首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Male katydids produce mating calls by stridulation using specialized structures on the forewings. The right wing (RW) bears a scraper connected to a drum‐like cell known as the mirror and a left wing (LW) that overlaps the RW and bears a serrated vein on the ventral side, the stridulatory file. Sound is generated with the scraper sweeping across the file, producing vibrations that are amplified by the mirror. Using this sound generator, katydids exploit a range of song carrier frequencies (CF) unsurpassed by any other insect group, with species singing as low as 600 Hz and others as high as 150 kHz. Sound generator size has been shown to scale negatively with CF, but such observations derive from studies based on few species, without phylogenetic control, and/or using only the RW mirror length. We carried out a phylogenetic comparative analysis involving 94 species of katydids to study the relationship between LW and RW components of the sound generator and the CF of the male's mating call, while taking into account body size and phylogenetic relationships. The results showed that CF negatively scaled with all morphological measures, but was most strongly related to components of the sound generation system (file, LW and RW mirrors). Interestingly, the LW mirror (reduced and nonfunctional) predicted CF more accurately than the RW mirror, and body size is not a reliable CF predictor. Mathematical models were verified on known species for predicting CF in species for which sound is unknown (e.g. fossils or museum specimens).  相似文献   

2.
Summary Details in the stridulatory movement ofGryllus campestris were investigated using an improved high resolution miniature angle measurement system. The following results were obtained: During the closing (sound producing) stroke, the speed of the plectrum always has the same value (within measuring accuracy) at a given position. Plectrum speed is directly proportional to tooth spacing, which is known to vary along the file. The only exception to this rule were occasions when closing velocities of precisely 2 times the standard value were found. In between values were never recorded. While temperature has a large effect on the opening speed and duration, the closing speed has a very smallQ 10 (0.07) which is equal to theQ 10 of the resonance frequency of the harp. When the harps are removed, the proportionality between tooth spacing and scraper velocity is lost; the velocity is much increased (up to 3-fold) and the variance of the speed is enhanced 5-fold.These results are discussed with respect to 3 hypothetical models explaining the function of the sound generator system. The model describing the cricket sound generator as a clockwork with an escapement system is capable of accommodating all experimental data without any extra assumptions.  相似文献   

3.
This paper describes the biomechanics of an unusual form of wing stridulation in katydids, termed here 'reverse stridulation'. Male crickets and katydids produced sound to attract females by rubbing their forewings together. One of the wings bears a vein ventrally modified with teeth (a file), while the other harbours a scraper on its anal edge. The wings open and close in rhythmic cycles, but sound is usually produced during the closing phase as the scraper moves along the file. Scraper-tooth strikes create vibrations that are subsequently amplified by wing cells specialised in sound radiation. The sound produced is either resonant (pure tone) or non-resonant (broadband); these two forms vary across species, but resonant requires complex wing mechanics. Using a sensitive optical diode and high-speed video to examine wing motion, and Laser Doppler Vibrometry (LDV) to study wing resonances, I describe the mechanics of stridulation used by males of the neotropical katydid Ischnomela gracilis (Pseudophyllinae). Males sing with a pure tone at ca.15 kHz and, in contrast to most Ensifera using wing stridulation, produce sound during the opening phase of the wings. The stridulatory file exhibits evident adaptations for such reverse scraper motion. LDV recordings show that the wing cells resonate sharply at ca. 15 kHz. Recordings of wing motion suggest that during the opening phase, the scraper strikes nearly 15,000 teeth/s. Therefore, the song of this species is produced by resonance. The implications of such adaptations (reverse motion, file morphology, and wing resonance) are discussed.  相似文献   

4.
We investigated auditory signals and morphology of the stridulatory apparatus of the European beech leaf‐mining weevil, Orchestes fagi L. (Coleoptera: Curculionidae), an invasive herbivore now established in Nova Scotia, Canada, to determine their potential for enhancing survey tools to monitor the spread of the species in Canada. We recorded and described sounds produced by adult O. fagi, analyzed the morphology of the stridulatory mechanism for intersexual differences and asymmetry, and examined behavioral responses elicited in conspecifics by playback of stridulation recordings. Adult O. fagi produced sounds under three conditions: male in distress, female in distress, and male in the presence of female. Female distress chirps lasted significantly longer than male distress chirps and male chirps in the presence of females, but peak frequencies and mean number of chirps per s did not differ significantly among the three groups. Morphology of the stridulation structures in male and female O. fagi was compared using scanning electron microscopy. Orchestes fagi have an elytro‐tergal file‐ and scraper‐type sound production apparatus, through which sound is produced upon anterior motion of the abdomen. Female O. fagi have a ‘pars stridens’ that is longer and has more ridges than males. Width and number of ridges per length of pars stridens did not differ between the sexes. Evidence of asymmetry was found in male pars stridens, with the right side being longer than the left. Playback of recorded sounds to adult weevils suggests female O. fagi were repelled by sounds produced by distressed males.  相似文献   

5.
ABSTRACT

Sound production in seven species of bush crickets (Tettigonia cantans, T. virridissima, Decticus verrucivorus, D. albifrons, Psorodonotus illyricus, Ephippiger ephippiger, E. discoidalis) has been investigated. Aspects of wing morphology have been compared and show that areas of the dorsal fields and the mirror are correlated with the dominant frequencies of the songs. Tooth removal from the pars stridens produces gaps in the time structure of single syllables but no change in the song power spectra. The removal of the tegminal lateral field in long- and medium-sized wing species (T.c., T.v., D.a., D.v.) produces an increase in the ultrasonic components of caudally-emitted sound. This suggests an absorbing function for the lateral fields in intact animals. In all species removal of a small portion of the mirror frame or of the mirror membrane attenuates the whole stridulatory signal, but especially the ultrasonic components. The mirror therefore functions as an amplifier, especially for high frequencies. Manipulation of the dorsal fields of long- and medium-winged species, or the distal edges of tegmina of brachypterous species, deletes or shifts the songs' dominant frequency. Thus the different tegminal structures (and especially the dorsal fields) contribute to the time structures and power spectra of the stridulatory songs of these species.  相似文献   

6.
7.
In Tettigoniidae (Orthoptera: Ensifera), hearing organs are essential in mate detection. Male tettigoniids usually produce calling songs by tegminal stridulation, whereas females approach the males phonotactically. This unidirectional communication system is the most common one among tettigoniids. In several tettigoniid lineages, females have evolved acoustic replies to the male calling song which constitutes a bidirectional communication system. The genus Poecilimon (Tettigoniidae: Phaneropterinae) is of special interest because the ancestral state of bidirectional communication, with calling males and responding females, has been reversed repeatedly to unidirectional communication. Acoustic communication is mediated by hearing organs that are adapted to the conspecific signals. Therefore, we analyse the auditory system in the Tettigoniidae genus Poecilimon for functional adaptations in three characteristics: (i) dimension of sound‐receiving structures (tympanum and acoustic spiracle), (ii) number of auditory sensilla and (iii) hearing sensitivity. Profound differences in the auditory system correlate with uni‐ or bidirectional communication. Among the sound‐receiving structures, the tympana scale with body size, whereas the acoustic spiracle, the major sound input structure, was drastically reduced in unidirectional communicating species. In the unidirectional P. ampliatus group, auditory sensilla are severely reduced in numbers, but not in the unidirectional P. propinquus group. Within the P. ampliatus group, the number of auditory sensilla is further reduced in P. intermedius which lost acoustic signalling due to parthenogenesis. The auditory sensitivity correlated with the size of the acoustic spiracle, as hearing sensitivity was better with larger spiracles, especially in the ultrasonic range. Our results show a significant reduction in auditory structures, shaped by the differing sex roles during mate detection.  相似文献   

8.
Crickets produce stridulated sounds by rubbing their forewings together. The calling song of the cricket species Eneoptera guyanensis Chopard, 1931 alternates two song sections, at low and high dominant frequencies, corresponding to two distinct sections of the stridulatory file. In the present study we address the complex acoustic behavior of E. guyanensis by integrating information on the peculiar morphology of the stridulatory file, the acoustic analysis of its calling song and the forewing movements during sound production. The results show that even if E. guyanensis matches the normal cricket functioning for syllable production, the stridulation involves two different closing movements, corresponding to two types of syllables, allowing the plectrum to hit alternately each differentiated section of the file. Transition syllables combine high and low frequencies and are emitted by a complete forewing closure over the whole file. The double-teeth section of the stridulatory file may be used as a multiplier for the song frequency because of the morphological multiplication due to the double teeth, but also because of an increase of wing velocity when this file section is used. According to available phylogenetic and acoustic data, this complex stridulation may have evolved in a two-step process.  相似文献   

9.
Proceeding from three previously derived expressions for the intensity of nitrification in soil as a function of time (logΣN=K.logt+q), as a function of incubation moisture (logΣN=A.pF i+B), as a function of initial moisture (logΣN=C.pF v+D), it was shown that the nitrification intensity as a function of time and of moisture can be expressed by the bilinear function log ΣN=a.pF i.logT+b.pF i+c.logt+d; as a function of time and of initial moisture by the bilinear function logΣ=N=a.pF v.logt+b.pF v+c.logt+d; as a function of initial and incubation moisture by the bilinear function log ΣN=a.pF ipF v+b.pF i+c.pF v+d. The intensity of nitrification as a function of time, incubation moisture and initial moisture may be expressed by the multilinear function log ΣN=a.pF i.pF v.logt+b.pF i.pF v+c.pF i.logt+d.pF v.logt+e .pF i+f.pF v=g.logt+h. This function is valid for all the incubation moistures lying between pF i 3.0 and 4.0 and for all initial moistures between 3.5 and 5.9 provided that the incubation temperature remains constant.  相似文献   

10.
The bushcricket Pantecphylus cerambycinus has two types of stridulatory mechanisms and acoustical signals. The elytro-elytral mechanism typical for tettigonioid bushcrickets is used to produce a narrow-band calling song (peak frequency 15 kHz). An abdomino-alary mechanism is used for disturbance stridulation. Its stridulatory file is situated on the hind edge of the abdominal tergites and consists of 50-70 parallel ridges, covering the whole width of the tergite. The broad-band sound (peak frequency 10 kHz) is produced by the contact between the file and ribs situated on the upper side of the hindwings which are folded in such a way that their upper side is directed toward the tergites. Defensive stridulation in bushcrickets is reviewed here, and its function and evolution discussed in the context of predator avoidance strategies. © 1996 Wiley-Liss, Inc.  相似文献   

11.
The morphogeneesis of sound producing organs in Gryllus bimaculatus has been studied in detail. Though the auxiliary structure of the sound producing organs are fully formed in the last nymphal instars the essential structure of the sound production, namely the file, appears only at the imaginal moult. The teeth of the file show variation in number between 135–165. All the teeth have similar structures. The muscle 107a plays an important role in the sound production and is present only in the male.  相似文献   

12.
Plant self-thinning dynamics   总被引:1,自引:0,他引:1  
Roland Dewsberry 《Planta》1977,136(3):249-252
Plant self-thinning of Hellianthus annuus is examined and it is shown that the mean leaf area ratio is equal to the mean plant density ratio to the power-4/3 independent of the mean plant dry weight and independent of the light intensity over the experimental range considered. The constant term of this basic self-thinning equation is identified, in terms of the mean leaf area and mean plant density values (L c and p c respectively) for the plant population in its earliest competing post germination stage and in terms of the derivatives (d log L/d log p)1=(d log L/dt)1/(d log p/dt)1=-4/3 which is independent of light intensity, as L c pc -4/3.  相似文献   

13.
Heart rate (beats · min–1;f c) measured during marching with a load is often used to predict the oxygen cost (1·min–1; VO2) of the activity. The prediction comes from thef c/VO2 relationship determined from laboratory measures off c and VO2 during treadmill running. Studies in men have suggested that this may not be appropriate although this has yet to be examined in women. This study, therefore, compared thef c/VO2 relationship between loaded marching and maximal running protocols in women. Sixteen female subjects [mean (SD), age 21.9 (2.3) years, height 6 (0.06) m, weight 62.6 (7.6) kg] had theirf c (from three-lead chest electrodes) and VO2 measured first during standard treadmill run protocols, and again 1 week later during loaded marching protocols. The slopes and intercepts determined from linear regression off c on VO2 for each individual for each protocol were compared as were the maximalf c(f cmax), VO2 and ratings of perceived exertion (RPE) from the last work period of each protocol in pairedt-tests. The VO2 slopes (P < 0.01) and intercepts (P < 0.05) differed significantly between loaded marching and running.f cmax for loaded marching were 90% off cmax for running (P < 0.01) and VO2 for loaded marching were 80% of those for running (P < 0.01). However, RPE at the final levels for the two protocols were not significantly different. The data suggest that in women the VO2 relationships for loaded marching and for running are different. This difference is similar to that found in men when speed is held constant and the load and gradient are varied. The results suggest that it would be erroneous to usef c and VO2 measured during running protocols in the laboratory to estimate energy expenditure and work intensity during loaded marching in the filed.  相似文献   

14.
Theory and Simulation of Water Permeation in Aquaporin-1   总被引:6,自引:1,他引:5  
We discuss the difference between osmotic permeability pf and diffusion permeability pd of single-file water channels and demonstrate that the pf/pd ratio corresponds to the number of effective steps a water molecule needs to take to permeate a channel. While pd can be directly obtained from equilibrium molecular dynamics simulations, pf can be best determined from simulations in which a chemical potential difference of water has been established on the two sides of the channel. In light of this, we suggest a method to induce in molecular dynamics simulations a hydrostatic pressure difference across the membrane, from which pf can be measured. Simulations using this method are performed on aquaporin-1 channels in a lipid bilayer, resulting in a calculated pf of 7.1 × 10−14 cm3/s, which is in close agreement with observation. Using a previously determined pd value, we conclude that pf/pd for aquaporin-1 measures ~12. This number is explained in terms of channel architecture and conduction mechanism.  相似文献   

15.
SOUND PRODUCTION BY AQUATIC INSECTS   总被引:1,自引:0,他引:1  
1. Sound production by aquatic insects is found in four orders — Trichoptera, Odonata, Heteroptera and Coleoptera. 2. Immature aquatic insects that produce sound are rare, stridulation being present in one family of Trichoptera (Hydropsychidae) and one genus and species in a relic suborder of Odonata (Anisozygoptera) - Epiophlebia superstes. Hydropsychid larvae produce sound with a head/fore femur mechanism and use sound as part of aggressive behaviour for defence of feeding nets. Larval E. superstes use a hind femur/abdominal mechanism to dissuade predators. 3. Sound production has been documented in adults of all families of aquatic Heteroptera except Helotrephidae. In corixids and notonectids, acoustic signals play a role in mating. Members of the genus Buenoa (Notonectidae) are unique in having two stridulatory mechanisms in the same individual. Sound production has been most intensively studied in the Corixidae. Although sounds are used in mating by all singing corixids, their use seems to be facultative in some species and obligatory in others. Recent experiments by Theiss (1982) have shown that the air stores carried by corixids are used for both sound radiation and reception. 4. The adephagan beetle families Hygrobiidae, Dytiscidae and Haliplidae have all been shown to produce sound. Mechanisms of sound production have been established for haliplids and hygrobiids but have yet to be for most dytiscids. Sound production is used by beetles as part of sequences of aggressive/defensive and reproductive behaviour. 5. Sound production is especially well documented in the Hydrophilidae (Polyphaga). Hydrophilids use an abdominal/elytral mechanism and sound appears to be used in the same contexts as in adephagans. 6. Insects that produce sound under water must contend with the physical problems of sound transmission in a relatively dense, viscous medium with sharp boundaries. Because of potential distortion of the frequency components in a signal by reflection from the air/water interface in very shallow water, frequency is unreliable for encoding information. Aquatic insects use instead amplitude modulation and temporal patterning of signals. 7. For aquatic invertebrates, sound fields are different than those in air because the extent of the near field is approximately four times greater in water. This near field, a region in which displacement waves are predominant over pressure waves, extends to a greater distance than most aquatic insects communicate over. Such displacement waves could have important but as yet unconsidered effects. 8. The mass and viscosity of the water dictates that sound producing structures of aquatic insects should be heavier and more massive than those of terrestrial insects. A survey of stridulatory organs of aquatic insects reveals this to be true and reveals that the relatively fragile, membranous stridulatory organs of some terrestrial insects (especially Orthoptera) are absent. 9. The elaboration of sound producing structures in aquatic insects probably occurred at the family or subfamily level and for Heteroptera, Trichoptera and Odonata evolved after the invasion of the water. Acoustic signals used reproductively would probably be more closely associated with the emergence of new taxa. 10. Stridulatory structures have been derived from either structures devoted to some other function or from structures involved in the behaviour currently enhanced by sound production.  相似文献   

16.
Summary In order to determine whether correlations exist between hearing and the known soundproduction abilities in piranhas (Serrasalmus nattereri), behavioral auditory thresholds were obtained with continuous tones and tone pulses. A new avoidance conditioning method was developed, where fin movements of caged animals were taken as response to a tone. The mean values of the far-field audiogram ranged from –26 dB re. 0.1 Pa at 80 Hz to a low point of about –43 dB between 220–350 Hz and rose to –14 dB at 1500 Hz. The frequency spectrum of typical drumming sounds (barks) covers the range of best hearing (100–600 Hz).Piranhas are able to integrate temporally acoustic signals: in threshold investigations with repeated tone pulses, the thresholds rose approximately exponentially with decreasing pulse duration and repetition rate; thresholds of single pulses were higher with shorter pulses. The temporal patterning of the calls and the temporal integration ability are well correlated in piranhas, optimizing intraspecific detectability and total length of sound production with respect to the fatigue characteristics of drumming muscles and habituation of the neural pacemaker.The lagenae of the piranhas were found to face laterofrontally; this is thought to be a morphological adaptation to sound production, saving the lagenae from excessive strain during activation of the drumming muscles.Abbreviations Cl acoustic condition 1, where a board with the air loudspeaker rested on the experimental tank upon a layer of felt - C2 acoustic condition 2, where the loudspeaker was freely mounted 20 cm above the water surface - d p pulse duration - f p pulse repetition rate - D duty cycle  相似文献   

17.
ARMIN KEUPER 《Bioacoustics.》2013,22(4):287-306
ABSTRACT

The mechanism of sound production in tettigoniids is examined by applying the method of ‘cepstrum’ analysis to insect calls. The power cepstrum is defined as the inverse Fourier transform of the logarithmic power spectrum. This analysis shows that the tettigoniid sound signal is a convolution in time of probably two components. The first is caused by the initial impact of teeth of the stridulatory file on the left wing against the plectrum on the right wing (termed the input pulse); the second is caused by the oscillating properties of the tegmina (these being a function of the intrinsic frequencies of dorsal fields and mirror and their damping properties). In the cepstrum each component appears as a varying number of peaks. The tooth impacts cause a very low quefrency peak probably representing the time in which the two tegmina are in contact during each impact and high quefrency peaks representing the impulse repetition rate. The oscillating properties of the tegmina cause two major quefrency peaks which can be clearly related to the size of the dorsal fields and of the mirror respectively, and therefore to their intrinsic frequencies. The high damping factor of the tegmina together with the transient shape of the tegminal input pulse causes a strong time limitation of the impulses and is therefore responsible for the broad frequency bands occurring in the power spectra of the tettigoniid songs. The impulse generation of a synthetic tettigoniid song is discussed.  相似文献   

18.
The first demonstration, to our knowledge, of an evolutionary shift in communication mode in animals is presented. Some species of Ovalipes display spectacular iridescence resulting from multilayer reflectors in the cuticle. This reflector is unique in animals because each layer is corrugated and slightly out of phase with adjacent layers. Solid layers are separated from fluid layers in the reflector by side branches acting as support struts. An effect of this reflector is that blue light is reflected over a ''broad'' angle around a plane parallel to the sea floor when the host crab is resting. Species of Ovalipes all possess stridulatory structures. The shallow-water species with the best developed stridulatory structures are non-iridescent and use sound as a signal. Deep-water species possess poorly developed stridulatory structures and display iridescence from most regions of the body. In deep water, where incident light is blue, light display is highly directional in contrast to sound produced via stridulation. Sound and light display probably perform the same function of sexual signalling in Ovalipes, although the directional signal is less likely to attract predators. Deep-water species of Ovalipes appear to have evolved towards using light in conspecific signalling. This change from using sound to using light reflects the change in habitat light properties, perhaps the hunting mechanisms of cohabitees, and its progression is an indicator of phylogeny. The changes in sexual signalling mechanisms, following spatial–geographical isolation, may have promoted speciation in Ovalipes.  相似文献   

19.
Effective radiation area factors (f eff) and projected area factors (f p) of unclothed Caucasians’ standing and walking postures used in estimating human radiation exchange with the surrounding environment were determined from a sample of adults in Canada. Several three-dimensional (3D) computer body models were created for standing and walking postures. Only small differences in f eff and f p values for standing posture were found between gender (male or female) and body type (normal- or over-weight). Differences between this study and previous studies were much larger: ≤0.173 in f p and ≤0.101 in f eff. Directionless f p values for walking posture also had only minor differences between genders and positions in a stride. However, the differences of mean directional f p values of the positions dependent on azimuth angles were large enough, ≤0.072, to create important differences in modeled radiation receipt. Differences in f eff values were small: 0.02 between the normal-weight male and female models and up to 0.033 between positions in a stride. Variations of directional f p values depending on solar altitudes for walking posture were narrower than those for standing posture. When both standing and walking postures are considered, the mean f eff value, 0.836, of standing (0.826) and walking (0.846) could be used. However, f p values should be selected carefully because differences between directional and directionless f p values were large enough that they could influence the estimated level of human thermal sensation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号