID-19, have inspired experts to call it the “aspirin of the twenty-first century”. Metformin's impact on COVID-19 has been verified in clinical investigations via ACE2 receptor phosphorylation at s680. In the infection of COVID-19, sodium-dependent transporters including the major neutral amino acid (B0AT1) is regulated by ACE2. The structure of B0AT1 complexing with the COVID-19 receptor ACE2 enabled significant progress in the creation of mRNA vaccines. We aimed to study the impact of the interaction of the phosphorylation form of ACE2-s680 with wild-type (WT) and different mutations of SARS-CoV-2 infection such as delta, omicron, and gamma (γ) on their entrance of host cells as well as the regulation of B0AT1by the SARS-CoV-2 receptor ACE2. Interestingly, compared to WT SARS-CoV-2, ACE2 receptor phosphorylation at s680 produces conformational alterations in all types of SARS-CoV-2. Furthermore, our results showed for the first time that this phosphorylation significantly influences ACE2 sites K625, K676, and R678, which are key mediators for ACE2-B0AT1 complex.  相似文献   

9.
10.
N6‐methyladenosine (m6A) is a highly dynamic RNA modification that has recently emerged as a key regulator of gene expression. While many m6A modifications are installed by the METTL3–METTL14 complex, others appear to be introduced independently, implying that additional human m6A methyltransferases remain to be identified. Using crosslinking and analysis of cDNA (CRAC), we reveal that the putative human m6A “writer” protein METTL16 binds to the U6 snRNA and other ncRNAs as well as numerous lncRNAs and pre‐mRNAs. We demonstrate that METTL16 is responsible for N6‐methylation of A43 of the U6 snRNA and identify the early U6 biogenesis factors La, LARP7 and the methylphosphate capping enzyme MEPCE as METTL16 interaction partners. Interestingly, A43 lies within an essential ACAGAGA box of U6 that base pairs with 5′ splice sites of pre‐mRNAs during splicing, suggesting that METTL16‐mediated modification of this site plays an important role in splicing regulation. The identification of METTL16 as an active m6A methyltransferase in human cells expands our understanding of the mechanisms by which the m6A landscape is installed on cellular RNAs.  相似文献   

11.
真核生物mRNA存在多种甲基化修饰,其中N6-腺苷酸甲基化(N6-methyladenosine, m6A)修饰是最为常见的一种动态内部修饰。m6A是指RNA腺嘌呤的第6位氮原子上发生甲基化修饰,它能够动态的被甲基转移酶添加,被去甲基化酶去除,以及被甲基化阅读蛋白识别。近年来,植物m6A修饰相关的酶被陆续鉴定,研究发现m6A修饰调控植物胚胎发育、茎尖分生组织分化、开花等生长发育过程,在植物抗逆境胁迫响应中也具有重要调控作用。本文就m6A修饰相关酶的组成及其在植物生长发育和植物抗逆境胁迫过程中的功能相关研究进展进行综述,并对甘蓝型油菜中m6A修饰相关的酶进行了生物信息学分析。  相似文献   

12.
RNA modifications are being recognized as an essential factor in gene expression regulation. They play essential roles in germ line development, differentiation and disease. In eukaryotic mRNAs, N6-adenosine methylation (m6A) is the most prevalent internal chemical modification identified to date. The m6A pathway involves factors called writers, readers and erasers. m6A thus offers an interesting concept of dynamic reversible modification with implications in fine-tuning the cellular metabolism. In mammals, FTO and ALKBH5 have been initially identified as m6A erasers. Recently, FTO m6A specificity has been debated as new reports identify FTO targeting N6,2′-O-dimethyladenosine (m6Am). The two adenosine demethylases have diverse roles in the metabolism of mRNAs and their activity is involved in key processes, such as embryogenesis, disease or infection. In this article, we review the current knowledge of their function and mechanisms and discuss the existing contradictions in the field. This article is part of a Special Issue entitled: mRNA modifications in gene expression control edited by Dr. Soller Matthias and Dr. Fray Rupert.  相似文献   

13.
14.
The outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the coronavirus 2019 disease, has led to an ongoing global pandemic since 2019. Mass spectrometry can be used to understand the molecular mechanisms of viral infection by SARS-CoV-2, for example, by determining virus–host protein–protein interactions through which SARS-CoV-2 hijacks its human hosts during infection, and to study the role of post-translational modifications. We have reanalyzed public affinity purification–mass spectrometry data using open modification searching to investigate the presence of post-translational modifications in the context of the SARS-CoV-2 virus–host protein–protein interaction network. Based on an over twofold increase in identified spectra, our detected protein interactions show a high overlap with independent mass spectrometry-based SARS-CoV-2 studies and virus–host interactions for alternative viruses, as well as previously unknown protein interactions. In addition, we identified several novel modification sites on SARS-CoV-2 proteins that we investigated in relation to their interactions with host proteins. A detailed analysis of relevant modifications, including phosphorylation, ubiquitination, and S-nitrosylation, provides important hypotheses about the functional role of these modifications during viral infection by SARS-CoV-2.  相似文献   

15.
目的 N6-甲基化腺苷(N6-methyladenosine,m6A)是RNA中最常见、最丰富的化学修饰,在很多生物过程中发挥着重要作用。目前已经发展了一些预测m6A甲基化位点的计算方法。然而,这些方法在针对不同物种或不同组织时,缺乏稳健性。为了提升对不同组织中m6A甲基化位点预测的稳健性,本文提出一种能结合序列反向信息来提取数据更高级特征的双层双向门控循环单元(bidirectional gated recurrent unit,BiGRU)网络模型。方法 本文选取具有代表性的哺乳动物组织m6A甲基化位点数据集作为训练数据,通过对模型网络、网络结构、层数和优化器等进行搭配,构建双层BiGRU网络。结果 将模型应用于人类、小鼠和大鼠共11个组织的m6A甲基化位点预测上,并与其他方法在这11个组织上的预测能力进行了全面的比较。结果表明,本文构建的模型平均预测接受者操作特征曲线下面积(area under the receiver operating characteristic curve,AUC)达到93.72%,与目前最好的预测方法持平,而预测准确率(accuracy,ACC)、敏感性(sensitivity,SN)、特异性(specificity,SP)和马修斯相关系数(Matthews correlation coefficient,MCC)分别为90.07%、90.30%、89.84%和80.17%,均高于目前的m6A甲基化位点预测方法。结论 和已有研究方法相比,本文方法对11个哺乳动物组织的m6A甲基化位点的预测准确性均达到最高,说明本文方法具有较好的泛化能力。  相似文献   

16.
17.
N6 methylation of adenosine (m6A) was recently discovered to play a role in regulating the life cycle of various viruses by modifying viral and host RNAs. However, different studies on m6A effects on the same or different viruses have revealed contradictory roles for m6A in the viral life cycle. In this study, we sought to define the role of m6A on infection by rice black streaked dwarf virus (RBSDV), a double-stranded RNA virus, of its vector small brown planthopper (SBPH). Infection by RBSDV decreased the level of m6A in midgut cells of SBPHs. We then cloned two genes (LsMETTL3 and LsMETTL14) that encode m6A RNA methyltransferase in SBPHs. After interference with expression of the two genes, the titre of RBSDV in the midgut cells of SBPHs increased significantly, suggesting that m6A levels were negatively correlated with virus replication. More importantly, our results revealed that m6A modification might be the epigenetic mechanism that regulates RBSDV replication in its insect vector and maintains a certain virus threshold required for persistent transmission.  相似文献   

18.
RNA modification plays an important role in modulating host-pathogen interaction. Flavivirus NS5 protein encodes N-7 and 2′-O methyltransferase activities that are required for the formation of 5′ type I cap (m7GpppAm) of viral RNA genome. Here we reported, for the first time, that flavivirus NS5 has a novel internal RNA methylation activity. Recombinant NS5 proteins of West Nile virus and Dengue virus (serotype 4; DENV-4) specifically methylates polyA, but not polyG, polyC, or polyU, indicating that the methylation occurs at adenosine residue. RNAs with internal adenosines substituted with 2′-O-methyladenosines are not active substrates for internal methylation, whereas RNAs with adenosines substituted with N6-methyladenosines can be efficiently methylated, suggesting that the internal methylation occurs at the 2′-OH position of adenosine. Mass spectroscopic analysis further demonstrated that the internal methylation product is 2′-O-methyladenosine. Importantly, genomic RNA purified from DENV virion contains 2′-O-methyladenosine. The 2′-O methylation of internal adenosine does not require specific RNA sequence since recombinant methyltransferase of DENV-4 can efficiently methylate RNAs spanning different regions of viral genome, host ribosomal RNAs, and polyA. Structure-based mutagenesis results indicate that K61-D146-K181-E217 tetrad of DENV-4 methyltransferase forms the active site of internal methylation activity; in addition, distinct residues within the methyl donor (S-adenosyl-L-methionine) pocket, GTP pocket, and RNA-binding site are critical for the internal methylation activity. Functional analysis using flavivirus replicon and genome-length RNAs showed that internal methylation attenuated viral RNA translation and replication. Polymerase assay revealed that internal 2′-O-methyladenosine reduces the efficiency of RNA elongation. Collectively, our results demonstrate that flavivirus NS5 performs 2′-O methylation of internal adenosine of viral RNA in vivo and host ribosomal RNAs in vitro.  相似文献   

19.
N6-methyladenosine (m6A) is one of the most widespread and highly conserved chemical modifications in cellular RNAs of eukaryotic genomes. Owing to the development of high-throughput m6A sequencing, the functions and mechanisms of m6A modification in development and diseases have been revealed. Recent studies have shown that RNA m6A methylation plays a critical role in skeletal muscle development, which regulates myoblast proliferation and differentiation, and muscle regeneration. Exploration of the functions of m6A modification and its regulators provides a deeper understanding of the regulatory mechanisms underlying skeletal muscle development. In the present review, we aim to summarize recent breakthroughs concerning the global landscape of m6A modification in mammals and examine the biological functions and mechanisms of enzymes regulating m6A RNA methylation. We describe the interplay between m6A and other epigenetic modifications and highlight the regulatory roles of m6A in development, especially that of skeletal muscle. m6A and its regulators are expected to be targets for the treatment of human muscle-related diseases and novel epigenetic markers for animal breeding in meat production.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号